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Adaptive Predictive Power Control for the
Uplink Channel in DS-CDMA Cellular Systems

Mansour A. Aldajani Member, IEEEand Ali H. SayedFellow, IEEE

Abstract—in this paper, we analyze the conventional closed-loop  In closed-loop power control (CLPC), the BS measures the
power-control system. We explain that the system behaves es-fading effects in the signal received from each mobile station
sentially as a companded delta modulator and then derive an by measuring the signal power and the bit-error rate (BER).

expression for the power-control error in terms of the channel Tvpicallv. the received power is measured by averaging mul-
fading, which suggests methods for reducing the error variance. yp Y, p y ging

This is achieved by using a prediction technique for estimating the tiple samples of the received sequence, while the BER is com-
channel-power fading profile. The prediction module is combined puted by comparing the received sequence with a predetermined
with several proposed schemes for closed-loop power control. transmitted sequence. The BS then compares these quantities
The resulting architectures are shown to result in improved \ith g reference point. Based on this comparison, the BS trans-
performance in simulations. mits a one-bit signal, known as tpewer bit to each MS, com-
Index Terms—Adaptive filtering, channel inverse coding, closed manding it to either increase or decrease its power by a fixed
loop, direct sequence code division multiple access (DS-CDMA), amount, e.g., 1, 0.5, or 0.25 dB. The power bit rate is 800 Hz

error analysis, power control, prediction, Rayleigh fading. in 1S-95 standards and 1500 Hz in 3G WCDMA standards.
Fig. 1 shows a block-diagram representation of the conventional
|. INTRODUCTION CLPC scheme. In the downlink channel, power control is not re-

HE requirement of power control (PC) in the uplink di_quwed since all signals to the different MS are initiated from the

L . m rce.
rect-sequence code-division multiple-access (DS-CDM,ESgl € source

system is a critical limitation [1]. Power control is needed be- _

cause all users share the same bandwidth and, thus, interdsekimitations of Conventional CLPC

interference is bound to occur. Without power control, a signal The performance of conventional CLPC is limited for at least
receive(_j by th? base stat_ion (BS) from a nearby mobile st_ati reasons. First, the delta modulator-like behavior of the con-
,(MS) will dominate the signal from a far-away MS, reSUItIng/entional CLPC is slow in tracking fast and deep fading of the
n the so-callechear—far _eﬁectThe objective of p_ower_control wireless channel. This effect creates what is known in the delta-
is to control the transmitted power by the mobile units so th?r'iodulation context aslope overloadin addition, the CLPC

the average power received from each unitis generally constatates a noisy response knownganular noisewhen the
Some of the main advantages of power control can be SUMM&;;, g is smooth or minimal. In the literature, there are two main
rized as follows. methods that have been used to improve the performance of the

1) Power control reduces interuser interference by ovefpnventional CLPC, namely adaptive step size and predictive
coming the near—far effect, which results in capacitp;ower control.
increase of the overall CDMA system. In adaptive step-size power control, the step size of the

2) Power control combats the Rayleigh-fading channel effeghyyer-error quantizer is adapted in a way to cope with quickly
on the transmitted signal by compensating for the fashanging channel-fading effects. Examples of such schemes
fading of the wireless channel. This reduces the requirggdp pe found in [2]-[6]. Predictive power control, on the other
signal-to-noise ratio (SNRj, /N, In perfect power-con- hang, is based on predicting the channel attenuation one step
trol conditions, power control turns a fading channel intgpeaq [7]-[9]. The predicted value is then used in calculating
an additive white Gaussian noise (AWGN) [1]. the predicted received power.

3) Pow_er cor_1tro| minimizes th_e power consur_nption of the |, this paper, we start from the power-control loop of Fig. 1.
mobile units. Instead of using a fixed maximum poweyys derive a closed-form expression for the power error in terms
by the MS, itwill now use an adaptive transmission POW&St the channel fading and the desired power, and use this ex-
based on the power-control requirements. pression to evaluate the mean and variance of the power-error

signal. We then propose four algorithms that attempt to mini-
mize the error variance. These algorithms require the prediction
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Fig. 1. Conventional closed-loop power control.
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Fig. 2. Conventional CLPC.

power). Second, the power-control feedback loop is assumeduioerea, (t) is the tap weight coefficient relative to thth finger
be error-free (the BER of the power bit is zero). of the RAKE receiver. The transmission powgy(t) is kept
unchanged during a power-control period so that

1 nT),
Il. ANALYSIS OF CONVENTIONAL CLPC Pr(n) = Py(n - 1) [— /( e Q(t)dt] ~ 3)
p J(n=1)Tp
A. Power-Channel Model If we define
We assume a multipath channel with Rayleigh-fading reflec- b(n) & 1 Ty Qt)dt @)
tions that are optimally combined using a RAKE receiver with T, . (n—1)T, ’

M fingers. The discrete-time received poweir(n) at the BS

can be expressed as [9], [10] then the received power is given by

nT, Pr(n) = ¢p(n)Py(n —1). (5)
Rm=g [ RoQ@ M
n—1)T, . .
P B. Equivalent Model for Conventional CLPC

whereT), is the power-control period?, () is the transmitted  Fig. 2 shows a more-detailed block diagram of the conven-
power, andQ(t) is the power gain of the channel. This gaifional CLPC. The transmission pow®¥ () used by the MS is
contains all effects of the multipath reflections on the signgktenuated by the channel fadingn). At the BS, the received
power. In [10], the gairQ)(t) is given by powerP,(n) is measured. (We assume an exact power measure-
ment.) The received powd?.(n) is then compared to a desired
fixed power levelP,. The errore,(n) is defined by

eq(n) = Py — Pr(n). (6)

L—-1
Q)= lay(t)? )
p=0
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Fig. 3. Equivalent structure for conventional CLPC.
Equivalently, using (5), we can write DM, while an exponential function is added after the DM to get

Py(n).
=P; - Pi(n —1). 7 t
ca(n) a = ¢(m)Pi(n—1) () In other words, the result (16) shows that the conventional

The power erroe, (n) is quantized using a one-bit quantizer taCPC model of Fig. 2 is actually a companded delta modulator
produce the power-command bit (PCB)), scaled by half the with input P;/4(n) and outputP;(n). In this way, the CLPC

step size of the quantizex, i.e.} attempts to make the transmission powgfn) track the quan-
b = Dgi 8 tity P;/¢(n) using a companded delta modulator. The results
(n) = - signiea(n)]. (8)  obtained in this section essentially match thg-linear model

This PCB is transmitted to the MS, which then increments ¢s€d in [10] and [11]. Now, we continue with a linear anal-
decrements its transmission power by a fixed amount (in degis model by following the method of [12] on companded DM
bels), say systems.

Pi(n) = a*™Py(n - 1) (9) C. Power-Control Error

DM is a simple tracking mechanism that is used in coding
and data conversion. Fig. 4(a) shows a block diagram of a DM.
A linearized version of DM can be obtained by modeling the
1 = 10logy, . (10) effect of the quantizer as an additive quantization nejge),
as shown in Fig. 4(a).

The quantization errot,(n) is usually assumed to be uni-

where« is a constant (usually < a < 3). In other words,
P;(n) is incremented or decremented $ydB where

If we take the logarithm of both sides of (9)

log,, Pi(n) = b(n) + log, Pi(n —1) (11)  formly distributed betweefi-A /2, A/2], whereA is the step
and use (7) and (8), we get size of the quantizer. The transfer function of the linearized DM
A is then given by
b(n) = 55|gn[Pd — ¢(n)Pe(n — 1)]. (12) Ya(2) = Xa(z) + Eq(z). (17)

Now, since the logarithm is an increasing function, we cgQ the time domain
rewrite this equation as
d ya(n) = zq4(n) + eq(n). (18)

A
b(n) = sigllog, Pu —log, (¢(n)Pe(n —1))].  (13)  Referring to Fig. 3 and using the linearization of Fig. 4 for the
DM, we can argue by following the derivation in [12] that the
relation of P;(n) tolog,, (Ps/#(n)) can be approximated via a

b(n) = %Sigr{loga Py —log, ¢(n) —log, Pi(n —1)]. (14) random gain model as

Equivalently

Py

Therefore P,(n) = a!°8aFa/?(M) [ (n) = mK(n) (19)
A P, "

b(n) = - sign |:10g(y <W¢i)> —log, Py(n — 1)} - (15) whereK (n) is a random variable that is defined by
Substituting this expression into (11), we get K(n) = a®™. (20)
log,, Py(n) = log, Pi(n — 1) If we substitute (19) into (5), we find that

é' - i - _ Po(n) = 20 _Pin—1)K(n—1).
+2sigrlog, ( : (n)) log., Pi(n —1)]. (16) (n) = 20 Pa(n — 1)K (n — 1) o1

This expression shows that, in the logarithmic scale, the refegr the sake of compactness, let us introduce the notation
tion between{ P;, P;(n)} amounts to a delta-modulation (DM) —
scheme with inputog,, (P;/#(n)) and outputlog,, P;(n), as (-) = 10logyo(+) 99
shown in Fig. 3. The logarithm function is added before the (22)

and use it to write (21) as
Iwe shall assume that the error sigmaln) is small enough so that the _ _ _ _ _
single-bit quantizer of Fig. 2 behaves like the signum function in (8). P.(n)=¢(n)—¢p(n—1)+ Pyg+ K(n—1). (23)
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Fig. 5. Performance of conventional CLPC versufor different Doppler frequencies.
But sinceK (n) = o™ anda = 10log;, a = v, then Let us define the closed-loop power-control error (PCE) in deci-

bels a3

K(n) = vpea(n).

Substituting (24) into (23), we arrive at the following expression
for the received power in the logarithmic scale:

e(n) 2 P,(n) — Py = 10logy, ( L }(:)) . (26)

2This error is just another way of measuring the difference betwegn)

P.(n) = a(n) — E(n — 1)+ Py + veq(n —1). andP,. It employs a logarithmic scale, while the earlier ereor(n), defined
(25) in Fig. 2, employs a linear scale.
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Fig. 6. Comparison between the power-error-variance expressions (32) and (34) with simulation results.

Then, from (25) Using the uncorrelatedness assumption A.1
o T D e E{(@(n) = $(n - 1) pea(n -1} =0 (31)
elm) = 9m) == D wean =D | 7)o find that

This expression shows that the power ew@r) is affected by E{e’(n)} = E{(¢(n) — ¢(n — 1)) }

the following two factors: 12 E {es(n _ 1)} . (32)
1) variation in the channel-power fadiggn) — ¢(n — 1). When the uniformity assumption A.2 on the quantization noise
2) qgantlzatlon noiseq(). ) ) eq(n) is reasonable, we further have

In Sections II-D and II-E, we derive expressions for the mean A A?

and variance ok(n). To do so, we will make the following E{ei(n—-1)} = / —2dr = — (33)

assumptions. —(A/2) A 12

A.1) eq(n) is a uniformly distributed random variableSO that the power error variance can be expressed as

within [-A/2, A /2]. This is reasonable under the approx- | E 1 2 A2
imation thate, (n) of Fig. 2 lies within[—A /2, A/2]. {2} = BA(9(n) — o(n )) J (34)

A.2: All random processes are stationary and independgfifyression (32) is more general in that it does not rely on the

of each other. uniformity assumption on,(n). We summarize the result in the

following statement.

_ . 1) Lemma: Power Control Error (PCE)for the CLPC
Taking the expected value of both sides of (27), we have scheme of Fig. 2, the PCHn) = P,(n)— P4 is zero mean and

E{e(n)} = E {g(n)} _E {g(n _ 1)} +pE{eq(n —1)}. its variance is given by (32). When the uniformity assumption

(28) ©n the quantization noise is reasonable, the error variance is

D. Mean and Variance Analysis

However, since by stationarity and at steady state given by (34). °
E{¢(n)} = E{¢(n—1)} £ E5 E. Effect of the Choice of
and sinceE{e4(n — 1)} = 0, we conclude that Referring to the companded DM structure of Fig. 3, we see

that there are some restrictions on the choice of the positive

(29) gquantitya. Clearly,a cannot be less than unity since it will then
expand (rather than compress) the input to the DM. This will

To evaluate the variance efrn), we square both sides of (27)result in slope overload, in which case the DM will not be able

E. £ E{e(n)} =0.

to get to cope with the large variations in the input. Furthermere,
20N (TN T 1) 2 cannot be unity since this choice makes the system functionless
¢(n) = (¢(n)_ ¢(n_ D) (Pi(n) = Py(n — 1)). The larger than 1 the value afis, the
+2(p(n) = ¢(n — 1)) pea(n — 1) less slope overload there is in the system (i.e., the easier the

2
+ 23 (n —1). (30) tracking for the DM will be). However, from (27), increasing
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Fig. 7. Power-fading prediction.

will increase the power-tracking error, thus putting a limitation Fig. 7 shows the structure of the proposed prediction method.

on how largex can be. The measured received pow@r(n) is divided byP;(n — 1) to
To examine the effect ofv on the PCE, we choose a cerget the power attenuatiaf(n), i.e.,

tain Doppler frequenéy fp and generate the corresponding P,(n)

power-fading signal(n). We also choose a value for the ex- d(n) = m (35)

ponent termy and run a simulation implementing the CLPC of
Fig. 2. The standard deviation (STD) of the error sigrmal) The signalp(n) is then up-sampled by a factor &f, resulting
is measured. The values ¢f anda are then changed and thein ¢(m), wherem refers to the oversampling index. This can be
STD is measured again. The result is shown in Fig. 5, whigthieved by increasing the sampling rate of the received power
shows that the optimal choice oflies within the interval [1], and by assuming that the transmission power is constant be-
[2]. The heavy solid curve indicates the optimal patmads a tween two consecutive samplesBfin).
function of fp. The signakp(m) is then passed through a delay, as shown in

Fig. 6 shows a comparison between the simulation and afdg. 7. The delayed sampléggm — 1) are fed into an adaptive
lytical results of the PCE standard deviation wjth = 85 Hz. filter of order M. The output of the adaptive filter is compared
The figure shows two curves associated with (32) and (34). to ¢(m) and the comparison error is fed back to the adaptive

The theoretical curve from (32) shows a strong match wiffiter for training. The taps of the adaptive filt&¥,,, extract the
the simulation results ford o <2. On the other hand, the correlation between the fading samples. The tap values are car-
theoretical curve associated with (34) matches the simulatitad out and used to adapt the taps of an finite-impulse-response
results only for large enough. Recall that (32) assumes tha(FIR) filter, as shown in the figure. The input to this FIR filter is
the second moment of the quantization ewgfn) can be es- ¢(m) and its output is the prediction @f(mm + 1), denoted by
timated. On the other hand, (34) relies on the uniformity agy(m + 1|m). This signal is then down-sampled by the same
sumption for the quantization error (which is dependent updactor U to produce the required prediction value
« and the amount of slope overload in the DM). These observa- -
tions support our conclusion that (34) should be used only if the dp(n+ 1n) = d(n +1). (36)
uniformity assumption omy(n) is reasonable. Otherwise, (32) The normalized LMS algorithm [14] is used whereby the
gives a more-accurate characterization of system performan¢a/ x 1) tap vector’V,,, is updated according to the rule

lj’ *
IIl. OVERSAMPLED CHANNEL PREDICTION W1 = Win + P e [p(m) —wmWn]  (37)

The CLPC methods that we will propose in the sequel willhere the regression vectay, contains the priof/ samples
require a prediction for the channel power fading profil@).  of ¢(/n — 1) and the notatiotj - |2 denotes the Euclidean norm.
In this section, we propose one method for predictiitg), The constan: is the step size of the adaptive filter afids an
which is based on oversampling the received power variations@bitrary small positive number.
the BS. Then, a normalized least mean squares (NLMS)-basedhe performance of this predictoris dependent upon many fac-
adaptive predictor is used to estimate the channel fading one sig, such as the filter type, order, and step size. Furthermore, the
ahead. To do so, we assume that the BS knows the transmit@ersampling factof’ plays a useful role in the performance of
power P(n) of the MS at each time instant. This assumptiothe predictor, since it helps increase the correlation between the
is reasonable in CLPC since the BS can usually recéyet) samplesof(rn). Itshould be noted thatincreasitigvill also in-
from the information sent to the MS. troduce noise in the measur&(n), resulting in a degradation

3The Doppler frequencys is the width of the Doppler power spectrum of " performance. This usually sets an upper limit for the choice of

the wireless channel. The Doppler frequency and the delay spread of the chat%el-[.—hrough simulations, we foun.d thét < Sisan gcceptable
are reciprocally related [13]. choice. Fig. 8 shows an attenuation cupe) resulting from a
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Fig. 8. Time response of the channel attenuation and its prediction for a Rayleigh-fading channel.
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Fig. 9. Prediction error over time for a Rayleigh-fading channel vfith= 50 Hz andl/ = 1.

Rayleigh-fading channeltogetherwithitspredicted vaiyle: + fp = 50 Hz, U = 1, andp = 1.8. The error decays to

1in). —40 dB and stays under30 dB for most of the simulation time.
Fig. 9 shows a plot of the prediction errey, = ¢,(n + In Fig. 10, we show the prediction mean square error (MSE)

1|n) — ¢(n + 1) over time for a Rayleigh-fading channel withE{e?,} versus the step size for different Doppler frequen-
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Fig. 10. Effect of the step size on prediction MSE for different Doppler frequencies.
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Fig. 11. The prediction MSE as a function of the oversampling factéor different Doppler frequencies.

cies. For high Doppler frequencies, the PCE is less affected dhfferent fps and foru = 1.2. As is seen, increasing the over-
the choice ofu. Moreover, abrupt changes to the STD occuwsampling rate improves the prediction quality that, in turn, re-
wheny is greater than 1.9. A reasonable choicefdies in the sults in better tracking performance. In practice, there is a limit
interval (1.6,1.8). on how largel/ can be. As we mentioned earlier, increasing

The MSE can be reduced by increasing the oversamplidgcreases the averaging period of the measured power, which
factorU. In Fig. 11, the MSE is shown as a function@ffor may increase the power-measurement error.
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Fig. 13. Evaluation of the predictive ratio. The prediction scheme used here is the one of Fig. 7.

IV. ALGORITHMS FORADAPTIVE CLPC so that the received power is now given by
We now propose several algorithms for CLPC. The first is P,.(n) = ¢(n)Py(n — 1)
based on minimizing the differen¢e(n) — ¢(n — 1)] that ap- é(n)

pears in (27) by replacing(n — 1) with its one-step predic- = mpd(n —1)K(n—1).
tion. The second algorithm is similar to the first, except that the P
exponent termy is adapted. In the third algorithm, the BS didf we take the logarithm of both sides, as we did in Section II-C,
rectly computes the prediction of the power attenuation causeé get
by the channel. This information is sent to the MS after being — - — R —
source coded to meet the power bit-rate requirements. The MS Pr(n) =¢(n) = gp(nin — 1) + Pa+ K(n—1).  (39)
will then use this information directly as its transmission powen other words
The fourth algorithm is similar to the previous one, exceptthata __ _ _ _
more-powerful coding scheme is used. In Sections IV-A-D, we r(n) = ¢(n) — ¢, (n|n — 1) + Py + ¢es(n — 1)  (40)
describe these algorithms in some detail. The prediction meth . .
described in the previous section is used by all four algorithm%?d' hence, the power error is now given by
e(n) = @(n) - G,(nln = 1) + Yea(n = 1) (41)

Note that the only difference between the conventional error

The block diagram of this first scheme is shown in Fig. 12, yression (27) and the new expression (41) is that the term
The only modification relative to the conventional CLPC o (n — 1) is replaced byp, (n|n — 1). The power error is now
. :

Fig. 2is the introduction of the ratio blo¢k, (n + 1|n)/¢(n)).  gependent upon the different&n) — & _ 1)1 rather than
This will cancel the fading(n) caused by the channel and re— pendent up Betn) = g (nin ~ 1)

o S X : [¢(n) — ¢(n — 1)],, as in conventional CLPC. Since, for rea-
lace it with the predictio 1|n). Everything else is the oy ) oy
game as in the c%nventioﬁgl(%tPéngf Fig. %’ 9 sonable predictionp,, (n|n — 1) is usually closer ta(n) than

If we follow the same derivation as in Sections II-B and Ca(" — 1), we expect this algorithm to result in lower PCE. The

we can verify that prediction termp,, (n|n — 1) can be evaluated by resorting to the
scheme of Fig. 7. In this way, the power measurement and ratio

blocks on the left-hand side of Fig. 12 (at the BS side) can be

more explicitly detailed, as shown in Fig. 13.

A. Algorithm 1: Predictive-Ratio CLPC (PR-CLPC)

Py

Ben) = 3 Gt 1y

K(n) (38)
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TABLE | TABLE 1l
SUMMARY OF THE PREDICTIVE-RATIO CLPC (PR-CLPC) AGORITHM SUMMARY OF THE ADAPTIVE PREDICTIVE-RATIO
CLPC (APR-CLPC) AGORITHM
Initialization:
Choose the desired received power Py. Initialization:
Choose « and evaluate v from (10). Choose the desired received power Py.
Choose the prediction parameters: Choose the adaptation parameters:
Filter order, p, and U. C, amaz and Qpin.
Choose the prediction parameters:
For every CLPC time sample n > 0 do: Filter order, p, and U.
BS ) For every CLPC time sample n > 0 do:
1. Measure Pr(n) from the received sequence.
2. Knowing P;(n — 1), estimate ¢(n). BS.
3. Evaluate ¢p(n + 1|n). 1. Measure Pr(n) from the received sequence.
4. Multiply P,(n) by ép(ntln) 2. Knowing P;(n — 1), estimate ¢(n).
. #(n) 3. Evaluate ¢p(n + 1{n).
5. Compare the result with Py: 4 Multioly 2. by Gp(n+1ln)
if Py (n) 2201 S ) then b(n) = 1 . ultiply Pr(n) by BOE
¢(n) 5. Compare the result with Py:
else b(n) = —1 i dp(nt1jn)
end. if Pr('IL)W > Py then b(n) =1
6. Send b(n) to the MS. else b(n) = —1
end.
MS 6.  Send b(n) to the MS.
7. Extract b(n) from the received data.
8. If b(n) = 1: increment P;(n) by 1dB MS
else: decrement P (n) by »dB 7. Extract b(n) from the received data.
end. 8. From b(n —i),i = 0,1, 2, compute A(n).
9. From (45) and (48) compute c(n) and 9 (n).
10. If b(n) = 1: increment P (n) by ¥(n)dB

else: decrement P;(n) by ¢ (n)dB
end.

We can evaluate the mean and variance of the power error by
following the same procedure and assumptions as in the con-
ventional case of Section II-C. The error mean is given by

whereC' is a positive constant, usually < 1 (e.g.,C = 0.2).

Efe(n)} = E{¢(n)} — E{¢,(n|n — 1)} The signal\(n) is chosen as
+ypE{eq(n—1)} =0 (42) +1 ?f b(n)=b(n—1)=b(n—2)

and the error variance by Aln) = § 1 if b(n) # b(n — 1) (46)

2 Furth th OtherWitSte min) is limited by | d
ol 2 — 2l (3n) -3 _1 urthermore, the exponent terrfn) is limited by lower an

{em} {(¢(n) By(nfe = 1)) } upper bounds, i.e.,
+y?E {ej(n—1)}. (43) a(n) = {amax, if a(n) > amax, (47)
Again, when the uniformity assumption on the quantization Omin  if a(n) < omin o )
noiseey(n) is reasonable, we get The boundsy,,,,x anda,,;, are chosen from within the interval
A2 (1,3] (.9.,max = 2.5 anday,;, = 1.1). The step change of

E{e’(n)} =E { (B(n) — 8, (nln — 1))2} + 1/,25. (44) Di(n) in decibels is
. . P(n) = 10log,g a(n). (48)
Therefore, the variance of the PCE is now dependent upon the, Apr-cLPC algorithm is summarized in Table II.
second moment
- - 2 i - Direet- )
E{(¢(n) — ¢,(n|n — 1)) } C. Algorithm 3: Direct-Inverse CLPC (DI-CLPC)

_ _ 5 _ _ Algorithms 1 and 2 attempt to minimize the power-error ex-
and not OnE{(¢(”) —$(n—1)) } as in the conventional pression (27). In the third algorithm, we implement a direct in-
case. Thus, any prediction with acceptable accuracy wikkrse approach in which the MS is asked to transmit power in
improve the PCE. The PR-CLPC algorithm is summarized proportion to the inverse of the channel fading. A previously
Table I. developed coder will be used to code the power information.

This one-bit coder features high dynamic range and SNR per-
B. Algorithm 2: Adaptive Predictive-Ratio CLPC (APR-CLPCjormance, making it suitable for this application.

Here, we use an adaptation technique to vary the exponenft block diagram of the scheme is shown in Fig. 14. The
term a (which determines the value gf). The motivation be- power-control process works as follows. The BS measures the
hind this algorithm is the following. When the channel-fadingeceived powet’.(n) from the bit stream arriving at its end.
variations are small, the predictor performs well. Thereforghen, the MS transmission powBs(n—1) andP.(n) are fed to
we can decrease in order to decrease the power error ofhe prediction block, which produces(n+1|n), as in Fig. 13.
(27). When the variations are large|s increased to boost the The BS estimates the transmission power that should be used by
tracking capabilities of the power-control loop. The adaptatidhe MS as
scheme used fat is P,

a(n) =a(n—1) + A(n)C (45) Fi(n) = bp(n+1in)’ (49)
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;}(n)

e ~ Enc. |4 E """""" = Dec.
x : !
(1)1)(11+I|n) E E
Prediction 7 Dec. .
: F (n) : : 7OH J_J’LL
P.(n) Power ' ® user
Measurement : T .' | data
Lo
BS !Channel ! MS

Fig. 14. Block diagram of the direct inverse CLPC algorithm. The prediction scheme of Fig. 7 can be used here.

A
F (n) e.(n) :’_—_ q(n)
d(n—1)
1 d(n) O wm) | 1
z | o, | -
C
1-z
()
q(n) 1 ()l EB(n)
—> | T o, |
-z
(b)
Fig. 15. Coding scheme used in the DI-CLPC algorithm. (a) Encoder and (b) decoder.
This information is to be transmitted to the MS. Since we are TABLE Il
limited by the power bit ratePt(n) should be coded to meet SUMMARY OF THE DIRECT INVERSECLPC (DI-CLPC) A GORITHM
this rate. e
. . nitialization:

The coding scheme used to traqsmltn) could bg the adap- Choose the desired received power Py,
tation part of the ADM described in [15], [16]. This coder ex- Choose the coding parameters a and d(0).
hibits strong tracking, good stability, and high dynamic range. Chgﬁf:rtgfdgedf;‘gg g‘mmctefs:

Fig. 15 shows a block diagram of the coding scheme; the en- L :
coder and decoder are shown in parts a and b, respectively. The For every CLPC time sample n > 0 do:

equations describing the dynamics of the coder are

ec(n) = ﬁt(n) —d(n—1), d(0)=do BS.

Measure Pr(n) from the received sequence.

1.
. 2. Knowing P;(n — 1), estimate ¢(n).
q(n) =signe.(n)] 3. Evaluate r/),)t(n + 1jn).
- Do) — Py
w(n) — w(n _ 1) + q(n)_/ w(o) =0 4. Code the power data P;(n) = FEESIE
w(n) 5. Send the coded data g(n) to the MS.
d(n) =af'™.
. . . MS
In this glgo_rlthm, the term. de_notgs the coding exponent (the 6. Extract g(n) from the received data.
subscriptc is added to distinguish it from the used in the pre- 7. Use q(n) to decode the power data d(n).
vious algorithms). The DI-CLPC algorithm is summarized in 8. Set Py(n) = d(n).

Table IIl.
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. o q(n)
> > :
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Fig. 16. Coding scheme used in the ADI-CLPC Algorithm.
TABLE IV TABLE V
SUMMARY OF THE ADAPTIVE DIRECT INVERSE POWER-CONTROL ERRORSTD OBTAINED USING CONVENTIONAL CLPC

CLPC (ADI-CLPC) ALGORITHM

fp Vehicle Speed PCE STD

Initialization:

RS H k

Choose the desired received power Py. (15) ( ;n ;h) (g?

Choose the prediction parameters: 20 13'3 6 0'7

Filter order, p, and U. 50 33' 3 1.0
Choose the adaptation parameters: 85 56-7 1'2
C, amag and Gmin. 100 66.7 15
1 1 .
For every CLPC time sample n > 0 do: 30 00 22
BS
1. Measure Pr(n) from the received sequence. \/. SIMULATIONS
2. Knowing P;(n — 1), estimate ¢(n).
3. Evaluate ¢p(n + 1|n) The algorithms developed in this article have been simulated
4. Compute A\(n) and aq(n): (50) & (51). . . . . . .
SN Py using Matlab and Simulink. The following are the simulation
5. Use ac(n) to code Pi(n) = FwCEs T q4:
6. Send the coded data g(n) to the MS. parameters used:
MS  Desired power leveP,: 0 dB;
, » Power bit rate: 1500 Hz;

7. Extract g(n) from the received data. .
8. Use (50) and (51) to recompute a¢(n). i Up-Sampllng faCtO(U): 2;
‘f. Decode d(n) from g(n) & ac(n). « Channel type: frequency-selective multipath Rayleigh

e

Set Pi(n) = d(n). fading with two taps and variable mobile speed.

The channel-fading data was obtained using Simulink. The
standard deviation of the PCE is used as a measure of how

D. Algorithm 4: Adaptive Direct Inverse CLPC (ADI-CLPC) Wwell the power-control algorithms achieve the desired received

. . . ' power. The exponent term and the prediction step sizeare
In the previous algorithm, the coding constanthas a fixed osen as 1.3 and 0.8, respectively, unless otherwise specified.

value. However, in order to provide the coder with more freedo, o ; )
to track high variations inahe coded transmission power t&ile standard deviations of the PCE obtained from conventional

coding constant, can be allowed to vary, as shown in Fig. 16 PC for different Doppler frequencies are shown in Table V

The purpose of adapting. is similar to that in the APR-CLPC for reference.

P : L : We start our tests by investigating the effectzofnd o on
algorithm; namely, to cope with large variations in the channgl : :
power fading. Moreover, the same adaptation techniqucazforﬁ1e performance of the PR-CLPC algorithm. Fig. 17 shows the

used in APR-CLPC is adopted here, i.e., e_ffect of choosing different on the PCE standard _deviation for

different values offp. Choosingu = 0.85 results in best per-
ac(n) = ac(n— 1)+ A(n)C (50) formance as indicated by the vertical heavy arrow in the figure.
This PCE can be further reduced depending on the choice of the
exponent terna, as shown in Fig. 18. The optimal PCE changes
in a nonlinear fashion with respectdo When the Doppler fre-
guency of the mobile unit can be measured, then we can refer to
Fig. 18 for the optimal choice af. However, if the Doppler fre-

where
+1, ifg(n) =q(n—1) =q(n-2)
An) =14 —1, ifq(n) # (n—1) (51)
0, otherwise

ane guency cannot be measured accurately, then a choice-of .3
a(n) = Qmax, If a(n) > amax (52) ﬁeems to be reasonable, as indicated by the vertical arrow in the
Omins  If a(n) < omin igure.

The APR-CLPC algorithm is tested via simulations. Fig. 19
with typical valuesC' = 0.2, amax = 2.5 andamin = 1.1. The  shows the STD of the PCE for two different values of the adap-
ADI-CLPC algorithm is summarized in Table IV. tation constantC. The saturation limits forx are chosen as
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Fig. 17. Effect of choosing on PCE for the PR-CLPC algorithm using= 1.3.

Reasonable choice

Optim:al- path

PCE STD (dB)
N

1 1.1 1.2 1.3 1.4 1.5

Fig. 18. Effect of choosing: on PCE for the PR-CLPC algorithm.

Qmin = 1.1 anda . = 2. IncreasingC will improve the per- Fig. 20 shows a typical response of the adaptive coding term
formance of the CLPC algorithm at high vehicle speeds, but will.(n), used in the ADI-CLPC algorithm as a function of time
degrade it at low speeds. Choosifig= 0.1 was found reason- with fp = 85 Hz. The mean and variance values fQi(n) in

able for all tested applications. this example are 1.22 and 0.02, respectively.
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Fig. 19.

Fig. 20.

PCE STD (dB)
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A typical response for the exponent textr{n) of the ADI-CLPC algorithm over time for a Rayleigh-fading channel with = 85 Hz.

Finally, Fig. 21 shows the PCE performance of the PR-CLPE€gnventional CLPC and that of an adaptive CLPC developed in
APR-CLPC, DI-CLPC, and ADI-CLPC. The coding paramefl7], for the sake of comparison. The ADI-CLPC demonstrates
tersd(0) anda, used in the DI-CLPC algorithm are chosen athe best performance over all other algorithms. Although the

1E-3 and 1.8, respectively. Moreover, the parametéra,,;,,

power period is an important parameter that can affect the

amax for the ADI-CLPC algorithm are set to 0.1, 1.1, angerformance of the algorithms, only a single value is tested in
2, respectively. Fig. 21 also includes the performance of tltgis work.
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Fig. 21.

VI. CONCLUSION [5]

In this paper, we first explained that conventional CLPC is
essentially a companded delta modulator. We then derived artf!
expression for the PCE in conventional CLPC systems. The
power error was shown to have zero mean and an expression for
the error variance was derived. Several power-control scheme¥]
were proposed, which attempt to minimize the power-error
variance. A prediction scheme that is based on oversampling
the power measurements was used. In simulations, all proposeld!
power-control schemes showed improved performance over the
conventional scheme in terms of minimizing the power-error [9]
variance.
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