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Abstract—Frequency-domain and subband implementations statistical properties of the input signals and on the nature of the
improve the computational efficiency and the convergence rate frequency transformations. This fact motivates us to develop, in
of adaptive schemes. The well-known multidelay adaptive filter ;5 naner, frequency-domain adaptive structures that are based
(MDF) belongs to this class of block adaptive structures and . .
is a DFT-based algorithm. In this paper, we develop adaptive ©N th_e trigonometric transforms DCT and DST, as well as on
structures that are based on the trigonometric transforms DCT the discrete Hartley transform (DHT). It seems that the tradi-
and DST and on the discrete Hartley transform (DHT). As a tional derivations of frequency-domain adaptive filters cannot
result, these structures involve only real arithmetic and are pe directly extended to these new signal transformations without
attractive alternatives in cases where the traditional DFT-based some effort. For this reason, we will first present a derivation for

scheme exhibits poor performance. The filters are derived by first - -
presenting a derivation for the classical DFT-based filter that the classical DFT-based MDF structure using a so-cadtee

allows us to pursue these extensions immediately. The approachbeddingapproach. This approach will then allow us to pursue
used in this paper also provides further insights into subband the new extensions rather immediately by exploiting different

adaptive filtering. kinds of matrix structure (e.qg., [5]-[7]).

y '”Eelx Terlms_—hCircyIant,bECTd %FT'_ D"][_Tv DﬁTv ell_mbedding, The MDF schemes of this paper are attractive for applications

ankel, real arithmetic, subband adaptive filter, Toeplitz. where real arithmetic is required. Moreover, since efficient algo-

rithms exist for computing the DCT, DST, and DHT (see, e.g.,

|. INTRODUCTION [8]), these schemes also lead to efficient adaptive filter struc-

OMPUTATIONAL complexity is a burden in applicationstures' We will further presentin Section IX examples where they
. . can lead to better performance than the DFT-based scheme. We
that require long tapped-delay adaptive structures, such %s . .
. X . stiould mention that these new structures are distinct from the

echo cancellation, where filters with hundreds or even thousands

of taps are necessary to model the echo path. Frequency—don‘?’gi'r?a"ed transform domain algorithms (as, €.g., in [9]), which

T ocess the data orsample by sampleasis. The frequency do-
and subband adaptive filters have been proposed to reduce%aem structures, on the other hand, perfdriock-by-blockpro-

computational requirements inherent to such applications (see€, . o . o -
. . cessing, which is essential for efficient frequency-domain im-
e.g., [1]-[4]). These techniques not only result in more eﬁ'_lementations

cient structures (due to the use of efficient block signal prg—
cessing methods), but they also improve the convergence rat# this paper, we also clarify the connection between the MDF
of an adaptive algorithm (due to a decrease in the eigenvaﬁ}éucture and the_more gengral subband agaptive filtering struc-
spread of the correlation matrix of the transformed signals). {re. The key point to note is that the derivation of a subband
well-known example is the multidelay adaptive filter (MDF)adaptive scheme can be carried outin much the same way as that
[2], which relies on the use of the discrete-Fourier transforff the MDF structure. We will further relate the MDF structure
(DFT); it is @ more general implementation than the origina® the concept of delayless subband adaptive filtering proposed
frequency-domain algorithm proposed in [1] since the adapti{)’é[lO]. In this reference, a mapping from subband to wideband
filters are allowed to have more than one coefficient in the sufifer coefficients was proposed with the intent of resolving the
bands. delay problem that is characteristic of subband adaptive filters.

The MDF structure has been derived in the literature in tf}¥e will derive an alternative explicit mapping that guarantees
DFT domain only. However, one would expect that different fre2Ptimal performance; we will also comment on the results in
quency domain transformations (other than the DFT) can resthit] for open-loop schemes. In particular, we will show that an
in different levels of performance (both computationally ang@daptive subband scheme that is based on a maximally deci-
otherwise) since performance is highly dependent on both t;ﬁr?ti/ldDIID:FT filter bank can be developed in a way analogous to

e :
. . . . The paper is organized as follows. We start by formulating
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Fig. 1. Scalar linear optimal estimation. Fig. 2. Block linear optimal estimation.

situations where the new structures lead to better performanee, they correspond t&/M-long FIR filters that are defined
than the DFT-based MDF structure. We conclude the paper witi
a discussion of the connection of the MDF technique to subband

= -1 —2 PR
adaptive filtering. 90(2) = go + gmz™" + ganz™? +

a(z) =g + gm+127 + gonpr i 4
Il. BLOCK ESTIMATION PROBLEM :

We start by formulating a basic estimation problem. Due to its pseudocirculant structure, the mat) can be
Thus, consider two jointly wide-sense stationary (WSS) arfactored ag#(z) = P(z)Q(z), whereP(z) is anM x (2M —1)
zero-mean random sequendesn), d(n)}. Let d(n) denote Mmatrix function with Toeplitz structure, e.g., féf = 3
the linear least mean squares estimator/@f) given the N

, 90(2) g1(z) g2(2) 0 0
observations P)=| 0 go(2) gi(2) g22) O 3)
z, 2 col{z(n), z(n—1), ..., 2(n — N + 1)}. 0 0 go(2) a1(2) g2(2)

. _ _ _ andQ(z) is a(2M — 1) x M matrix with a leading identity
Then,d(n) = gz, whereg is a row vector withV taps (entries) block and a lower block with shifts, say, faf = 3 again
and is given by = RdIRgl. The variancedy, and R, are

defined byRy, = Ed(n)zl andR, = Ex,zl. The station- (1) (1) 8
arity of the processeisi(n), x(n)} guarantees thdt,, andR, 0 0 1
are independent of. Hence, we can regagglas the tap vector Q(2) = . (4)
of a time-invariant FIR filter with transfer function (see Fig. 1) 1 0 0
N—1 0 Z_l 0
G(x)2 Y gz (1)  We will exploit the factorizationG(z) = P(z)Q(z) heavily in
i=0 the sequel.

so thatd(z) = G(z)z(z), wherez(z) and d(z) denote the
z-transforms of the scalar sequenéeén), d(n)}, and the{g; }
denote the individual entries gf In this section, we show how the pseudocirculant structure
The estimategd(n)} can be alternatively computed on &f G(z) can be exploited to derive a well-known frequency-do-
block by block basis by using block digital filtering techniquegnain adaptive filter that relies on the DFT and is known in the

Ill. DFT-BASED ADAPTIVE STRUCTURE

To this end, introduce th&/-long data vectors literature as the multidelay adaptive filter [1]-[3]. The original
derivation of this structure is different from the approach we
TM,n 2 col{x(Mn), z(Mn —1), ..., o(Mn— M +1)}  present in this section. Our derivation is based on exploiting,
A in a direct way, the PC nature 6f(z). As a fallout, the argu-
dyt,n = CORd(Mn), d(Mn = 1), .., d(Mn = M+ 1)} ment will suggest immediate extensions that rely on other signal
and letzy; () andd,, (z) denote their vectos-transforms: transformations [such as the real trlgonometnctrans_forms DCT
and DST, and the Hartley transform (DHT); see Sections VI and
i _ i . VII].
zw(2) = Z Tv,nz " du(z) = Z di, 2" Since we deal with the DFT in this section, and since it is

n=—oo n=—0oo

usually desirable to work with sequences whose lengths can be
expressed as powers of 2, we find it convenient to redefine the

Then, it can be verified that the block d&tas; .., ds »} are ;
ABrr,n; duv,n} above matrice#(z) andQ(z) as

related via (see Fig. @ (z) = G(2)z(2), where the square

transfer matrixG(z) has a pseudocirculant (PC) form,e., it go(z) g1(z) g2(2) O 0 o0
has the form (forM/ = 3) P)=| 0 go(2) qi(») g2(z) 0 0| (5
0 0 ao(z) gi(z) go(2) O
g0(2) a(z)  g2(2)
G(z)= | z7l2(2)  w(2)  a(2) |- (2) and
27 lg(2) 27lge(2)  go(2) M1 0 0 T
The functionsg;(z), ¢ = 0,1, ..., M — 1, of G(z) are the 8 (1) (1)
polyphase components of the wideband LTI fil&fz) in (1), Q) = (6)
z7t 0 0

1A pseudocirculant matrix functioF(=) is essentially a circulant matrix
function with the exception that all the entries below the main diagonal are fur- 0 z 0
ther multiplied byz—1!; see (2) and [12]. 0 0 21
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with an additional zero column addedR{~) and an additional Now, define the2M x 1 signalz), ,, with transform
row added toQ(z). The productP(z)Q(z) is, of course, still

equal toG(z). Now, however,P(z) is M x 2M, andQ(z) is zh (2 ) FQ(»)x (%)
2M x M (2M will be a power of 2 when\/ is). A o ,
Let[Flx; = (1/v/2M )e=277%/2M denote the DFT matrix of = colfzg(z), @1(2). - wap—1(2)}

size2M x 2M. We start by embedding the/ x 2M Toeplitz
matrix P(z) into a2M x 2M circulant matrix functiorC(z) (a
similar technique was used in [13] to propose efﬂmentstructurqg,( )&y (2) = col{wo(2)zh(2), .
for block digital filtering), say, forM = 3

and denote its individual entries by(z). Then

s wang—1(2)xopr_1(2)}-

Fig. 3 illustrates the decomposition in (11).

[90(z) g1(2) g2(2) 0 0 0 ] Let {w; } denote the (column) tap vectors that correspond to
0 go(#) qu(z) g2(2) O 0 the {w;i(z)}; eachw; has lengthV /M. Then, the output of each
0 0 g0(2) q(z) g2(2) 0O termw;(z)a}(z) at a certain time instant can be obtained as
C(z) = 0 0 0 () () () the inner products!, ,w;, wherez/ . denotes the statedw)
wlz) 0 0 gOOZ ié(j) ii(j) vector corresponding te; at timen ‘and is given by
L91(2)  92(2) 0 0 0 9o(%) |

N
@) z, ;= |zin) zh-1) ... xé(n—M—i—l)}.
so thatP(z) = [Iy 0]C(z), wherel s is the M x M identity
matrix, and0 is the M/ x M null matrix. . Here,z}(n) denotes théth entry of the vectag'y, . Define the
Now, it is well known that a circulant matrix such €¥z) 237 » 2V block diagonal matrix of regression vectors at time
can be diagonalized by the DFT mati#x i.e., it always holds

that 7(”) = diag{x;70, 5”;1,17 cee 5”;1 oM—1}

C(z) = F"W(x)F (8) and the following2V x 1 column vector of unknown weight

_ _ vectors that we wish to determine:
for some diagonal matrix

V_V = COI{HJO, wi, ..., 11]2]\/[_1}.

W(Z) = diag{wo(z), . UJQ]w_l(Z)}

It then follows from the error equation (11) that in the time do-
and wherex denotes complex conjugate transposition. Ead¢hain
w;(z) hasN/M taps. Using (8) and the fact th# is sym-
metric, it is easy to verify that the entries of the first row of
C(z) (e.g., forM = 3) can be recovered from tHevi(z)} via  aAn LMS-based adaptive algorithm that recursively estimates the

W is then given by

em,n =dn, n — [In OJF* X, W.

90(2) wo(z)

g1(%) w1 (%) v Yy =+ | Iv Y

92(2) B Wy (Z) Wn+1 =W, + /JXnF 0 (d]wm [I]w O]F W, )

=F . ©))
0 ws(2) o
0 wa(2) where the regressor is taken[#g; 0] F* X ,,. The above recur-
0 ws () sion can be rewritten more compactly as
This relation shows that not every diagonal mal#X =) in (8) W =W, + NYZC/M,n (12)

will result in a circulant matrixC(z) of the form (7). This is
because the transformation (9) requires tha{thg )} should Where we introduced th}/ x 1 transformed error signal
be such that the last entries of the transformed vector are zero. I
We will use this constraint at the end of this section to derive the ¢}, , 2F [ 34
so-calledconstrainedMIDF adaptive structure.

We can now writeG(z) = P(2)Q(z) in the form We will continue to writeey, ,, to refer to the estimation error
in the update equation, namely

} (dar o — [t L X W,). (19)

G(z) = [T 0IC(:)Q() = [l OJF" W (2)FQ(7).  (10) B

. en,n =dy n — [Iv OJF* X W,
The block estimation errafy; , = dar,» —das, » iS then, in the

z-transform domain, given by with W replaced byw,,.
Note, in particular, that the update for the estimate ofithe
en(2) =dy(2) — G(2)xps(2) weight vectomw; is of the form (in terms of théth entry ofe), ,,

- H /
—d(2) — [T OJF"W () FQ()zm (7). (11) and theith regression vectar;, ;)
N—_————

', (=) Wntl,i = Wn, i T H- [1'.;1, Z]*C;(TL)
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This suggests an alternative way for rewriting the adaptive : i
gorithm (12), where instead of collecting all unknown colum

A

weight vectors{w; } into a single column vectdW, we collect ,
their transposes into a block matrix of dimensi@dd x % i)
Thus, define Xstn e W -
= Q) F ) Fl .
T . — - Discard
wy ¢ . } last M
T Xom-i1) M outputs
w=| e e [ R
ng_l Fig. 3. Equivalent implementation of the block estimation problem of Fig. 2.
T
X, = [[5”%,0]* [5”%,1]* [5”%,21\4—1]*]
ok d(n)
andE, = diag{ey(n), ..., ey 1(n)}. Here, T denotes ma- (%) (A?(z) - e(n)
trix transposition. Then, the unconstrained frequency-dome
adaptive filter becomes ﬁ
Wit =W, +uA E X, (14) , i i) — o
where we further introduced 2V x 2M/ diagonal weighting <™ , et : :
- i - - - - ey A —— :
matrix A,,; its entries consist of power estimates of the input 11M] 1 s
of the individual subband channels F F
o
An = dlag{)\o(n), . )\2]\4_1(71)} .
z—l . e, (1,
with each);(n) evaluated via = LU R i M|t g

_ . _ _ / 2
)‘Z(n) - /3)\Z(n 1) + (1 /3)|xz(n)| ’ 0<p<1 Fig. 4. Overlap-save DFT-MDF structure, whdie= 2/
with initial condition equal to 1.
The reason for the qualificatiaimconstraineds that the fil-
tersw;(z) that result from the weight estimates¥#,, do not
necessarily satisfy the constraint (9).cAnstrainedversion of

ferent ways. One possibility is to first map the adaptive weights
by using (9) or, equivalently, to compute

A T
the algorithm is obtained as follows [as suggested by (9)]. We In.0 w;i’o

first premultiply W,, by F followed by (I, @ 0) in order In. 1 = [Iy OF Wn, 1 ) (16)
to zero out its lastM — 1 rows. We then return to the fre- : :

quency domain by multiplying the result by*. That is, the Gn vt erL, N

constrained estimate, which is denotedW, is obtained via

W, = F'(Iy & 0)FW, so that the recursion for theon- Here, theg, ; are row vectors that contain the estimated

strainedfrequency-domain adaptive filter is polyphase components @f(z) as in (2). Then, we map the
9,, ; back to subbands by using (9):

c 1 =W+ uF*UpFA'E, X, (15) .
ﬁ]n: 0 gn, 0
with Ur = (I ¢ 0). We remark that in finite-precision im- we | :
plementations, this recursion for the constrained weight vectors J =r" o . (7)
can encounter numerical difficulties. This is because round-off T : 9n, M1
errors can lead to weight estimaldg, that violate (9). For this Wy, 2M -1 0
reason, we actually prefer to compute the constrained weight ]
estimates as follows: he resultlng{ﬁzf’ ;} are the rows oW, | ;, and therefore, they
1) Run recursion (14) for the unconstrained weight est?—at'Sfy (9). With the{w,,;} so computed, we can proceed to

evaluate thee(n)} as in Fig. 3 and, consequently, the (n)}
as in Fig. 4. This implementation introduces a delay in the eval-
uation of the sequende(n)} since its values are computed in
block form. Alternativelye(n) can be computed as indicated in
the top part of Fig. 4 by convolving(rn) with G(z) in the time
Recursion (14) depends on the error maf#ly, and there- domain. Hereé(z) denotes the estimate for the wideband filter
fore, it requires that we determine the transformed error signé¥$~) that is constructed from the estimated polyphase compo-
{ei(n)} defined in (13). These can be evaluated in several difents{g,, ,}. The inconvenience of this procedure is that it re-

mates.
2) Then, seW; ,, = F'UpFW, .

IV. DELAYLESS IMPLEMENTATION
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TABLE | X

A
SUMMARY OF THE DFT-MDF ALGORITHM o, G(z) Ay
Filtering. I | |
xdn, y
x,=[ z(n) ... z'(rf—N+1)] Xn) —'IBI £ g ,
e(n) = d(n) — Gpxn 2! . L
xin) . .
R 1 w;' - A
Block input and error signals. ® _’E_Mlﬂﬂ
F F
z(n) — XM,n = COI{JJ(MH), e !‘T(M’n‘ -M+ 1)} M M M Direct convolution
e(n) — epr,n = col{e(Mn),... ,e(Mn — M + 1)} ’ with the first R coef.
— oS~
XoeMn = COI{XM’,-“ xM,n—-l} z! E@

/ —
xM,n - FXZM»"

2R1 Xk () ot
:

I — S
e/M,nzF[ 3/1 ]eM,n

ei(n) = i-th entry of e}, Fig. 5. Delayless block frequency-domain convolution.

z}(n) = i-th entry of xj ,

where, forM = 3

o= n—1) ... zin—-&+1 -
xn,t [ zz(n) Iz(n ) T (n M ) ] Z_l 0 0 1 0 0
Adaptation. For each i =0,... ,2M — 1: Q, (z) = 0 271 0 01 0
, , 0 0 2%t 0 01
Wot1i = Wni+ X;(Lnj[xn,i]*ei(n) and -
Ntm) = Britn = 1)+ (1= Bk o o
Subband/wideband mapping: a2(2) 0 0
91(2) g2(2) O
. T Pi(2) = 18
Boo s =0 0l el 18)
: =L OF : 0 g0(2) @u(z)
&n 11 WZ,2M—1 L O 0 QO(Z)

én is a row vector that denotes the impulse response of

the FIR filter with polyphase components {g,,.}. By embeddingP; (z) into the same circulant matrix defined in

(7) and proceeding in the same manner as we have done for the
overlap-save method, we obtain the following estimation error

vector
quires convolution with a typically long filte{FJ(z). Table I sum- . 0
marizes the main steps of this DFT-MDF algorithm. enm(z) = dy(z) — Q () F"W(2) F |:IJ\4:| xpr(2)
A more efficient method for evaluating:(»)} is indicated in | S
Fig. 5. A block sizeR is chosen and a direct convolution is per- #), (%)

formed only with the firsg coefficients of3(z). The remaining . ) )
convolution is performed in block form as follows. First, th&vhere we now introduce thel/ x 1 signalz’, ,, with transform
polyphase components of sizefor the transfer function that

corresponds to thg remaining coeﬁ[0|ents(§1fz) are obtained oy (2) EWA { 0 } Ty (2).

from G(z); the weight estimates, ; in the figure are then ob- I

tained from these polyphase components according to a trans-

formation similar to (17) with\/ replaced byz. The block size BY writing Q; (2) = [0as 1] + [I 0]2~*, we get

R can be chosen such that the overall computational complexity

of this implementation is minimized. Moreover, the block delay € (2) = da(2) — ([0 TJF*W (2)xy,(2)

in the signal path is eliminated due to the direct convolution (see + U OJF*W (2)2h, (2)2 1), (19)
[10] and [14] for detalils).

In the time domain, this equation becomes

V. OVERLAP-ADD DFT-MDF STRUCTURE er,n =du,n — ([Op IF* X, + [Ty OJF* X, )W,

The MDF in Fig. 4 is commonly referred to as theand the LMS recursion in this case is therefore given by
overlap-save MDF. However, the matr&(z) can also be

decomposed as Wit =W, + 10 <YZF [ 0 } L XF [ I D errn
Iy 0 ’

+
G(z) = Qi(2)P1(2) =W + (X, +IX, 1)y
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For example, foX = 4, {A(=), B(z), H(z)} have the forms

o ol din)
7, A e(n)
“@ fto(z) ti(z) ta(z) ta(2)
ﬁ () = t(2) tolz) ti(z) ta(2)
. T U (z) ti(z) to(z) ti(z2)
0 o PO o Mo Lts(z) t2(z) ta(2) to(2)
: i . ot : _to(z) tl(z) tg(z) tg(Z)
M1 Wnr [ u1 o tl (Z) tg(z) tg(Z) 0
' M F g - HE =100t 0 —ta(2)
N . Lta(z) 0 —taz) —tal2)
% _F’g __* [ \2@2 t1(z) ta(z) ta(2)
B(z) = t1(2) (V2-2).
Fig. 6. Overlap-add DFT-MDF structure, whelé = 2. ?Ezg
L 37z

Returning to the Toeplitz matri®(z) in (3), which arises from
the representatio®(z) = P(z)Q(z), we now embed it into a
matrix A(z) that can be diagonalized I8, [in contrast to the
earlier embedding into the circulant matX z)]. We do so as
follows. Assume, for simplicity, that/ = 2. Then

where we defined the transformed block error vector

0

! A
Crrn = F |:IJ\4

:| CM, n

and the2M x 2M diagonal matrixJ = diag{l, —1, 1,
—1,---, —1}. Fig. 6 illustrates the resulting overlap-add MDF
structure.

_ | 90(2) g1(2)

P(z) 0 a0(2)

g1(») 1)

We first embedP(z) into a symmetric matri’(z)

VI. DCT-BASED ADAPTIVE STRUCTURE

The DFT-based adaptive structure was thus rederived by em-
bedding the matrid’(z) in (5) into the larger circulant matrix

C(z) in (7), which was then diagonalized by the DFT matrix.

T(z) 2

Now, one could embe#(z) into other larger matrices that are
not necessarily circulant but that could still be diagonalized by
other orthogonal transforms, say, by trigopnometric transforms.

In this section, we focus on the DCT transform and, in partic-
ular, consider the following so-called DCT-III matrix, say, o

dimensionsk x K2

/2 J
Crir= K {771' COs

wheren; = 1/+/2for j = 0 andj = K andn; = 1 otherwise.

(

20+ L)w
2K

i,

K—-1

=0

0

go(2)
g1(%)

0
0

go(z)  a@(2) O U
0 g0(z) gi(z) O
9o(2) 0 go(2) ai(2)
91(2)  go(z) 0 90(2)
0 g1(2)  go(2) 0o |

g:(z) for compactness of notation)

A(z)

In addition,¢ indicates the row index angthe column index.
Itis known thaiC;; diagonalizes any x K structured ma-
trix functionsA(z) that can be expressed as the sum of Toeplitz-

plus-Hankel matrix functions in the following form (this factWe can thus recovel’(z) from A(z) as

is developed in [5] in the context of constant matrices with
so-called displacement structure [6], [7]):

where
T(z)
H(z)
B(z)

2The derivation applies equally well to other trigonometric transforms su«;lqhe matrixA

Az) =T(2)+ H(z) + B(2)

symmetricToeplitz matrix;
Hankel matrix related td’(z);
“border” matrix that is also related tB(z).

0
V240
V2g1

0

0

V290
g1
90

a1
0

here the framed entries correspondR(z). Then, the corre-
sponding matrixA(z) is (we now drop the argumentfrom the

V2g1 0 0 7
go g1 0

0 g0 0

g0 0 9o

g1 g0 0 |

P(z) = [0 I} 0]A(») {

0]

Iopry

(22)

(20) where the column dimension of the square matfig) is
(TM —4)/2whenM is even and7M — 3)/2 whenM is odd.
We will denote the dimensions ef(z) generically byK x K.

That is

as DCT-I, DCT-II, DCT-IV, and DST-I to DST-IV. These transforms are also
known to diagonalize matrice$(z) of the form (20) for different choices of the
Hankel and border matricd$(z) andB(z). We omit the details for brevity.

=

(z) can now be diagonalized I8, as

(7M - 3)/27

M even
M odd.

A(z) =Ci W (2)Crr1

(23)
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whereW(z) = diag{w;(»)} hasK entries. Moreover, as in ol )i(n)
]£9|)|, and for the cas®/ = 2, the {w;(z), g;(»)} are related as ** é‘;(z) Z o)
ollows:
0 wo(2) i i
go(z) wl (Z') MTxal © xin) eqdn)
V10 | gi(2) | =Clpr | wa(2) | - (24) 0 M) ML —
0 UJ3(Z) E xin) ejn) :
0 ! L
wa(2) 0 i LI
More generally, the first row dI’(z) will have the form N
g y (7) B ;
[O1xam—1 Go--- gv-1 Oixal] ! I C : C : :z
with M — 1 leading zeros and trailing zeros so thaP(>) is ] pemr-1 47
recovered fromA(z) as
0
Oux2m-1)
P(Z) = [0]\4><’3 I]w O]A(z) T . :
2M—1 ! ) ’
Here W k-1 X (] Vs ﬂ"_) k-1

Fig. 7. Delayless DCT-MDF adaptive structure for even

| BM —2)/2, M even
“= {(3M —1)/2, M odd

and constrained estimate, which is denotedWy,, is obtained via
We =Cr11(06 I & 0)CT;;W,, so that the recursion for the
8= M2, M even constrainedrequency-domain adaptive filter is
(M+1)/2, M odd

o1 =Wy + 1CrUcCl A E, X, (28)
With this notation, the constraint (24) takes the general form

where
O(p—1)x1 wol2) O(nv—1)x(m—1)
go(2) wi(2) Uc = Iy
V2K = ?H . . (25) Oaxa
grm—1(2) B ) Again, in order to avoid difficulties with round-off errors, it is
Oux1 WE-11% preferred to compute the constrained weight estimates as fol-
We now haveK FIR filters to adapt, with weight vectorgw; } lows: _ . _ .
and regression vectof’, ;}, where 1) Run recursion (27) for the unconstrained weight esti-
) mates.
xh(2) = Crrr OQIX(QM_I) Q(z)x (). 2) Then, seW;,,; = CrfUcCiy Wy
2M—1 Fig. 7 illustrates the DCT-MDF structure, which is analogous
If we define, as before to the DFT-MDF, for the overlap-save configuration. The com-
wl - putation ofe(n) is similar to the DFT case, as discussed in Sec-
on tion IV. The main steps in the algorithm are listed in Table II.
1
W =
VII. DHT-B ASED ADAPTIVE STRUCTURE
T
- ujl"—i T ) . The DHT matrix of dimension& x K is defined as
X, = [[xn ol [xn I [xn K1)l giin K1
¥k
and letE,, = diag{e)(n), ..., ¢j_,(n)}, where H= [COS K } -
1, 3=
A Ogxns or
¢ =C I eM. n 26
R - B (26) H = Re(F) + Im(F) (29)

we then obtain the followingnconstraineddaptive version ~ where F is the DFT matrix. Note thabtH' = H? = I. It
can be verified (see, e.g., [16]) that diagonalizesymmetric

Wit =W, + “AnlE"X"' @) circulantmatrices of the form, say, fdk = 5 (odd)
The constrainedversion of the algorithm is obtained as fol- ao(z) a1(2) axz) ax(z) a1(2)
lows [as suggested by the relation (24)]. We first premultiply a1(z) ao(z) ai1(z) a2(z) a(2)
W, by Cj,; followed by (0 @ I, & 0) in order to intro- S(z) = |az(z) ai(z) aolz) ai(z) as(2) (30)
duce the zero pattern shown in (24). We then return to the fre- az(z) aa(z) ai(z) aolz) ai(2)
quency domain by multiplying the result I6;;;. That is, the a1(z) az(2) a2(2) ai(z) ap(z)
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TABLE I
SUMMARY OF THE DCT-IIl MDF A LGORITHM

Filtering.

xp,=[a(m@) ... s(n-N+1)]
e(n) = d(n) — Gpxp

Block input and error signals.

z(n) — xpp = col{z(Mn),... ,z(Mn — M + 1)}
e(n) — epn = col{e(Mn),... ,e(Mn—-M+1)}
XoMn = COl{xM,me,n—l}

0
7 ax(2M-1
Xy =Cur 12(M_1 ) | %amin
OﬁxM
!
€Mn =Cryr Iy eM,n
0

e;(n) = i-th entry of ey,
z}(n) = i-th entry of x, .
= [aln) -1 .. ci-H+1) ]
Adaptation. For each i = 0,... ,K — 1:

Wni1,i = Wni + 5iG X5 ] el (n)

Ai(n) = Bri(n — 1) + (1 - B)lzi(n)|?

Subband/wideband mapping:

gn,D
l: : ] = 7217[ Onx—1y In Omxa | €Ty I:
gn,M—l

G, is a row vector that denotes the impulse response of

the FIR filter with polyphase components {g&, ;}.

T
wn,O

T
wn,K-l

and forK = 6 (even)
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where the dimension of thE x K square matrixS(») is 3M x
3M 3 The matrixS(z) can now be diagonalized ¥, say

S(z)=HW(2)H (33)
and, as in (9) and (24), we have fbf = 2
0 wo(2)
205
|t e
91(2) wa(z)
90(7) w;(z)

Observe that thd g;(>)} appear now repeated twice after the
transformation byH. In order to recover th¢g;(z)}, we will
propose further ahead to average the identical entries in the
transformed vector. More generally, we get

- 0 T
go(#)
e
gM—l(Z) _ s
Op—1x1 | Tt : . =
gyv—1(%) wi—1(2)
L gokz) -

The transformed input and error vectors in this case are given
by

O1x2pm—1
zh(z) =H | Ly | Q2)zwm(2)
0
and
ey =H [Igﬂ eM, n- (36)

The correspondingnconstrainedadaptive recursion becomes

ag(z) ai(z) ax(z) 0 ax(z) a( _
a1(z) ao(z) a1(z) az2(z2) 0 a2 Wisr =Wn + pAT EL X, @37)
S(z) = | a2(z) a(z) ao(z) ai(z) ax(z) 0 whereas theonstrainedersion is obtained as follows. We first
0 axz) a(z) ao(z) ai(z) a2 premultiplyW,, by # followed by
az(z) 0 ax(z) a(z) ao(z) a(z 0
Now, proceeding similarly to the DFT and DCT cases, consider Uy = % I Iﬁ
the same matri’(z) given by (21) forM = 2. We embed it “ Onr—1xm—1
into a symmetric circulant matrif(z) as Iy, I

0 g9 g 0| g9 9
90 0 g & 0 o
5(z) N go 0 go g O
0 g g0 O go G1
9 0 @ 9 0 g
L 9o g1 0 g1 go 0

Similarly to (22), we can recovd?P(z) from S(z) as

012071
P(Z) = [I]w O]S(Z) Igjw_l
0

wherel# denotes the reversed identity matrix (it has ones on the
antidiagonal). The multiplication b¥/ ; amounts to averaging
the repeated entries of the transformed vector. We then return to
the frequency domain by multiplying the result #§ That is,

the constrained estimate, which is denoted/3§, is obtained
viaw;, = HU y'HW,, so that the recursion for tlenstrained
frequency-domain adaptive filter is

c 1 =W+ iHUyHAL E, X .. (38)
3In general, the top row aof(z) will have the form

0go(z) ... grr—1(2) Orxne—1 grr—1(2) ... go(2)].

It has a single leading zero add — 1 zeros in the middle.
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- e(n)
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TABLE I
SUMMARY OF THE DHT-MDF ALGORITHM

A
x(n) G O
b4
. x{n) efn)
4 ZM-I AZEN @ 1 z!
=
2 H 3 )
z' *M M-1 Z

IM-3
0 M-4

Xi-i(n

i [y 22
0 K-1 nK-1

Fig. 8. Delayless DHT-MDF adaptive structure.

Again, in order to avoid difficulties with round-off errors, it is
preferred to compute the constrained weight estimates as fol:
lows.

1) Run recursion (37) for the unconstrained weight esti-
mates.
2) Then, SveH_l = HIIHHWn_HL
Fig. 8 illustrates the DHT-MDF adaptive structure. The algo-
rithm is summarized in Table IIl.

gn,M—l

Filtering.

x, = [ z(n) :z:(rf——N-Fl)]
e(n) =d(n) — Goxp

Block input and error signals.

z(n) — xpmp = col{z(Mn),... ,2(Mn - M+ 1)}
e(n) — epr,, = col{e(Mn), ... ,e(Mn~ M + 1)}
XoM,n = COI{XMJHXM,n—l}

01 2m-1)
Xprn =H | Tom—s

0
I
e’Mm =’H[ 3’1 ]eMYn

XaM,n

e;(n) = i-th entry of ey, ,

zj(n) = i-th entry of X .
X, ;= [ zi(n) zj(n-1) gi(n — 47 +1) |
Adaptation. For eachi=0,... ,K — 1:

Wnil,i = Wn,i + x5 [Xn ] ei(n)
Ai(n) = BAi(n — 1) + (1 - B)|zi(n)[?

Subband/wideband mapping:

gn,o
: ] =3[ O0mx1 In Onrxar—i If@]'ﬂli

T
wn,O }
T
wn,K—l

G, is a row vector that denotes the impulse response of
the FIR filter with polyphase components {g, ;}.

VIII. COMPUTATIONAL ASPECTS

The proposed algorithms can be implemented with the same
efficiency as the DFT-MDF algorithm. In order to get an approx-
imate idea of the computational complexity, we will rely on the
algorithm of [8] for computing the DCT and DFT. This algo-
rithm has the advantage of reducing the number of additions by
about 25-30% for the DFT’s and DCT's on real data. Moreover,
the number of multiply counts for & -length DCT is given by
K/2-log, K and for the DFT by /2-(log,(K)—3)+2. Note
further that the DHT can be easily evaluated through the DFT
[as suggested by (29)]. The overall complexity can be divided
into four parts.

1) Subband decomposition of(n) and e(n). This re-
quires a transform of siz& for each block ofA input
samples, which therefore amounts to approximately
(K/M)log, K multiplies per sample. Noting that we
have K = 2M for the DFT,K ~ 3.5 M for the DCT,
and K = 3 M for the DHT, we see that the complexity
for this part is similar.

Updating of K N/M-length adaptive filters for each
block of M samplesThis requiresk - (N/M) compu-
tations for each block of\/ samples or, equivalently,
K - (N/M?) computations per sample. Usidg = 2M
for the DFT,K = 3.5 M for the DCT, andK = 3 M for

3)

4)

2)

the DHT, we get approximately 4 N/vkeal multiplica-
tions for the DFT/ 3.5 N/M for the DCT, and 3 N/M

for the DHT. One could expect that the complexity for
the real arithmetic algorithms would be reduced when
compared with the DFT method. However, the size of
the transforms involved are greater, which keeps the
complexity level approximately the same.
Subband/wideband mapping (constrainthis requires
N/M transforms of size( for each block ofd/ samples.
The complexity of this part is similar to the first one, ex-
cept that here, we need to compute N/M transforms. The
computational burden of this part can be further reduced if
we apply the constraint less often than evéfysamples,
say, everyM I samples, wheré is an integer. The same
ideawas suggested in [10] and [11] without degrading the
convergence performance significantly.

Wideband convolutionAs we have mentioned, the
convolution part can be realized separately, with no delay
and with an optimized block size, in order to reduce com-
plexity. The computational burden for this part is given
by Cconv= R+(N/R+1)[log,y(2R) —1]+4(N/R—1)

4For the DFT structure, only half of the subband adaptive filters need to be
updated.
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TABLE IV T T T T

COMPUTATIONAL COMPLEXITY FOR THEVARIOUS MDF IMPLEMENTATIONS ~ _ §  — |

MDF Computational Complexity in mult./sample |

DFT 2+ %)(log2(2M) -3+ 41\1fv}|—4 + i[_Nf + Ceonv - ............ ............ .......... ............ SR S
bDCT (%{7 + %) 10g2 K+ CCOIIV, K =~ 35M DéT—III—MDF: U

DHT | (XK + E)(log, K — 3) + XUF2) + Ceony, K ~ 3M

I I I 1 I I
4000 8000 8000 10000 12000 14000 16000
ITERATION

s
0 2000

Fig. 10. MSE decay for block sizeéd = 16, 32, and 8 for the DFT, DCT-III,

20 RO RS TR SOURTE NS S and DHT-MDF-based structures, respectively.
g x(n) 0 xi(n) x(n) o xp(n)
i -30 ———M—> —- H,(z M-
: o |
Z—I
x{n) x(n)
e o L
DHT-MDF - F
-50 : :
7!
~ Xifn) - Xx.{n)
@ K-1 |xkAr) K-1
-60 —_—

1 1 1 1 I ] Il
2000 4000 €000 8000 10000 12000 14000 16000
ITERATION . . . .
Fig. 11. Equivalent representations of an oversampled DFT filter bank.

Fig. 9. MSE decay for block sizeg = 64, 64, and 32 for the DFT, DCT-III,
and DHT-MDF-based structures, respectively. .

the DFT, DCT-Ill, and DHT schemes, respectively. Note that
these block sizes are only for the adaptation process because,

[10], [11], and it is the same for all the algorithms. This . . .
convolution could be implemented using the DCT or thg> We have menuoned, thg convplutlon can b.e performeq effi-
DHT. but as we have seen. the transform sizes would gntly and without delay with a different optimized block size.

: ’ or this specific input, we observe faster convergence for the

greater, resulting in a higher computational complexit i . y
Table IV shows the computational complexity of théSHT MDF. In both figures, the curves were generated by aver

aging over 100 experiments.
MDF for each type of transform. The performance of each algorithm depends on the statistics

of the input signal applied to the adaptive filters. Different
trigonometric transforms perform unequal decorrelations in
In Fig. 9, we compare the performance of the DFT, DCT-lllsubbands, which lead to differences in performance. Actually,
and DHT structures for a second-order AR input signal, witlhere is no substantial work on the convergence properties
z-spectrum given bys(») = 1/(1 — 1.9271 +0.99272). In  of subband adaptive filters in the literature. We leave a more
each experiment, the block sizes were adjusted for each strdetailed study of the convergence behavior of the proposed
ture so that the corresponding algorithm exhibited the best pstructures for future work. Our simulations are meant to show
formance. We observed that the block size has a different éfat there is merit to the proposed schemes; there are clear
fect in each algorithm. The length of the impulse response ipktances where they perform better.
the unknown system wa¥ = 64, and the step size used for
the adaptive algorithms was chosengas= M /N (which is
the inverse of the length of the filter). This choice is within the
stability region and guarantees faster convergence. The DFTWe now clarify the relation of the more general subband adap-
and DCT-based filters were tested with a block siZe= 64 tive filtering structures to the MDF schemes of the earlier sec-
(corresponding to subband filters of single tap each). For tkiens.
DHT-MDF, we usedV! = 32 (corresponding to adaptive filters Fig. 11 shows two equivalent representations of the DFT
with two coefficients). block that comprises the DFT-based MDF structure. The figure
Fig. 10 illustrates the performance of the MDF’s where then the right is in terms of the DFT modulated bandpass filters,
block sizes were changed3d = 16, M = 32, andM = 8 for which are known to have poor frequency characteristics (the

IX. SIMULATIONS

X. SUBBAND ADAPTIVE FILTERING
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impulse response of the prototype filtéf, is a rectangular where theB; are M x M diagonal matrices with a single unity
window). entry at theith diagonal position
This fact motivated works on more gengral adaptive. struc- Bi=(0;®16 03 1)
tures, known as subband adaptive filters, which employ different )
choices for the subband filte&, (z). These works focus on de-then we can expressy (z) in the form
signing sharp filterd4; (=) that have good attenuation outside M1 ‘
passband and are flatter in the passband. However, as in the DET(2) = das(z) — < > Biz(M_l_Z)/M> F*W (2)xh,(2).
case, certain constraints [say similar to (9)] need to be developed i=0
in order for such designs to correspond to optimal implement&-the time domain, this equation becomes

tions (as in Fig. 3). <M_1 )

We can motivate one such optimal subband adaptive imple- ear,n =das, n — Z BiF*YnJr(M_l_i)/M w.
mentation by starting with a different factorization @(=). In- i=0

deed, it can be verified that the pseudocirculant ma&#(ix) can An LMS-based adaptive algorithm that recursively estimates

also be decomposed as the W is then given by
* * % M-1
G(z) = T*(1/2*)F*W(2)FT(2) () W —W.4n <Z > S FBZ) e
wherel'(») is anM x M diagonal matrix with fractional powers =0
of » where we continue to writey, ,, to denote the estimation error
L~ (M—1)/M with W replaced byw,,. -
H—(M=2)/M Note that the delayed versions Af in the above equation
I'(z)= ) (40) are all in terms of fractions of the unit delay. Now, by invoking

. stationarity, it becomes justified to make the substitition
X' sFBiey, , =~ X:FBien, s

andW (z) is some diagonal matrix with entridss;(2)}. From ) . _
for any fractionalé and for all< so that the LMS recursion be-

(39), itis easy to see that the entriedBf =) and the polyphase

componentg g;(z)} of the wideband filtei3(z) are related as €OMe€S Yt
follows: — — — ~
Wi =W, + X F Z Biey n—(M—1—i)/M
go(2) 1 i=0
Sl || scerum W, + 1K (43)
: U where we defined, in a manner similar to (42)
7 Lan—1(2) z /
wo(#) €(z) = FT(z)en (2)-
wy (2) In the above expressions, fractional delays appear, and it is
-F : . (41) known that these can be approximated by a special class of FIR
filters (see, e.g., [15]), say
- wr—1(z) »— (Dine+H(M—i—1)/M) -, E;(2)
That is . . .
Mot whereD;,; represents the integer delay associated with the FIR
wil) = 1 Z z*’“””gk(z)e*m”’”/M). filter E,(z). Fig. 12 illustrates the subband structure that results
k=0

VM from this factorization foiG(z). The transformation applied to
zp(z) andeps(z) can be readily recognized as a maximally

Although g (#) are FIR filters of lengthV/M each, we assign gecimate#l DFT filter bank in its polyphase form, where the
(N/M) + 1 coefficients to eachw;(z) in order to account for

the additional fractional delay tern{is—’“/’”} that appear in the SRecall that, in general, an LMS update is obtained from a steepest-descent
update by replacing the true gradient vector with an instantaneous approxima-

above expression. o _ tion for it, which simply amounts to dropping the expectation operator. Now,
We can now proceed similarly to the DFT-based MDF derivahe steepest-descent update that estimatetie given by

tion and introduce the estimation error vector M-1
Z X:,+(I\/I—1—i)/I\/IFBi €r,n

en(z) =dp(2) = T*(1/2 Y F*W (z) FI'(2)xp(2) =0

I"Vn+1 = Wn + HE

with the expectation operataE. By invoking the stationarity of the data

x', (%) {dss,n, X0}, We can assume
where we defined the transformed input vector EX edut,n =EX dus e,
, EX;, Xoys =EX.X.,

xM(Z) = FI‘(z):cM(z). (42) for anyé so that we can replace the above update by the alternative update

If we expandI'(z) as — _ M

p ( ) W/n+1 =‘/I/77,+/lE XHF Z Bie;\4771_(;\4_1_7‘)/1\/{ .

M—1 =

[(z) = Z B,y (M—-1-0)/M If we now drop the expectation, we arrive again at the desired relation (43).

i—0 6That is, the number of channels is equal to the decimation fadtor
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x(n)

el din)
Gy =
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where the trailing polyphase components appear delayed by
D,y + 1. This same construction was used in [11] for an
open-loop subband adaptive structure.

Due to the inherent delal;,,; that is introduced by the filters
E;(z), the LMS update (before the constraint) for the derived
structure will ultimately be a delayed LMS version of the form

Wn-l—l =W, + /vLAglEn—D X._p (45)

int int *

For this reason, smaller step sizes should be used to ensure sta-
bility, and the performance of such a scheme can degrade in
comparison with the MDF schemes of the earlier sections. Ac-
tually, such delayed updates are typical of closed-loop subband
implementations.

XI|. CONCLUSIONS

Using an embedding approach to derive the DFT-based MDF,
we have proposed new extensions of the MDF that are based on
trigonometric transforms and the discrete Hartley transform. We
have also verified that the computational complexity required
in the proposed structures is approximately the same as in the
DFT-based case, and it involves only real data. Finally, we have
shown that the philosophy of the MDF structures can be ex-

-Eo o, £, =M~
z
o ,
{ee -~ P B e ]
F F
- ' -~
/ din)
x(n) é(z) - e(n)
° e {7}
' e
M-1 H,, @ @ Xi-1{n) Worrt I ey (1) @ H,, @) -1

Fig. 12. Subband adaptive filter structure with constraint.

1
filters E;(z) represent the polyphase components of a certain[ ]
prototype filterHy(=). In addition, note that the last polyphase
component is simply a delay, that is (2]
(3]

(4]

Ding

Ey1(z) =2 (44)

This means that the prototype filtéf,(z) must be aNyquist
(M) filter, which by definition has it M — 1)th polyphase
component of the form given by (44). Actually, it can be shown
that one technique for approximating a fractional delay is to
design a symmetric Nyquisi{) filter and pick itsith polyphase
component to represent the delBy,, + (M — ¢ — 1)/M. [6]
Now, similarly to (9) and (24), we can recover the polyphase [7]
components of the wideband filté¥(z) from the adaptive fil-
ters via (41). That is, in a way analogous to the DFT-MDF, we (8]
can obtain an estimate of the polyphase components by com-
puting the DFT of the adaptive filters and delaying them by (]
fractional delays. This corresponds to multiplying the DFT of
the adaptive filters by the already existing fractional delay fil-[10]
ters{1, Eo(2), ..., Exr—2(2)}, thus leading to

1 [11]
Eo(z)

(5]

go(#)
ZflfDint g1 (Z)

- [12]
2T P gns_q(2) En_2(2) [13]
wo () [14]
w(2)
-F : [15]

tended to the more general case of subband adaptive filters.
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