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Abstract—Frequency-domain and subband implementations
improve the computational efficiency and the convergence rate
of adaptive schemes. The well-known multidelay adaptive filter
(MDF) belongs to this class of block adaptive structures and
is a DFT-based algorithm. In this paper, we develop adaptive
structures that are based on the trigonometric transforms DCT
and DST and on the discrete Hartley transform (DHT). As a
result, these structures involve only real arithmetic and are
attractive alternatives in cases where the traditional DFT-based
scheme exhibits poor performance. The filters are derived by first
presenting a derivation for the classical DFT-based filter that
allows us to pursue these extensions immediately. The approach
used in this paper also provides further insights into subband
adaptive filtering.

Index Terms—Circulant, DCT, DFT, DHT, DST, embedding,
Hankel, real arithmetic, subband adaptive filter, Toeplitz.

I. INTRODUCTION

COMPUTATIONAL complexity is a burden in applications
that require long tapped-delay adaptive structures, such as

echo cancellation, where filters with hundreds or even thousands
of taps are necessary to model the echo path. Frequency-domain
and subband adaptive filters have been proposed to reduce the
computational requirements inherent to such applications (see,
e.g., [1]–[4]). These techniques not only result in more effi-
cient structures (due to the use of efficient block signal pro-
cessing methods), but they also improve the convergence rate
of an adaptive algorithm (due to a decrease in the eigenvalue
spread of the correlation matrix of the transformed signals). A
well-known example is the multidelay adaptive filter (MDF)
[2], which relies on the use of the discrete-Fourier transform
(DFT); it is a more general implementation than the original
frequency-domain algorithm proposed in [1] since the adaptive
filters are allowed to have more than one coefficient in the sub-
bands.

The MDF structure has been derived in the literature in the
DFT domain only. However, one would expect that different fre-
quency domain transformations (other than the DFT) can result
in different levels of performance (both computationally and
otherwise) since performance is highly dependent on both the
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statistical properties of the input signals and on the nature of the
frequency transformations. This fact motivates us to develop, in
this paper, frequency-domain adaptive structures that are based
on the trigonometric transforms DCT and DST, as well as on
the discrete Hartley transform (DHT). It seems that the tradi-
tional derivations of frequency-domain adaptive filters cannot
be directly extended to these new signal transformations without
some effort. For this reason, we will first present a derivation for
the classical DFT-based MDF structure using a so-calledem-
beddingapproach. This approach will then allow us to pursue
the new extensions rather immediately by exploiting different
kinds of matrix structure (e.g., [5]–[7]).

The MDF schemes of this paper are attractive for applications
where real arithmetic is required. Moreover, since efficient algo-
rithms exist for computing the DCT, DST, and DHT (see, e.g.,
[8]), these schemes also lead to efficient adaptive filter struc-
tures. We will further present in Section IX examples where they
can lead to better performance than the DFT-based scheme. We
should mention that these new structures are distinct from the
so-called transform domain algorithms (as, e.g., in [9]), which
process the data on asample by samplebasis. The frequency do-
main structures, on the other hand, performblock-by-blockpro-
cessing, which is essential for efficient frequency-domain im-
plementations.

In this paper, we also clarify the connection between the MDF
structure and the more general subband adaptive filtering struc-
ture. The key point to note is that the derivation of a subband
adaptive scheme can be carried out in much the same way as that
of the MDF structure. We will further relate the MDF structure
to the concept of delayless subband adaptive filtering proposed
in [10]. In this reference, a mapping from subband to wideband
filter coefficients was proposed with the intent of resolving the
delay problem that is characteristic of subband adaptive filters.
We will derive an alternative explicit mapping that guarantees
optimal performance; we will also comment on the results in
[11] for open-loop schemes. In particular, we will show that an
adaptive subband scheme that is based on a maximally deci-
mated DFT filter bank can be developed in a way analogous to
the MDF.

The paper is organized as follows. We start by formulating
a generic block estimation problem. We then show in Section
III how the pseudocirculant structure of the optimal block filter
can be exploited to provide a new embedding-based derivation
of the MDF filter. In later sections, we show how the embed-
ding approach can be extended to other classes of signal trans-
formations (DCT, DST, DHT). In Section VI, we compare the
computational requirements of the different algorithms, and in
Section VII, we provide some simulations. The examples show

1053–587X/00$10.00 © 2000 IEEE
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Fig. 1. Scalar linear optimal estimation.

situations where the new structures lead to better performance
than the DFT-based MDF structure. We conclude the paper with
a discussion of the connection of the MDF technique to subband
adaptive filtering.

II. BLOCK ESTIMATION PROBLEM

We start by formulating a basic estimation problem.
Thus, consider two jointly wide-sense stationary (WSS) and
zero-mean random sequences . Let denote
the linear least mean squares estimator of given the
observations

col

Then, , where is a row vector with taps (entries)
and is given by . The variances and are
defined by and . The station-
arity of the processes guarantees that and
are independent of. Hence, we can regardas the tap vector
of a time-invariant FIR filter with transfer function (see Fig. 1)

(1)

so that , where and denote the
-transforms of the scalar sequences , and the

denote the individual entries of.
The estimates can be alternatively computed on a

block by block basis by using block digital filtering techniques.
To this end, introduce the -long data vectors

col

col

and let and denote their vector-transforms:

Then, it can be verified that the block data are
related via (see Fig. 2) , where the square
transfer matrix has a pseudocirculant (PC) form,1 i.e., it
has the form (for )

(2)

The functions , , of are the
polyphase components of the wideband LTI filter in (1),

1A pseudocirculant matrix functionGGG(z) is essentially a circulant matrix
function with the exception that all the entries below the main diagonal are fur-
ther multiplied byz ; see (2) and [12].

Fig. 2. Block linear optimal estimation.

i.e., they correspond to -long FIR filters that are defined
by

...

Due to its pseudocirculant structure, the matrix can be
factored as , where is an
matrix function with Toeplitz structure, e.g., for

(3)

and is a matrix with a leading identity
block and a lower block with shifts, say, for again

(4)

We will exploit the factorization heavily in
the sequel.

III. DFT-BASED ADAPTIVE STRUCTURE

In this section, we show how the pseudocirculant structure
of can be exploited to derive a well-known frequency-do-
main adaptive filter that relies on the DFT and is known in the
literature as the multidelay adaptive filter [1]–[3]. The original
derivation of this structure is different from the approach we
present in this section. Our derivation is based on exploiting,
in a direct way, the PC nature of . As a fallout, the argu-
ment will suggest immediate extensions that rely on other signal
transformations [such as the real trigonometric transforms DCT
and DST, and the Hartley transform (DHT); see Sections VI and
VII].

Since we deal with the DFT in this section, and since it is
usually desirable to work with sequences whose lengths can be
expressed as powers of 2, we find it convenient to redefine the
above matrices and as

(5)

and

(6)
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with an additional zero column added to and an additional
row added to . The product is, of course, still
equal to . Now, however, is , and is

( will be a power of 2 when is).
Let denote the DFT matrix of

size . We start by embedding the Toeplitz
matrix into a circulant matrix function (a
similar technique was used in [13] to propose efficient structures
for block digital filtering), say, for

(7)
so that , where is the identity
matrix, and is the null matrix.

Now, it is well known that a circulant matrix such as
can be diagonalized by the DFT matrix, i.e., it always holds
that

(8)

for some diagonal matrix

diag

and where denotes complex conjugate transposition. Each
has taps. Using (8) and the fact that is sym-

metric, it is easy to verify that the entries of the first row of
(e.g., for ) can be recovered from the via

(9)

This relation shows that not every diagonal matrix in (8)
will result in a circulant matrix of the form (7). This is
because the transformation (9) requires that the should
be such that the last entries of the transformed vector are zero.
We will use this constraint at the end of this section to derive the
so-calledconstrainedMDF adaptive structure.

We can now write in the form

(10)

The block estimation error is then, in the
-transform domain, given by

(11)

Now, define the signal with transform

col

and denote its individual entries by . Then

col

Fig. 3 illustrates the decomposition in (11).
Let denote the (column) tap vectors that correspond to

the ; each has length . Then, the output of each
term at a certain time instant can be obtained as
the inner product , where denotes the state (row)
vector corresponding to at time and is given by

Here, denotes theth entry of the vector . Define the
block diagonal matrix of regression vectors at time

diag

and the following column vector of unknown weight
vectors that we wish to determine:

col

It then follows from the error equation (11) that in the time do-
main

An LMS-based adaptive algorithm that recursively estimates the
is then given by

where the regressor is taken as . The above recur-
sion can be rewritten more compactly as

(12)

where we introduced the transformed error signal

(13)

We will continue to write to refer to the estimation error
in the update equation, namely

with replaced by .
Note, in particular, that the update for the estimate of theth

weight vector is of the form (in terms of theth entry of
and the th regression vector )
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This suggests an alternative way for rewriting the adaptive al-
gorithm (12), where instead of collecting all unknown column
weight vectors into a single column vector , we collect
their transposes into a block matrix of dimensions .
Thus, define

...

and diag . Here, denotes ma-
trix transposition. Then, the unconstrained frequency-domain
adaptive filter becomes

(14)

where we further introduced a diagonal weighting
matrix ; its entries consist of power estimates of the inputs
of the individual subband channels

diag

with each evaluated via

with initial condition equal to 1.
The reason for the qualificationunconstrainedis that the fil-

ters that result from the weight estimates in do not
necessarily satisfy the constraint (9). Aconstrainedversion of
the algorithm is obtained as follows [as suggested by (9)]. We
first premultiply by followed by in order
to zero out its last rows. We then return to the fre-
quency domain by multiplying the result by . That is, the
constrained estimate, which is denoted by , is obtained via

so that the recursion for thecon-
strainedfrequency-domain adaptive filter is

(15)

with . We remark that in finite-precision im-
plementations, this recursion for the constrained weight vectors
can encounter numerical difficulties. This is because round-off
errors can lead to weight estimates that violate (9). For this
reason, we actually prefer to compute the constrained weight
estimates as follows:

1) Run recursion (14) for the unconstrained weight esti-
mates.

2) Then, set .

IV. DELAYLESS IMPLEMENTATION

Recursion (14) depends on the error matrix, and there-
fore, it requires that we determine the transformed error signals

defined in (13). These can be evaluated in several dif-

Fig. 3. Equivalent implementation of the block estimation problem of Fig. 2.

Fig. 4. Overlap-save DFT-MDF structure, whereK = 2M .

ferent ways. One possibility is to first map the adaptive weights
by using (9) or, equivalently, to compute

...
...

(16)

Here, the are row vectors that contain the estimated
polyphase components of as in (2). Then, we map the

back to subbands by using (9):

...

... (17)

The resulting are the rows of , and therefore, they
satisfy (9). With the so computed, we can proceed to
evaluate the as in Fig. 3 and, consequently, the
as in Fig. 4. This implementation introduces a delay in the eval-
uation of the sequence since its values are computed in
block form. Alternatively, can be computed as indicated in
the top part of Fig. 4 by convolving with in the time
domain. Here, denotes the estimate for the wideband filter

that is constructed from the estimated polyphase compo-
nents . The inconvenience of this procedure is that it re-
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TABLE I
SUMMARY OF THE DFT-MDF ALGORITHM

quires convolution with a typically long filter . Table I sum-
marizes the main steps of this DFT-MDF algorithm.

A more efficient method for evaluating is indicated in
Fig. 5. A block size is chosen and a direct convolution is per-
formed only with the first coefficients of . The remaining
convolution is performed in block form as follows. First, the
polyphase components of sizefor the transfer function that
corresponds to the remaining coefficients of are obtained
from ; the weight estimates in the figure are then ob-
tained from these polyphase components according to a trans-
formation similar to (17) with replaced by . The block size

can be chosen such that the overall computational complexity
of this implementation is minimized. Moreover, the block delay
in the signal path is eliminated due to the direct convolution (see
[10] and [14] for details).

V. OVERLAP-ADD DFT-MDF STRUCTURE

The MDF in Fig. 4 is commonly referred to as the
overlap-save MDF. However, the matrix can also be
decomposed as

Fig. 5. Delayless block frequency-domain convolution.

where, for

and

(18)

By embedding into the same circulant matrix defined in
(7) and proceeding in the same manner as we have done for the
overlap-save method, we obtain the following estimation error
vector

where we now introduce the signal with transform

By writing , we get

(19)

In the time domain, this equation becomes

and the LMS recursion in this case is therefore given by
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Fig. 6. Overlap-add DFT-MDF structure, whereK = 2M .

where we defined the transformed block error vector

and the diagonal matrix diag
. Fig. 6 illustrates the resulting overlap-add MDF

structure.

VI. DCT-BASED ADAPTIVE STRUCTURE

The DFT-based adaptive structure was thus rederived by em-
bedding the matrix in (5) into the larger circulant matrix

in (7), which was then diagonalized by the DFT matrix.
Now, one could embed into other larger matrices that are
not necessarily circulant but that could still be diagonalized by
other orthogonal transforms, say, by trigonometric transforms.
In this section, we focus on the DCT transform and, in partic-
ular, consider the following so-called DCT-III matrix, say, of
dimensions ,2

where for and and otherwise.
In addition, indicates the row index andthe column index.

It is known that diagonalizes any structured ma-
trix functions that can be expressed as the sum of Toeplitz-
plus-Hankel matrix functions in the following form (this fact
is developed in [5] in the context of constant matrices with
so-called displacement structure [6], [7]):

(20)

where
symmetricToeplitz matrix;
Hankel matrix related to ;
“border” matrix that is also related to .

2The derivation applies equally well to other trigonometric transforms such
as DCT-I, DCT-II, DCT-IV, and DST-I to DST-IV. These transforms are also
known to diagonalize matricesAAA(z) of the form (20) for different choices of the
Hankel and border matricesHHH(z) andBBB(z). We omit the details for brevity.

For example, for , have the forms

Returning to the Toeplitz matrix in (3), which arises from
the representation , we now embed it into a
matrix that can be diagonalized by [in contrast to the
earlier embedding into the circulant matrix ]. We do so as
follows. Assume, for simplicity, that . Then

(21)

We first embed into a symmetric matrix

where the framed entries correspond to . Then, the corre-
sponding matrix is (we now drop the argumentfrom the

for compactness of notation)

We can thus recover from as

(22)

where the column dimension of the square matrix is
when is even and when is odd.

We will denote the dimensions of generically by .
That is

even
odd.

The matrix can now be diagonalized by as

(23)
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where diag has entries. Moreover, as in
(9), and for the case , the are related as
follows:

(24)

More generally, the first row of will have the form

with leading zeros and trailing zeros so that is
recovered from as

Here

even
odd

and

even
odd

With this notation, the constraint (24) takes the general form

... ...
(25)

We now have FIR filters to adapt, with weight vectors
and regression vectors , where

If we define, as before

...

and let diag , where

(26)

we then obtain the followingunconstrainedadaptive version

(27)

The constrainedversion of the algorithm is obtained as fol-
lows [as suggested by the relation (24)]. We first premultiply

by followed by in order to intro-
duce the zero pattern shown in (24). We then return to the fre-
quency domain by multiplying the result by . That is, the

Fig. 7. Delayless DCT-MDF adaptive structure for evenM .

constrained estimate, which is denoted by , is obtained via
so that the recursion for the

constrainedfrequency-domain adaptive filter is

(28)

where

Again, in order to avoid difficulties with round-off errors, it is
preferred to compute the constrained weight estimates as fol-
lows:

1) Run recursion (27) for the unconstrained weight esti-
mates.

2) Then, set .
Fig. 7 illustrates the DCT-MDF structure, which is analogous

to the DFT-MDF, for the overlap-save configuration. The com-
putation of is similar to the DFT case, as discussed in Sec-
tion IV. The main steps in the algorithm are listed in Table II.

VII. DHT-B ASED ADAPTIVE STRUCTURE

The DHT matrix of dimensions is defined as

or

Re (29)

where is the DFT matrix. Note that . It
can be verified (see, e.g., [16]) that diagonalizessymmetric
circulant matrices of the form, say, for (odd)

(30)
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TABLE II
SUMMARY OF THE DCT-III MDF A LGORITHM

and for (even)

(31)
Now, proceeding similarly to the DFT and DCT cases, consider
the same matrix given by (21) for . We embed it
into a symmetric circulant matrix as

Similarly to (22), we can recover from as

(32)

where the dimension of the square matrix is
.3 The matrix can now be diagonalized by, say

(33)

and, as in (9) and (24), we have for

(34)

Observe that the appear now repeated twice after the
transformation by . In order to recover the , we will
propose further ahead to average the identical entries in the
transformed vector. More generally, we get

...

...

...
(35)

The transformed input and error vectors in this case are given
by

and

(36)

The correspondingunconstrainedadaptive recursion becomes

(37)

whereas theconstrainedversion is obtained as follows. We first
premultiply by followed by

where denotes the reversed identity matrix (it has ones on the
antidiagonal). The multiplication by amounts to averaging
the repeated entries of the transformed vector. We then return to
the frequency domain by multiplying the result by. That is,
the constrained estimate, which is denoted by, is obtained
via so that the recursion for theconstrained
frequency-domain adaptive filter is

(38)

3In general, the top row ofSSS(z) will have the form

[0 g (z) . . . g (z) 0 g (z) . . . g (z)]:

It has a single leading zero andM � 1 zeros in the middle.
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Fig. 8. Delayless DHT-MDF adaptive structure.

Again, in order to avoid difficulties with round-off errors, it is
preferred to compute the constrained weight estimates as fol-
lows.

1) Run recursion (37) for the unconstrained weight esti-
mates.

2) Then, set .

Fig. 8 illustrates the DHT-MDF adaptive structure. The algo-
rithm is summarized in Table III.

VIII. C OMPUTATIONAL ASPECTS

The proposed algorithms can be implemented with the same
efficiency as the DFT-MDF algorithm. In order to get an approx-
imate idea of the computational complexity, we will rely on the
algorithm of [8] for computing the DCT and DFT. This algo-
rithm has the advantage of reducing the number of additions by
about 25–30% for the DFT’s and DCT’s on real data. Moreover,
the number of multiply counts for a -length DCT is given by

and for the DFT by . Note
further that the DHT can be easily evaluated through the DFT
[as suggested by (29)]. The overall complexity can be divided
into four parts.

1) Subband decomposition of and . This re-
quires a transform of size for each block of input
samples, which therefore amounts to approximately

multiplies per sample. Noting that we
have for the DFT, M for the DCT,
and M for the DHT, we see that the complexity
for this part is similar.

2) Updating of -length adaptive filters for each
block of samples. This requires compu-
tations for each block of samples or, equivalently,

computations per sample. Using
for the DFT, M for the DCT, and M for

TABLE III
SUMMARY OF THE DHT-MDF ALGORITHM

the DHT, we get approximately 4 N/M4 real multiplica-
tions for the DFT, N/M for the DCT, and 3 N/M
for the DHT. One could expect that the complexity for
the real arithmetic algorithms would be reduced when
compared with the DFT method. However, the size of
the transforms involved are greater, which keeps the
complexity level approximately the same.

3) Subband/wideband mapping (constraint). This requires
N/M transforms of size for each block of samples.
The complexity of this part is similar to the first one, ex-
cept that here, we need to compute N/M transforms. The
computational burden of this part can be further reduced if
we apply the constraint less often than everysamples,
say, every samples, where is an integer. The same
idea was suggested in [10] and [11] without degrading the
convergence performance significantly.

4) Wideband convolution. As we have mentioned, the
convolution part can be realized separately, with no delay
and with an optimized block size, in order to reduce com-
plexity. The computational burden for this part is given
by conv

4For the DFT structure, only half of the subband adaptive filters need to be
updated.
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TABLE IV
COMPUTATIONAL COMPLEXITY FOR THEVARIOUS MDF IMPLEMENTATIONS

Fig. 9. MSE decay for block sizesM = 64, 64, and 32 for the DFT, DCT-III,
and DHT-MDF-based structures, respectively.

[10], [11], and it is the same for all the algorithms. This
convolution could be implemented using the DCT or the
DHT, but as we have seen, the transform sizes would be
greater, resulting in a higher computational complexity.
Table IV shows the computational complexity of the
MDF for each type of transform.

IX. SIMULATIONS

In Fig. 9, we compare the performance of the DFT, DCT-III,
and DHT structures for a second-order AR input signal, with
-spectrum given by . In

each experiment, the block sizes were adjusted for each struc-
ture so that the corresponding algorithm exhibited the best per-
formance. We observed that the block size has a different ef-
fect in each algorithm. The length of the impulse response of
the unknown system was , and the step size used for
the adaptive algorithms was chosen as (which is
the inverse of the length of the filter). This choice is within the
stability region and guarantees faster convergence. The DFT
and DCT-based filters were tested with a block size
(corresponding to subband filters of single tap each). For the
DHT-MDF, we used (corresponding to adaptive filters
with two coefficients).

Fig. 10 illustrates the performance of the MDF’s where the
block sizes were changed to , , and for

Fig. 10. MSE decay for block sizesM = 16, 32, and 8 for the DFT, DCT-III,
and DHT-MDF-based structures, respectively.

Fig. 11. Equivalent representations of an oversampled DFT filter bank.

the DFT, DCT-III, and DHT schemes, respectively. Note that
these block sizes are only for the adaptation process because,
as we have mentioned, the convolution can be performed effi-
ciently and without delay with a different optimized block size.
For this specific input, we observe faster convergence for the
DHT-MDF. In both figures, the curves were generated by aver-
aging over 100 experiments.

The performance of each algorithm depends on the statistics
of the input signal applied to the adaptive filters. Different
trigonometric transforms perform unequal decorrelations in
subbands, which lead to differences in performance. Actually,
there is no substantial work on the convergence properties
of subband adaptive filters in the literature. We leave a more
detailed study of the convergence behavior of the proposed
structures for future work. Our simulations are meant to show
that there is merit to the proposed schemes; there are clear
instances where they perform better.

X. SUBBAND ADAPTIVE FILTERING

We now clarify the relation of the more general subband adap-
tive filtering structures to the MDF schemes of the earlier sec-
tions.

Fig. 11 shows two equivalent representations of the DFT
block that comprises the DFT-based MDF structure. The figure
on the right is in terms of the DFT modulated bandpass filters,
which are known to have poor frequency characteristics (the
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impulse response of the prototype filter is a rectangular
window).

This fact motivated works on more general adaptive struc-
tures, known as subband adaptive filters, which employ different
choices for the subband filters . These works focus on de-
signing sharp filters that have good attenuation outside
passband and are flatter in the passband. However, as in the DFT
case, certain constraints [say similar to (9)] need to be developed
in order for such designs to correspond to optimal implementa-
tions (as in Fig. 3).

We can motivate one such optimal subband adaptive imple-
mentation by starting with a different factorization for . In-
deed, it can be verified that the pseudocirculant matrix can
also be decomposed as

(39)

where is an diagonal matrix with fractional powers
of

...
(40)

and is some diagonal matrix with entries . From
(39), it is easy to see that the entries of and the polyphase
components of the wideband filter are related as
follows:

...
...

...
(41)

That is

Although are FIR filters of length each, we assign
coefficients to each in order to account for

the additional fractional delay terms that appear in the
above expression.

We can now proceed similarly to the DFT-based MDF deriva-
tion and introduce the estimation error vector

where we defined the transformed input vector

(42)

If we expand as

where the are diagonal matrices with a single unity
entry at the th diagonal position

then we can express in the form

In the time domain, this equation becomes

An LMS-based adaptive algorithm that recursively estimates
the is then given by

where we continue to write to denote the estimation error
with replaced by .

Note that the delayed versions of in the above equation
are all in terms of fractions of the unit delay. Now, by invoking
stationarity, it becomes justified to make the substitution5

for any fractional and for all so that the LMS recursion be-
comes

(43)

where we defined, in a manner similar to (42)

In the above expressions, fractional delays appear, and it is
known that these can be approximated by a special class of FIR
filters (see, e.g., [15]), say

where represents the integer delay associated with the FIR
filter . Fig. 12 illustrates the subband structure that results
from this factorization for . The transformation applied to

and can be readily recognized as a maximally
decimated6 DFT filter bank in its polyphase form, where the

5Recall that, in general, an LMS update is obtained from a steepest-descent
update by replacing the true gradient vector with an instantaneous approxima-
tion for it, which simply amounts to dropping the expectation operator. Now,
the steepest-descent update that estimates theWWW is given by

W =W + �E XXX FFFBBB eee

with the expectation operatorE. By invoking the stationarity of the data
fddd ; XXX g, we can assume

EXXX ddd =EXXX ddd ;

EXXX XXX =EXXX XXX

for any� so that we can replace the above update by the alternative update

W =W + �E XXX FFF BBB eee :

If we now drop the expectation, we arrive again at the desired relation (43).
6That is, the number of channels is equal to the decimation factorM .
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Fig. 12. Subband adaptive filter structure with constraint.

filters represent the polyphase components of a certain
prototype filter . In addition, note that the last polyphase
component is simply a delay, that is

(44)

This means that the prototype filter must be aNyquist
( ) filter, which by definition has its th polyphase
component of the form given by (44). Actually, it can be shown
that one technique for approximating a fractional delay is to
design a symmetric Nyquist ( ) filter and pick its th polyphase
component to represent the delay .

Now, similarly to (9) and (24), we can recover the polyphase
components of the wideband filter from the adaptive fil-
ters via (41). That is, in a way analogous to the DFT-MDF, we
can obtain an estimate of the polyphase components by com-
puting the DFT of the adaptive filters and delaying them by
fractional delays. This corresponds to multiplying the DFT of
the adaptive filters by the already existing fractional delay fil-
ters , thus leading to

...
...

...

where the trailing polyphase components appear delayed by
. This same construction was used in [11] for an

open-loop subband adaptive structure.
Due to the inherent delay that is introduced by the filters

, the LMS update (before the constraint) for the derived
structure will ultimately be a delayed LMS version of the form
[17]

(45)

For this reason, smaller step sizes should be used to ensure sta-
bility, and the performance of such a scheme can degrade in
comparison with the MDF schemes of the earlier sections. Ac-
tually, such delayed updates are typical of closed-loop subband
implementations.

XI. CONCLUSIONS

Using an embedding approach to derive the DFT-based MDF,
we have proposed new extensions of the MDF that are based on
trigonometric transforms and the discrete Hartley transform. We
have also verified that the computational complexity required
in the proposed structures is approximately the same as in the
DFT-based case, and it involves only real data. Finally, we have
shown that the philosophy of the MDF structures can be ex-
tended to the more general case of subband adaptive filters.
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