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The Finite-Length Multi-Input Multi-Output
MMSE-DFE

Naofal Al-Dhahir, Senior Member, IEEEand Ali H. Sayed Senior Member, IEEE

Abstract—A new theoretical framework is introduced for ana- Multiuser detection technigues for MIMO systems have
lyzing the performance of a finite-length minimum-mean-square- heen shown to offer significant performance advantages over
error decision feedback equalizer (MMSE-DFE) in a multi-input  gjq1e_yser detection techniques thattreat 1Ul as additive colored
multi-output (MIMO) environment. The framework includes . ; . . .
transmit and receive diversity systems as special cases and quan-noISe andlumpits effects with baCkg,rOU“d noise. Recently, ithas
tifies the diversity performance improvement as a function of the beenshownthatthe presence of ISlinthese MIMO systems could
number of transmit/receive antennas and equalizer taps. Fast and enhance overall system capacity significantly, provided that
parallelizable algorithms for computing the finite-length MIMO  effective multiuser detection techniques are employed [12], [13]
MMSE-DFE are presented for three common multi-user detection The optimum maximum likelihood sequence estimation
scenarios. (MLSE) receiver for MIMO channels was developed in [26];

Index Terms—Equalizers, FIR digital filters, mean square error  however, its exponential complexity increase with the number
methods, MIMO systems. of users and channel memory makes its implementation costly

for multiuser detection on severe-ISI channels, especially as
|. INTRODUCTION the input signal constellation size increases to improve spectral
efficiency? Two alternative lower complexity transceiver
tructures, which are widely used in practice for single-input
. . ) gle-output (SISO) dispersive channels, namely, discrete
sum of several transmitted signals corrupted by mtersqu% ltitone (DMT) and minimum-mean-square-error decision

interferenc'e (Ish, interuger interference (IUI), .and NOIS§aedback equalizer (MMSE-DFE), have been recently proposed
Examp_les mc_lude TDMA digital cellular systems with multlplefor MIMO dispersive channels as well [2], [3], [12], [16], [17].

us . :
) ; n this paper, we present a new analytical framework for an-
CDMA systems [3], where IUI is also known as multiple pap b 4

terf MA ‘deband L d_alyzing the MIMO MMSE-DFE that extends the work in [6] to
access interference ( ), wideband transmission over di 1e MIMO case in a manner that is distinct from the work in

ital subscriber lines (DSL) [1], where [UI takes the.form oy " [3], [16], and [17] in three key aspects. First, the MIMO
near-end and far-end crosstalk between adjacent twisted pg| SE-DFE feedforward and feedback matrix filters are re-

?n_d thi%h-densitfy digitg_l magtntetickreci)gr’ding, where 1Ul is du&ricted to be finite impulse response (FIR) for practical im-
0 interference from adjacent tracks [15]. lementatior$, and the decision delay is optimized, thus estab-

This work is motivated by the desire to increase the capacii¥hing finite-lenath | fth Its in 121 [3]. 116 d
of digital TDMA wireless networks by allowing muItipIetrans}gmIng inite-length analogs of the results in [2], [3], [16], an

N MULTI-USER communication over linear, dispersive
and noisy channels, the received signal is composed of

Y . : 17]. Second, the assumption of an equal number of channel in-
missions sharing the same time slot and freq_uency band s and outputs made in [2] and [3] is relaxeThird, the spe-
lsl,eEa:ﬁtlng them spgtlt?[-terfnporally a} the rigellver. O?] the al structure of the problem is exploited to derive fast and paral-
Ik, Tis corresponas 1o, Tor example, MUultiple sync _ron(_)lféllizable MIMO MMSE-DFE computation algorithms suitable
co—channel and co-cell users, yvherg eachis equ!pped with S Freal-time implementation. As shown in [3], computing the
(or. mult|pl_e) antennas transmitting in the same-t|me slotand 'HIMO MMSE-DFE for the infinite-length case requires com-
qe|ved using an ar_1tenna array at the basg station. Qn the do ationally intense spectral factorizations of matrix rational
link, the base station antenna array provides transmitter spa; ctra
diversity (and possibly additional coding gain using space-tim The organization of this paper is as follows. We start in

coding technology_[25]), and spatio—tempora! proce_ssing Is P¥action Il by developing the input-output model for the MIMO
formed at the mobiles to detect the multiple-input sigaals. MMSE-DFE and deriving closed-form expressions for its

optimal filter settings. Several special cases of the MIMO

Manuscript received October 6, 1999; revised June 2, 2000. This work V\WSE'DFE structure are discussed in Section IIl. In Section

supported in part by NSF Grant CCR-9732376. . . . .
N AlDhahi is with AT&T Shannon Labs, Florham Park, NJ 07932 USA_2For the third-generation wireless TDMA proposal [L1], 8-PSK modulation
(e-mail: naofal@research.att.com; URL: http://www. research. att.com/~naofa ysed. Atypical urban EDGE ghannel (|nc|ud|ng the transmit pulse shape) has
A. H. Sayed is with the Electrical Engineering Department, University dt memory Qf at !e?st 3. Bven with two transmit antennas, the number of MLSE
California, Los Angeles, CA 90095 USA (e-mail: sayed@ee.ucla.edu). states rgquwed 8° = 262144, Wh'Ch.'s clearly not prg;tlcal. - )
Publisher Item Identifier S 1053-587X(00)07681-9. SFIR filters are preferred over IIR filters due to their inherent stability, suit-
ability for adaptive implementations, better numerical properties under finite-
1n this paper, an input signal corresponds to a signal transmitted from a sinBlgcision effetcs, and attractiveness for DSP and VLSI implementations
antenna. Hence, multiple inputs could correspond to multiple distinct users?in some scenarios, this asymmetry is dictated by cost considerations. For
where each is equipped with a single antenna or a single user (e.g., a basees@mple, in digital cellular networks, it is much more economical to deploy
tion) equipped with multiple antennas or combinations thereof. more antennas at the base station than at the mobile.

1053-587X/00$10.00 © 2000 IEEE



2922 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 10, OCTOBER 2000

IV, we derive fast parallelizable algorithms for computing TABLE |

these optimal filter settings. A detailed complexity analysis and ~SUMMARY OF KEY MATRICES USED IN THEPAPER AND THEIR SZES

simulation results are presented in Section V, and the paper is ynom Nome Dimensions

concluded in Section VI. H Channel Matrix InoN; < nd(N; 1 v)

R.. Input Auto-Correlation Matrix ni(Ny +v) x ni(Ny + v)

Notation R, Noise Auto—Correlation Matrix Ino Ny x In,Ny
The n_otation adopted in this paper conforms to the following E’Z I“P‘g;i‘:tp:lt‘i‘f’;:i‘;;i?‘;;i‘iitrlx n(l:f z\J/r, VX); :7\;!Nf

convention W Feedforward Filter Matrix nINg X n;

» Scalars are denoted in lower case: B

» Unless otherwise stated, vectors are column vectors and _Re Error Auto-Correlation Matrix i X ni
are denoted in lower case bolel: R Rz + H'RH ni(Ny +v) x Ny +v)

* ¢; denotes théth unit vector (it has a one in thith position
and zeros everywhere else).

* In situations where the components of the vectors are
to be emphasized, the first and last components, sepa-
rated by a colon, are given as a subscript to the vector:
Lr+N;—1: k—v-

» Matrices are upper case bold:

» Iy denotes the identity matrix of siZ€.

* Ony s denotes an all-zeros matrix witN' rows andM
columns.

* | A| denotes the determinant of matuik

* tracd A) denotes the trace of matri4.

* E[] denotes the expected value operator.

* A diagonal matrix with element$dy, dy, ---, dn, 1}
on the main diagonal will be denoted by
diag(do, dl, BRI defl).

» The symbol(-)* will be used to denote the complex-con-
jugate transpose of a matrix or a vector and the complex
conjugate of a scalar. Fig. 1. Block diagram of the multi-input multi-output channel model.

 The symbol(-)* will be used to denote the transpose of a
matrix or a vector. ye Polx1 rrr [l Dec | ™ X1

* When a submatrix of a given matrix needs to be speci » Qo—3
fied, indices of the first and last rows (and columns) of ni x 1
the submatrix, separated by colons, are used as the fil
(and second) component of an argument to the matri FBF
Rwa;(iI: jlv i2: J2)

For convenience, we summarize in Table | the key matrices uségl 2. Block diagram of the multi-input multi-output decision feedback
in this paper and their sizes. equalizer.

Augmented Feedback Filter Matrix ni(Ny+v) xn;

Xk-a

Il. FIR MIMO MMSE-DEE We use the standard complex-valued baseband equivalent signal

model. Assuming an oversampling factod ghe samples at the

We start in this section by describing the input—output modﬂh channel outputi( < j < n,) have the standard form (see
assumed throughout the paper. Then, we derive closed-fo‘aﬂias_ 1 and 2) -0~

expressions for the optimum filter settings of the finite-length

MIMO MMSE-DFE under three multiuser detection scenarios. , n v '
In the first scenario, only previous decisions of other users are g = >~ 3" h{: D) 4+ ni)
available at the input of the feedback filter for any user. In the i=1 m=0
second scenario, previous decisions as watlasent decisions dof o 4 4 "
: ’ : . . Ll (CRNMO); (@) )
of lower indexed users are available. This scenario assumes that - Z R [y Tp_ply ) ]+ @
decisions are made sequentially, starting with lower indexed =1

users. In the third scenario, previous and current decisionswviiere
all others users are assumed available (e.g., from a previous dQ,(?) jth channel output vector;
tection stage). B9 channel impulse response between difeinput and
the jth output, whose memory is denoted by 7 ;
A. Input-Output Model n{’)  noise vector at thgth output.
We consider the general case of a linear, dispersive, and nofdlyof these three quantities afex 1 column vectors corre-
digital communication system with; inputs andn, outputs. sponding to the time samples per symbol in the assumed
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temporally oversampled channel model. Furthermore, theth (IV, + 1) matrix tapsB;, each of sizex; x n;. Therefore,

overall channel impulse response between filtle input
and the jth output is represented by the vecthf )<
(RS- gl D h'%7) ). By grouping the received
samples from alh, channel outputs at symbol tinkeinto an
In, x1 column vectow,,, we can relategy,, to the corresponding

n; x 1 column vector of input samples as follows:

v
Y = Z Hrn-":k—rn + ny

m=0

)

whereH,, is theln, xn; mth MIMO channel matrix coeffi-
cient, andey_,,, is a sizen; x 1 input vector at timé — m. The
parameter is the maximum length of all of the,n; channel
impulse responses, i.e,,= max; ; v(%7).

Over a block ofiV; symbol periods, (2) can be expressed i
matrix notation as follows:

Yrin, 1 Hy H; H, 0 - 0
Yr+n,—2 0 Hy H; --- H, O
m 0 0 H, H; H,
TriyN;—1 N4 Ny, —1
TryNp—2 N4 Ny —2
®3)
Tr—v g
or more compactly
YN, —1:k = HEpp N 10 kv + Pk N, —1: k- (4)

By defining then,;(N; + v) x n;(Ns + v) input auto-corre-
lation matrix
def %
R, = E[$k+Nf—1: k—vTpiN,—1: k)
and the(n,INy) x (n,INy) noise auto-correlation matrix

del
Ry = Elngyn,—1: kMg v, 10 4]

W, and B; have the forms

b wl )

W= : :
w11 ot
[ D) p(kim)

B, = : : (7
Lo

where each entry il ; is anl x 1 vector corresponding to the
{ output samples per symbol.
If we define the sizen; x n;(N; + v) matrix B™%
%Onixnzﬁ B" ], where0 < A < Ny + v — 1is the decision
elay that satisfies the conditideh + N, + 1) = (N + v),
then it can be shown that the MIMO MMSE-DFE error vector
at timek is given by (assuming correct previous decisions)

(8)

Therefore, then; x n; error auto-correlation matrix of the
MIMO MMSE-DFE is equal to

~ ok
E,=DB LhtN;—1: k—v — W*yk+Nf—1; k-

R..= E[EEy]
=B'R,,B- B'R,,W - W*R,,B+W*'R,,W
=B (Ru, — RoyR,) Ry.)B+ (W* — B'R,,R,))
‘R, (W* — B'R,,R,})"
“B'R'B+GR,G (9)

where we introduced the matriceR", G}. When dealing with
multidimensional error random processes, either the trace or the
determinant ofZ.. can be used as a mean square error measure.
The trace measure is equal to #rghmetic aveageof the eigen-
values ofRR.., whereas the determinant measure isrelated to their
geometric aveage Forthe MIMO MMSE-DFE, it turns out that

the same feedforward and feedback coefficients minimize both

the input-output cross-correlation and the output auto-correlgeasures; hence, either one can be adopted. Corresponding to

tion matrices are given by

def

oy = E[zk—l_Nf_l: k_”yz-l-Nf—l: ] = Rox H” (5)
def

Ryy=Elypin, 1. 1Yrqn,—1: 1] = HRoo H' + Ry (6)

B. Performance Analysis
The FIR MIMO MMSE-DFE consists of a feedforward filter
matrix

wdel * * *
W =[W, W, WNf—l]

with N matrix tapsW;, each of sizén,l x n,), and a feedback
filter matrix equal to

«del + + +
[Ini OnixniN&]_B = [(Inz _BO) _Bl _BN;,]'

Furthermore, we define the matrix

*def ES ES ES
B"=[B; B By, ]

these two measures, we define the following two decision-point
SNR performance measures for the MIMO MMSE-DFE

¢ Arithmetic SNR defined by

1
——tracdR,...)

AsNR ity 1) (10)

—t Ree min

p racéR.. inin)

« Geometric SNR defined by

of | R |1/ (Ns42))

GoNRi el (11)

|Ree, min|(1/ni)

In this paper, we adopt ASNR as a performance measure for
two main reasons. First, it is more widely used in the literature
back to the early work on multidimensional linear estimation.
Second, it simplifies the proofs of some key results given in
Appendices C-F.
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C. Optimum MIMO MMSE-DFE Coefficients where the decision delay paramefeis chosen to minimize the

In this subsection, we derive closed-form expressions fBRCE OfRee, min. . N
computing the optimal filter settings of the MIMO MMSE-DFE_ A sécond approach for computidg,,; and Ree, i utilizes
from estimates of the MIMO channel matri and the noise th€blockCholesky factorization
auto-correlation matridz,,,,. These estimates can be obtained

_ -1 * p—1
using training sequences as described in [4] or estimated R=R, +H R, H

blindly using second-order statistics of the received signals as = {Ll 0 } {Dl 0 } {LT Lﬂ
described in [28]. Ly Ls 0 D 0 L
Applying the orthogonality principle which states that df r DL* (19)
E[EkszrNFl:k] = 0, it can be shown that the optimum
matrix feedforward and feedback filters are related by whereL, is of sizen;(A + 1) x n;(A + 1), andL hasn,; x n;
. identity block entries on the diagonal. In additidn,is formed
W, = BoptRmyR;yl. (12) fromn; x n; blocks. Using the result in (15) and (16), we get
We show in Appendix A that this solution minimizes both the B,,= |:Ini(A+11):| C— { I’fl }
trace and the determinant &... v L,LT L,Li°C
Using the optimum feedforward matrix filter settings of (12) =L[enn,, " Cni(agpt1)-1] (20)
in (9) and applying the matrix inversion lemrhaye can write Rec win =C'LT*"DTILTIC
A —1 —1
Ree = B*RLB (13) o dlaqdni AON’ T dni(AOPt‘i'l)_l) (21)
=B (Ru. — R, R, R,,)B where, as mentioned before, the decision deday,(0 <
=B (R,, - RyuH*(HR,,H" + R,,) *HR,,)B Ayt < Ny 4+ v — 1) is chosen to minimize the trace of
_B ( R;J} L H R;,% H) B R, min- Using (20) along with (5) and (6), thg feedforward
ot i matrix taps of (12) can be expressed as follows:
=B'R'B (14) .
W, =B,,R..H*(HR,.H + R,,,)"" (22)
where we defined the matrik. We consider three detection :szt(R;J} +H'R*H)"'H'R;}
scenarios. = .
Scenario 1: Only previous decisions of other users are avail- i Dopt Eni Aope
able for any user at the presenttime (and, hence, their interfering = : L'H*R;}. (23)
effect can be suppressed), i.By = I,,,. To determine the op- d-L e
timum matrix feedback filter coefficients, we need to solve the ni(Boprt ) =17 (Aopi +1)—1
following constrained optimization problem: In Section I, we present fast algorithms for performing the
. R block Cholesky factorization in (19).
min tracgR..) = min trac§ B R~'B) Yet a third approach for computing,,; and R, min is by
. B B partitioning R* as follows:
subject to
B'®=C R..=B'R'B
where af [ w1 | B Rﬁ} [C}
= |C* B T =
@‘léf |:In7-A><n7-(A+1):| [ ] |:Rf2 R;Q B
0, xn; (A+1) o . I—zlLl RILQ 7-
and = [In7 ] —L1x i B
s def R12 R22
C"= [Onxna I, ]. —1 =1, 1l — =L,
=(R; —R5(Ry) R, )+ (B + Rp(Ryp)™)
. . . —% -1 1%
It can be shown that the solution is given by (see, e.g., [20]) -R§2(B + R12(R2l2) 1
B, =R2(®*R®) 'C (15 where B'€[B; ... By, ] RL,¥C'Ric, and
R min =C"(2"R®)™'C. (16) R, = C*RL,. Therefore
If we define the partitioningidéf[g%;R;z], whereR;; is of size ot = — Riy(RL)™ (24)
. . * — 1
ni(A+ 1) x n;(A+ 1), then oot = [Onxmin In, —Riy(RE)™']
: Ry |, Ly.(av1)
Bo = - RTC = ,:( - C 17 1 —1 ==l
o [RIJ H |:R12R111 an Rec min =Ry, — Ri5(Ry) 'Ry - (25)
Ree, min — C*R]Tllc (18)

We prove in Appendix B that (17) and (18) are equivalent to (24)
5A+ BCD)"'=A'— A'B(DA'B+C~")"'DA'. and (25), respectively.
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Scenario 2: Assume that users are ordered so that lower ias Scenarios 1 and &xcepthat B is now only constrained to
dexed users are detected first, more specifically,¢chaent de- be monic, i.e.efBoe; = 1 forall0 < ¢ < n;, — 1. The general
cisions from lower indexed users are used by higher indexesbults in (17) and (18) still apply witt™ = [0,,, xn,a  Bg ],
users in making their decisionise., By is now a monié lower where By is optimized to minimize tra¢@®.., min). In sum-
triangular matrix. The general results in (17) and (18) can stithary, under Scenario 3, we solve the optimization problem
be applied in this case by settiGff = [0,,.xn.a Bg], Where . .

By is ann; x n; monic lower triangular matrix whose entries 1%1011 trace BoR3Bo)
are optimized to minimize tra¢&.. min). Toward this end, de- subject to
fine the partitioning e Boe; = 1forall 0<i < n; — 1

1 R R ) . . .

Ri; = [R* R } (26) whereR3 was defined in (26). Using Lagranage multiplier tech-
2 nique, it is straightforward to show that the optimum maBi¢

whereR; is n;A x n; A, andR3 is n; x n;. Therefore, (18) and the corresponding MMSE are given by

simplifies to

R ]
. Bitle, = —2 T 0<i<m—1 (29)
Ree, min — B0R3BO- (27) G?R?) ¢;
n;—1
It can be readily _ch(_acked that the opt?mu_m monic lower t_rian— MMSEgdéftrace{Ree,mm) — Z % (30)
gular By that minimizes tradgR.. min) iS given by the monic = eiR;e

lower triangular Cholesky factor dﬁgl, ie., ) ) ) )
We show in Appendix E that Scenario 3 achieves lower MMSE

Rgldéf LyDs L, than Scepario 2. .
BVt _ T, Scenario 3 was prese_nted_ for comp_leteness of the_ analysis;
0 3 however, our main focus in this paper will be on Scenarios 1 and

Rec min =D3*. (28) 2, and multistage detection will not be discussed any further.

. . . . Remark: In concluding this section, we would like to empha-
We show in Appgnd!x D that Scenario 2 achieves lower MeaY7e the importance of optimizing the decision delay parameter
square-error (which is defined as the trac&af, ) than Sce- A in all three scenarios, especially for short feedforward filters.

nario 1. . . L
. . Using a suboptimunm can result in significant performance
A second approach for computing the optimum FIR MIM% : I g : :
: . S . egradation, as it will be demonstrated in the simulation results
MMSE-DFE filter settings under Scenario 2 is by performing 9 ! W ! imurad !

8f Section V-C. This is also th for the SISO MMSE-DFE
standard(i.e., not block) Cholesky factorization of the matrix ection IS 15 aisofhe case forthe '

R w1l gy ¢ N as shown in [7].
E =R, .+.H R""H in the formLDL - Then, the feedback For the MIMO case, allowing the different users to have dif-
filter matrix is given by thes,; adjacentcolumns ofL that cor-

- P ferent decision delays could result in improved decision-point
respond to a diagonal matrix with the smallest trace. TherefogNR for the MIMO MMSE-DFE. However, it might violate the

,5.20) an_?h(%ﬁ) are(;se? to dc_omi)#g _MlMO M'\I/lSE'DtF_E flltelr S(atéssumption of available previous decisions from all other users
|ngts.W| d N Ltm glrs inl Ing i o rllow a to_v)\é_ehr. rlang?tiar in Scenario 1 and the additional assumption of availability of
matrix and not a block fower tnangular matix s resuitis -, rent decisions from lower indexed users made in Scenario

shown in Appendix C. 2. Other drawbacks of allowing variable user decision delays

The equwglence of the two approaches_ can be ea_\sny Shol\(){([;]lude the increased computational complexity in optimizing
using thenesting propertyf Cholesky factorization. This prop- these variable delays and computing the optimum MIMO

grty statlecs:r;chlat IILR f: tLD L f,tr';genktheblowctar_ tn?lr;g}ular e:jnd MMSE-DFE settings and the fact that the resulting feedback
lagonay Lnolesky factors o Xk submatnx otie Iormed = g0 ¢ \will be of different lengths in general. For all of the

from itsfirst & rows and columns are equalto fivet & rows and ahove reasons, we do not explore this variable-delay detection

columns ofL and D, respectively. Conversely, R = L*DL, trateqv in this paper

then the upper-triangular and diagonal Cholesky factors of tﬁe 9y Paper.

k x k submatrix ofR formed from itslast & rows and columns

are equal to théast & rows and columns ok, and D, respec-

tively. In this section, we derive several special and limiting cases of
Scenario 3: When multistage detectors [27] are employedhe general results of Section |I.

current decisions from all other users, which are obtained from _

a previous detection stagere available for the detection of theA- Uncorrelated Input and Noise

user of interest. Therefore, suppressing their interfering effectswhen the input and noise processes are uncorrelated between

would improve the performance of the MIMO MMSE-DFE different time samples and from one input—output channel to the

This detection scenario has the same mathematical formulather, the matrice®?,., and R,,,, become block diagonal and

take the simple form

Ill. SOME SPECIAL CASES

6A monic matrix has diagonal elements equal to one.
"Note thatR,, is a Hermitian matrix. ; ;

11 X . Rx:dlanlaqai 1,0—2 2 "',O—i TL')? M
8In asynchronous CDMA, the previous detection stage could be, for example, ’ ’ ) e

a bank of single-user matched filters or a decorrelating stage [27]. diag(o-i’ 15 03207 2,7, o2 )
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H H 2 2 2
R, :dlanla(‘:(rfmlIl, TPV | Y
H 2 2 2
dlag(am 111, On, 211, sy Omnoll)).

The SNR at the output of th@g, j) channel is defined by

v
O—izz le; 1 Hyeji1|?
SNR ) — k=0 :

2
Tn

2

j
1<i<n; 1<) <n,.

B. MIMO Zero-Forcing (ZF) DFE

L), -
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E. FIR MISO MMSE-DFE

The multi-input single-output (MISO) MMSE-DFE is ob-
tained by settingp, = 1. Each feedforward tap¥; in this
case is of sizé x n;. This is an effective receiver structure in at
least two important transmission scenarios. In the first scenario,
the multiple inputs correspond to distinct users, and hence, the
MISO MMSE-DFE suppresses co-channel interference by de-
tecting the desired and the interfering user signals as received by
the single output channel. In the second scenario, the multiple
inputs correspond to transmit diversity paths for the same user
(e.g., multiple transmit antennas at the base station and a single
receive antenna at the mobile).

The optimal settings of the FIR MIMO ZF-DFE follow )

as a special case of the MMSE-DFE by letting the noide FIR SISO Fractionally Spaced MMSE-DFE

variances go to zero. The optimal matrix feedback filter In this casen; = n, = 1, and eachH; is anl x 1 column

is computed from the lower triangular Cholesky factor ofector. This is the standard fractionally spaced finite-length

the matrix H* H. The matrix feedforward filter is given by MMSE-DFE studied in detail in [6]. In the presence of multiple

W, = B R, H"(HR,.H")~!. Note that gpseudo inverse inputs, the SISO MMSE-DFE treats other input signals as

is used to comput® ,,,; whenN; > (v/(l(ny/n;) — 1)). colored noise when detecting the desired input signal [5]. As
will be demonstrated by the simulations of Section V, this

C. FIR MIMO MMSE-LE results in significant performance degradation from the MIMO

The FIR MIMO MMSE-LE follows as a Specia' case by Setand MISO MMSE-DFE Structures, which detectmlinputs.
ting By = I,,, and all otherB; to zero. The error auto-correla-

tion matrix is given by

Ree MMSE-LE
= [OnixniA Ini Onixni(Nf-l—z/—A—l) ]
OniAXng

IV. FAST COMPUTATION ALGORITHMS

~We see from (20) and (23) for the optimal weight matrices
Bopt andW ., that the fundamental step in evaluating these
optimal coefficients is the computation of the Cholesky factor
L of Rin (19) or, equivalently, the factdt in

-R7! I,
Oni(Nf+VfAfl)><ni

=R (niA+1:in(A+1), A+ L:ni(A+1). (32) whereD'/? denotes a square-root factor fbr (which is de-
fined as lower triangular with positive-diagonal entries on the
diagonal). Actually, two Cholesky factorizations are required,
depending on whethdB, is taken to be the identity matrik, .

or a lower triangular matrix. In the former cadeis required to

be ablocklower triangular Cholesky factor with; x n,; block
matrices along its diagonal. In the latter cakds required to

R=LL"; L=LDY?

The delay parameteh is chosen to minimize the trace of
R.. vvse—Le. The optimum FIR MIMO MMSE-LE settings
are given by

WMMSE-TE

R 'R O"iIAX"i be lower triangular with scalar entries along its diagonal, viz.
— Tlyy ST ni ~
Oni(Nf—l—V—A—l)xni (7‘LZ X 7‘LZ)
OniAXng Z = X (nZ X TLZ)

= (HRacacH* + Rnn)_lHRacac Inz- . L X X (nz X nz)

Oni (]\‘U-}-V*A*l)xng or -

(33) - loo
L= X lll
In Appendix F, we prove that the MIMO MMSE-LE results in a | X X x

higher MMSE than the MIMO MMSE-DFE. This result is well

known in the SISO case (see, e.g., [23]). The inverse ofL, need not be computed explicitly in order to

evaluateW ,,, in (23). Instead, one could solve, via back-sub-

D. FIR SIMO MMSE-DFE stitution, the linear system of equations

By settingn; = 1, we get the FIR version of the single-input
multi-ouput (SIMO) MMSE-DFE studied in [8gssuming infi- )
nite-length filters One scenario where the SIMO MMSE-DFEdetermine4, and then set

LA=H'R,}

can be implemented is when multiple receive antennas are used dflA e A
. . . . . . . n; Qo N Qo
to achieve a diversity gain when detecting a single input. In . vt P
. . . o~k - J— .
this case H; is a column vector withn, elements, and = Wop = : A.
* * —1 *
[O1xa 107 bR, ) B (A A 1)=18 0 (A +1)—1
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Hence, we will focus on the computation di. Actu- matrix R itself exhibits displacement structure. Once this fact
ally, we study the case of uncorrelated input and noise isestablished, we will then show how it can be exploited for
described in Section IlI-A. Now, sincd® has dimensions the purpose of fast Cholesky factorization.
n;(Ny+v) x n;(Ny+v), these computations would generally To begin with, define the following block shift matrices
require O[n3(N; + 1)3] operations by using the classical

Gaussian elimination technique. -0
However, we will show in the sequel that by exploiting the I,, 0
block-Toeplitz structure of the matrid in (3), in addition to Z,, = ’
the block-diagonal structure of the matriceR...., R,.,,}, and
by using a fast so-called generalized Schur algorithm (see, e.g., L I.,; 0
[19], [21], and [24]), this step can be performed efficiently in r o
On2(N; + v)?] operations. I, ©
Introduce the block-diagonal matrices with input and noise Zn, =
variances I. 0
(Z,., O
032071 F= | 0 anl
D, = :
5 whereZ,,, hasN; block columns and rows, where#s,, has
= 9z, n; (Ny+1) block columns and rows. Then, itis easy to verify that
o5, 111 the matrice§ H, R..,, R, } satisfy
D, = :
) _
- T, L H_ZnoHZ:li = f(1)1 8:|
whereD,, isn; x n;, andD,, isn,l x n,l. Then{R,., R,,} :D
can be expressed in terms{d,,, D,.} as Ry — Z, R Z,, = " 0}
. . Dt
1 Lepx =
_Dac Racac _ZniRacacan - 0:| .
me =
D Now, observe that the negative of the matRxin (19) can
:D 7 be obtained as the Schur complement of the block-Hermitian
" matrix
Rnn =
I D, A | R H
M= [ H —R;J}

whereR,,,. consists of N, +#/) block-diagonal blocks, whereas . _ ' o
R, hasN; block-diagonal entries. MoreoveH is given by with respect to its leading block entry. Moreovgr{ satisfies

D, 0 T
Hy, H, ... H, 0 0 0 8
H— HO H1 H,, M—FMF == T* 0 —D;l 0 0 0
0 0 0 0 0 0
H, H ... H,

If we further introduce theormalizedjuantities (i.e., we nor-
where eactH; is n,{ x n;, and wherdd hasN; block rows and malize the rows of eacH;)
(s + 1) block columns. We will denote the nonzero entries of

the top block row ofH by T 2 D \2H,

T=[Hy H, ... H,] then it is easy to verify that
which iSTLol X n;V. M= FMF*=GIG*
A. Exploiting Matrix Structure whereJ is a signature matrix given by
A powerful and convenient framework for exploiting the
structure of the matrixR is displacement structure theory [19], I,
[21], [24]. In the sequel, we will first show that because of the J = -1,

block-Toeplitz structure of the matricd#, R...., R,.,.}, the —1,,
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andg is a so-called generator matrix that is given by The so-called generalized Schur algorithm (see, e.g., [19],
DY g 0 [21], and [24]) is an efficient procedure for the computation of
" the triangular factoC of matricesM that satisfy displacement

Onot Ongt Ongi equations of the form

M—-—FMF*=GTG".

H, H, D;Y? It starts with{.F, G, 7} and iterates for a number of steps that
G = F{ F{ 0y, is equal to the size of. At each iteration, it produces a column
: of L.
e : There are various ways to describe the algorithm. Here, we
H, H, On, state it in a so-called proper form, which is suitable for parallel
(_) 0 0 implementations. Let us denote, for convenience, the entries of
: J by
L 0 0 0 |
I,
where the number of block zero rows betwe@}y? andH, is J = [ —IJ :
Ny — 1, whereas the number of block zeros in the last column '
underneattD; /2 is Ny4+v—1. Thatis,« = n,l, andg = n; + n,l. In addition, letr = o+ 5.

Matrices M that satisfy equations of the above form are
called structured matrices, or matrices with displacemeRjgorithm 1 (Fast Algorithm)
structure (see, e.g., [19] and [24]). Two notable properties pgt Fo=F, Go=G, and repeat for i>0
such matrices are the following: 1) At step i, we have the matrices {F:, G:}.
1) The structure is preserved under Schur complementationLet g; denote the top row of g;.
Therefore, since-R can be obtained as a Schur comple2) Starting from the top entry of the in-
ment of M, it will follow that — R itself has a similar dis-  ertia matrix Iy, we associate with each
placementstructure (for some other matrig€s G} ofap- step of the algorithm an inertia entry.
propriate dimensions and forthe same signaturemarix ~ We will say that the step is positive
2) There exists a fast (efficient) algorithm for the compu- if the corresponding entry is +1 in  Zyy,
tation of the triangular factors of such structured ma- and the step is negative if the corre-
trices M, which is known as the generalized Schur algo- sponding entry is —1in Iy.
rithm. The algorithm also provides the triangular factor8) Implement a sequence of (@« — 1) Givens
of Schur complements of the matrix. Thus, by computing rotations (or a single Householder
the triangular factors aiM, we will be able to obtain the  transformation [14]) that annihilates

desired triangular factors dt directly from those of\. the entries 2 through o of g;, say
In so doing, we would have derived an efficient proce-
dure for factoringR and, therefore, for determining the 9i = [ x x x| x x x]
optimal coefficients{ Bopt, W opt ). TSI 0 0 0 | ox x x|
B. Fast Standard Factorization Algorithm 4) Implement a sequence of (# — 1) Givens

rotations (or a single Householder
transformation) that annihilates the

last (8 — 1) entries of the transformed
vector, say

We first show how to obtain thetandardCholesky factor-
ization of R, viz, R = LL", whereL is lower triangular with
scalarentries along its diagonal.

First, note that the leading block matrix @t is positive-
definite, whereas the Schur complementiaf with respect to [x 0 0 0 | x x x]
this entry is negative definite (and equal taR). Hence, M

rotations
admits a triangular factorization of the following form: - x 0 0 0 [ x 0 0]
5a) If the step is positive , do the fol-

M=r {INf"ol } L2 LTy

—I(N,4oym, lowing. [Otherwise move to step 5b).]
where is lower triangular with positive diagonal entries, and USe one final hyperbolic rotation to an-
T, is a signature matrix. We will soon explain how to determine Nihilate the entry in position a+1,
L efficiently by using the matrice§F, G, 7} above. Assume / /

: J [x 0 0 0 | x' 0 0]
for now that this has been done, and partitibas follows:

- operbolicts. 00 0 | 0 0 0]
e
Ly Ls The sequence of rotations in steps 3),
whereL3 has the same dimensionsiasThen, it can be verified 4), and 5a) should also be applied to
that—R = —L£3L5 so that the desired lower triangular factor ~ all the other rows of G;. This leads to

is given byL = L. a new matrix, say Gg; = G;09,;, where ©;
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denotes the combined effect of all ro-

tations, and the top row of G, will thus

have the special form

top row of G, =[& 0O 0 O | 0 0O O]
5b) If the step is negative , then instead

of step 5a), we use one final hyperbolic
rotation to annihilate the entry in po-
sition 1

[x¥ 0 0 0 | x' 0 0]
forerelictg 9 0 0 | & 0 0]

In this case, the sequence of rota-

tions of steps 3), 4), and 5b) should

also be applied to all the other rows

of G;. This leads to a new matrix, say,

G, = G;0,, where ©; denotes the combined
effect of all rotations, and the top row

of G; will thus have the special form

top row of G, =[0 0 O O | & O O]

6) The (nonzero part of the) ith column of
L, which is denoted by l;, is given by
the first column of G (if the step is
positive) or by the (o + 1)th column of G,
(if the step is negative)

I, =G, [H (for a positive step) )

_ Oaxl
li=G; 1 (for a negative step)
0

7) To obtain Gi+1, We multiply l; by F,
and use the result to replace the column
corresponding to I, in G,. All other
columns of §G; remain unchanged. This
results in a new matrix whose top row is
zero. We then delete the top row to get
Git1.

For example, for a positive step, this
construction corresponds to

[ 0 }:[ﬁzi 0]+@[0 ITJ

Git1
whereas for a negative step, we perform
0 — I
[ } =[0 Fi 0]+ G; 0
Git1 I
8—1
8) To get F,11, we delete the first row
and column of F;.
9. Return to step 1), and repeat the
procedure. [ |

simultaneously. Moreover, the numerical stability of this factor-
ization procedure in finite-precision implementations has been
established in [10] for the generalized form of the algorithm,
as well as in [9] and [22] for more specialized forms. One par-
ticular conclusion from these works is that numerical stability
requires that the hyperbolic rotations of steps 5a) and 5b) be im-
plemented with care. There are several ways to do so, e.g., by
using the so-called OD or H procedures of [10] or by using a
mixed downdating form [9], [22].

C. Fast Block Factorization Algorithm

We now show how to obtain a block Cholesky facowith
n; X n; block entries along its diagonal. For this purpose, note
again that the firstV,n,l steps of the above algorithm are pos-
itive steps, at the end of which we obtain a generator matrix
Gnn,t for R. More explicitly, we obtain

R— ZniRZni = gA’fnolngffnol-
We will assume that these initiaV yn ! steps have been per-
formed and that we have available a generator m&ix.,,;.

With {Z,.,, Gn,n,1, J} at hand, we can now obtain the de-
sired block factot. as follows.

Algorithm 2 (Block Fast Algorithm)

Let Fo = Z,,, Go = Gn,n,1, and repeat for 7>
0

1) At step ¢, we have the matrices {F, Gi}.
Let @, denote the top n; rows of g.

2) Implement a sequence of J-unitary ro-
tations that reduces G, to the form
G,=[x x x x | x x x]

rotations
= [A

;0 0 0 | 0 0 0]

where A; is now lower triangular. This
can be accomplished in a number of ways.
For example, we can first transform the
top row of G; to the form

[x x x x | x x x]
rota_h;o’n/s[ ></ 0 0 0 | 0 0 0]

and apply these transformations to all
other rows of G;. Then, we transform the

second row of the resulting g, to the
form
[x x x x | x x x]

PRSI 0 0 | 0 0 0]
and apply the transformations again to
all other rows of G;. We continue in
this fashion until the top n; rows of G,
have been transformed to the form

Gi—[A 0 0 0 | 0 0 0]

At the end of the algorithm, we have available all the columns where A; is lower triangular. After all

of £ from which we can obtain the desired submatrix mafkix

(or L).

the transformations are applied to all
rows of §;, we obtain a new matrix, say,

We may remark that the above algorithm is parallelizable.G; = G;0;, where ©; denotes the combined

This is because the rotations can be applied to all rows; of

effect of all rotations, and the top n;
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rows of G; will thus have the special Therefore,n; = n, = 2, v = 1. Furthermore, we assume
form that! = 1, Ny = 3, and that the input and noise processes
top n; rows of Gi=[A; 0 0 0 | 0 0 0l are uncorrelated with auto-correlation matrices given by
3) The (nonzero part of the) ith block _ ) )
column of I, which is denoted by 1, is R, =diag| diag(10, 1), - - -, diag(10, 1)
given by the first n; columns of G; 4
_Tr R,, =0.11¢.
li=G; [ . } .
0 The matrixR = R} + H*R_'H was computed to be as
4) To obtain  G;y1, we shift down the first shown at the bottom of the next page.
n; columns of G; by n; positions and keep Scenario 1-8, Equal to Identity Matrix: Using (17), (18),
the other columns unchanged: and (22), we get
- % i,
X X O Ropt =2
- Y % x ASNR=19.4 dB
Gi=|x x X X x x X By =1,
X X X X X X X B — [ 0.0386  0.0109 ]
X X X X X X X LT -0.0847  —0.0636 |
LX X X X X X X W — [-0.0159  0.0157 |
I 1 7| 00138 -0.0136 |
O w. = | 05267 —0.4906 |
shift U7 —0.4412  0.4098
—[x 0 0 x x x X - . .
x x 0 x x x x W, — | 02681 0.25347
¥ X x x x x x | 0.2833  0.3296
S X X X X X X Scenario 2-B, Is Lower Triangular: Performing a standard
_ { On, Cholesky factorization o, we get
Giy1 ]’
The top n; zero rows are ignored to get D =diag(14.1983, 1.1248, 19.9599, 15.8604
Gi+1. TOo get F,11, we delete the first n; 20.0606, 16.0861, 5.9624, 1.0771)
rows and columns of 7. Appr =2
5) Return to step 1 and repeat the ASNR = 19.92 dB
procedure. [ | Bl 0
Bo= 1048 1
V. NUMERICAL RESULTS B [ 0.0438  0.0109]
In this section, we start by presenting a numerical example 'T [ -0115  —0.0636 |
that illustrates the computation of the optimum FIR MIMO Wo = [ —0.0084  0.0157]
MMSE-DFE coefficients under the three scenarios of Sec- 0= 0.0073 —0.0136
tion Il. Then, we provide estimates for the computational r 0.2922 —0.4906:
complexity involved in computing these coefficients. Finally, W= —0.2453 0.4098
computer simulations results are presented and discussed. - N
w 0.3893 0.2534
2= = .
A. Numerical Example | 0-4459  0.3296

To illustrate the filter computation procedure of the finite- Therefore, using current decisions from User 1 (in addition
length MIMO MMSE-DFE, consider & x 2 MIMO system to past decisions) in detecting User 2 improved ASNR by 0.52
with the followingunit-energychannel impulse responses  dB. It is also interesting to note that the second-column entries

of B; andW; are identical under Scenarios 1 and 2.

1 08 . . . .
R = [7]2 =[0.7809 0.6247] Fig. 3 depicts the MIMO MMSE-DFE filter connections for
1+(08) this example. We have made the following definitions [see also
1 —-08
R = ﬁ =[0.7809 —0.6247]. Q)
pen = 1205 os045 gaar Wi = w7 Wl i,
B 1+(—0.5)2_[' 5 0] 1<i<n; 1<j<n,
1 03 b = [ G
EE ) [0.9579  0.2874]. LI o ]

1+ (0.3)2 1<, j<n.
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B. Computational Complexity

+(D

X
v Dec [——2 In this section, we give a rough order-of-magnitude estimate
of the computational complexity involved in computing the
. optimum filter coefficients of the MIMO MMSE-DFE using
¥ A Dee k=8 (20) and (22y. Several assumptions are made. First, we use
the number of instructions per coefficient update as a com-

plexity measure. Second, we only count complex multiplies
and assume that each complex multiply is equivalent to six
instructions (four real multiplies and two real adés)Third,
we assume white input and noise sequences. Finally, the
complexity incurred in estimating the MIMO channel matrix
is not included. We evaluate the computational complexity as
a function of the number of transmit and receive antennas,
number of equalizer taps, and the MIMO channel memory. The
results are shown in Figs. 4 and 5. The instruction counts given
Fig. 3. Filter connections for the MIMO MMSE-DFE computed in thein these figures can be readily translated into MIPS estimates
numerical example. through multiplication by the MIMO MMSE-DFE coefficient
update rate, which is a design parameter set according to the
Note that the four feedback filters of the MIMO MMSE-DFEdynamics of channel time variations. As an example, assuming
are strictly causal,exceptfor the filter %Y in the case of a a 2-ms update raté, then computing the coefficients of a
lower triangularB,, whereb®> Y is causal filter, i.e., its zeroth- T'/2-spaced MIMO MMSE-DFE withV; = 8 (i.e., a total of
order tap is not constrained to be zero. This extra tap resultslié feedforward taps), four feedback taps for a channel memory
the 0.52 dB ASNR improvement calculated above. of 4 and two antennas at each of the transmit and receive ends
Scenario 3:Bg Is Monic: For completeness, we also comrequires around 100 MIPS. This is well within the processing
puted the optimum MIMO MMSE-DFE coefficients and ASNRpower of state-of-the-art programmable DSP chips like the
under Scenario 3. Using (17), (18), (22), (26), (29), and (30JMS320C6X family of processors from Texas Instruments.
we get

Feedforward filter

Feedback filter

C. Computer Simulations

Bopt =2 The channel impulse responses used in our computer simu-
ASNR =20.49 dB lations are unit-energy four-tap FIR filters. The four taps are
By= | ! 0.464 randomly generated complex zero-mean uncorrelated Gaussian
10478 1 ) random variables. The input and noise processes are assumed to
B. — 0.0438 0.0288 be uncorrelated. The performance results are calculated by av-
1= | —0.115 —0.1028 | eraging over 100 channel realizations.
[_0.0084  0.0083] Fig. 6 shows the variqtion of the ASNR and GSNR perfor-.
Wo = 0.0073  —0.0072 mance measures, as defined by (10) and (11), respectively, with
- 02922 —0 2462: the decision delay parametarfor Ny = 3 andn; = n, = 2.
W, = ’ ’ It can be seen that both ASNR and GSNR are maximized by the
—0.2453 0.2051 . . -
L . same optimum delay and that a suboptimum delay setting could
_10.3893 0.3778
W, = I 0.4459 0.4634 | ° 9The computational complexity can be reduced by an order-of-magnitude by

using the fast algorithms of Section IV.
Under this scenario, the extra nonzero taBinresults in 0.57 l?ThiS is a PETSimiStig ?Ssungptijod” Sincet,Stat?'Of‘the'lafF Dtsp'?_ can typically
. . . . . . perform a complex multiply and add operation in a single instruction.
dB improvement in ASNR over Scenario 2. Itis also mterestlriogell pe Py ’ 9 .
hat the first-column entries & andW are identical A GSM mobile travelling at 55 mi/hr sees a channel coherence time of
to note that the first-colu entries oi; a i arelaentical 13 6 ms. Hence, the channel can be assumed time-invariant over a 2-ms time

under Scenarios 2 and 3. window.
r 14.1983 14.6654 0.8780 — 2.3080 0 0 0 0 17
14.6654 16.2726 0.5945 — 2.1258 0 0 0 0
0.8780 0.5945 20.1010 9.4776 0.8780  — 2.3080 0 0
R—| — 2.3080 —2.1258 9.4776 21.0010 0.5945  —2.1258 0 0
0 0 0.8780 0.5945 20.1010 9.4776 0.8780 —2.3080
0 0 — 2.3080 — 2.1258 9.4776 21.0010 0.5945 —2.1258
0 0 0 0 0.8780 0.5945 6.0027 —5.1877
0 0 0 0 — 23080 —2.1258 —5.1877 5.7283 |
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Fig. 6. Variation of ASNR and GSNR with decision delay for the MIMO
MMSE-DFE withv = 3, n; = n, = 2.
0
Q

100 random channeis, nu=3, Nf=3, ni=2, no=2

Fig. 4. Instructions count for computing MIMO MMSE-DFE coefficients
versusN, and Ny.
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Fig. 7. MIMO MMSE-DFE ASNR gain of Scenario 2 over Scenario 1 versus
input SNR of first user assuming second user at 10 dB SNR\ane- v = 3.

100 random channels, nu=3, nix2, no=2

18

Fig. 5. Instructions count for computing MIMO MMSE-DFE coefficients
versusn; andn,.

16

result in significant performance degradation. In Fig. 7, we plo_ - ; : : : : : :
the MIMO MMSE-DFE ASNR difference between Scenarios 131“' , : g g ‘ UL S
and 2. We assume, = n, = 2, Ny = 3, and setthe SNR of the & ' : 5 : :
second usettlie higher indexed uspat 10 dB while increasing &'
the SNR of the first usertife lower indexed usgfrom —10

dB to 30 dB. It can be seen from the figure that constraining
By to be lower triangular (as in Scenario 2) always results ir
better performance than the cd3g = I (asin Scenario 1). As s
expected, this performance improvement increases as the SI

of the lower indexed user (whose current decisions are also fe

MIMO MMSE-DFE |
MIMO MMSE-LE

Decision

10 B ; AAAAAAA .......... .......... e :

back and used in detecting the higher indexed user) is increast P : : : : : : : :
For the rest of the simulations presented in this section, we ,L_’_. ; i . ; . L ; :
0 2 4 6 8 10 12 14 16 18 20
» adopt ASNR as a decision-point SNR performance mee.- Number of Feedforward Taps
sure;

. L he decisi delav: Fig. 8. Variation of ASNR of the MIMO MMSE-DFE and MMSE-LE with
optimize the decision delay; . N, forv = 3 andn; = n, = 2. Input SNR of first and second users equal 20
« constrainB, to be a lower triangular matrix. dB and 10 dB, respectively.
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100 random channels, nu=3, Nf=3, ni=2, no=2 100 random channels, nu=3, Ni=3, ni=1
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8 [ o O e h. .......... -
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-10 1 : i L P i : 15 ; : : ; :
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input SNR (dB) -10 -5 [ 5 10 15 20

SNR of output channels 2 through no (dB)

Fig. 9. Variation of ASNR of the MIMO MMSE-DFE and MIMO ZF-DFE Fig. 10. Variation of ASNR of the SIMO MMSE-DFE with, and SNR of

versus input SNR of both users (assumed equal)Mpr= v = 3 andn; = Output channels 2 through, for Ny = » = 3.
n, = 2.
100 random channels, nu=3, NI=3, 2 users at SNR=20 dB
25 T T T T
. - . ——  MISO DFE (ni=2,nc=1 - : :
In Fig. 8, we compare the decision-point of the MIMO S IsllllgloOgJFlEE((nr:i=2,?1%==2))

MMSE-DFE and the MIMO MMSE-LE asV; is increased - - -
for n; = n, = 2. SNR of the first and second USErs is equal 2of iy dori i
to 20 dB and 10 dB, respectively. Therefore, according tc |, § s !
the SNR definition in (31), SNR' Y = SNRY'? = 20 dB, X IR
and SNR*Y = SNR*? = 10 dB. It is clear from Fig. 8 ~
that the MIMO MMSE-DFE offers significant performance
advantage over the MIMO MMSE-LE at the expensengf
additional feedback filters. The decision-point SNR of the
MIMO MMSE-DFE and the MIMO ZF-DFE are depicted in
Fig. 9 forn; = n, = 2 and an equal input SNR on all four
channels that is increased from 0 to 40 dB. As expected, u
of the MMSE criterion results in a higher decision-point SNR,
especially at low input SNR levels. Therefore, for the rest of the : : ; : : _ ; :
simulation results, we consider only the MIMO MMSE-DFE %6 =2 3 4 s e 70 8 % 100
structure. Channel Realization

In Fig. 10, we investigate the performance improvementy. 11. Variation of ASNR of the MIMO, MISO, and SISO MMSE-DFE in
attained by increasing the number of output channels apfgsence of two users at 20 dB SNR for different channel realization¥ aned
implementing a SIMO MMSE-DFE over the case of a SIS® ~ >
MMSE-DFE. The SNR of the first output channel is set at 20
dB, whereas the SNR'’s of the other output channels are Hlls clear from Fig. 11 that the MIMO structure is always su-
equal and increase simultaneously in value freftD dB to 20 perior in performance. In Fig. 12, we fix the SNR of the first
dB. It is intuitively appealing to see that the performance agiser at 20 dB while increasing the SNR of the second user
vantage of the SIMO MMSE-DFE over the SISO MMSE-DFErom —10 dB to 30 dB. In agreement with intuition, when
increases as the SNR of the outplivtersitychannels increases.the channel of the second (co-channel) user is very noisy,

Next, we examine the effectiveness of the MIMQGhe performance of the SISO MMSE-DFE approaches that of
MMSE-DFE structure in suppressing co-channel interfethe MISO MMSE-DFE withn; = 2 andn, = 1. However,
ence from other users. In Fig. 11, we assume two simultane@$sthe SNR of the co-channel user improves, using a MISO
users having an SNR of 20 dB. We compare three detectiWSE-DFE results in very significant performance improve-
strategies. ment over the SISO MMSE-DFE. Even better performance is

. achieved by processing two output channels for the two users,
1) SISO MMSE-DFE that treats co-channel interference iln \t/he M):I\EI)O MMISS-DV\IIZE ;rztiture !
from the other user as colored noise; '

2) MISO MMSE-DFE withn, = 2 andn,, = 1 that detects
both users using a single output channel;

3) MIMO MMSE-DFE withn; = n, = 2 that detects both  New closed-form expressions for the optimum finite-length
users by processing two output channels. MIMO MMSE-DFE filters and decision-point SNR were de-

-
o
T
-

Decislon-Point SNR (dB)
3
)

VI. CONCLUSIONS
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100 random channels, nu=3, Nf=3, Input SNR of user 1 =20 dB

28— : . : ; ; , APPENDIX B
: ' - T JISOSrE(isane=y PROOF THAT (17) AND (18) ARE EQUIVALENT TO (24) AND
------ SISO DFE (25), RESPECTIVELY
20F T T T T e e . O R [ 4

SEILT ;_ ) 5 . Starting with (24) and using the formula for the inverse of a
' e ek T block matrix given on [18, p. 656], we get

g -1 " del  Ty— _
g R, =C"R{z= — C"R}R1xQ™*
(Bp)EQ

§rof b b NP TOSS S TS N et Lo .

& N : : g whereQ'= Rs» — R{, R[] R». Starting from (24)

" —1 _ * 7y—
opt — —R12(R2L2) t=C R111R12

‘\ which is identical to (17). Similarly, starting from (25)
: : : : : : \“ -, 1 — 1 il
L L Ree,min = Ry, — Rip(Ry) ™' Ry

Input SNR of Second User (dB)

=C"(Ry; — Riy(Ry) " Ry3)C = C" R\ C

Fig. 12. Variation of ASNR of the MIMO, MISO, and SISO MMSE-DFE in\yhich is identical to (18).
the presence of two users versus input SNR of second user, assuming the first
userat20dB SNRanty; = v = 3

APPENDIX C

) ) . OpPTIMUM MIMO MMSE-DFE SETTINGS FORSCENARIO 2
rived under the three most common multiuser detection sce-

narios. Fast and parallelizable algorithms for computing theseStarting from (14) and (19), we have

filters were derived by exploiting the block-Toeplitz structure n;—1
of the MIMO channel matrix. The presented analytical frame- tracéR..) = Z ezB*L_*D_lL_lBek
work allows for quick MIMO MMSE-DFE performance evalu- k=0
ation as a function of the number of transmit antennas, receive ni—1
antennas, and filter taps. ef S B LT DL,
k=0

whereb, “ Bej, = [015(n,a4%) 1 b} ] Therefore

APPENDIX A ni—1 ni(Ny+v)—1 e s
OPTIMUM MIMO MMSE-DFE SETTINGS MINIMIZE TRACE tracR..) = » Z d; b L "eie; L™ by,
AND DETERMINANT OF R, k=0 -0
n;—1 ni(Ny4v)—1

_ —1|,* -1 ) 2
We show that the solution in (12) minimizes both the trace o kz_o ; d; " le] L by
and determinant oR... Definee; to be a unit vector with afth 1 -
element of 1 and zeros everywhere else. Using (9) def Z MSE,.
k=0

e/R..e; =¢B RJ‘Bei—i—e;fG*Rnyei o . . o
To minimize this sum, we need to chodseto minimize each

« D LT
X ze B1 R Be; term MSE.. It can be readily checked that M§E minimized
& S L by searching for the maximum diagonal elementsiof{call
* . * L .
- ; eiRece; > ; e;B R Be; it dn,a,,), Where(0 < A, < Ny + v — 1), and setting

by = Le,,A,,,, which results in MSE equal to its minimum
value ofd;_le ,- Since we are restricting all; users to have
the same decision delay, itis clear that tid@e ) is minimized
with equality if and only ifG = 0, which occurs when (12) is py settingb, = Lega,, )k (Where0 < k < n; — 1), which
satisfied. Similarly is equivalent to (20) and results in

— tracéR..) >tracd B’ R B)

~ % ~ n;—1 ni(Ny4v)—1
|R..| =|B'R*B] y - >
e s e trac€R.. min) = d, . .lerea, 1k
., + (B'R*B)" VG R,,G(B'R-B)~/?)| &Bec,min) ’;0 g;o €€yt
>|B R'B|. ol
- Z LN (34)
The last inequality follows from the positive semi-definiteness k=0

of (B'R*B)~/2G*R,,G(B R"B)~¢/2. which is identical to (21).
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APPENDIX D APPENDIX F
PROOF THAT SCENARIO 2 ACHIEVES LOWER MMSE THAN PrOOF THAT MIMO MMSE-LE Is INFERIOR TOMIMO
SCENARIO 1 MMSE-DFE
The achievable MMSE under both scenarios can be expresse8tarting with (32)
as
n; —1
MMSE = traceB;R3By). (35) !MacHecmnispoin)= ; i Ree nvtsi-Lck
n; —1
Under Scenario 1By = I,,,; therefore, the resulting MMSE, _ * LD}
which is denoted by MMSE is given by N kZ:O Cnilopth i Bopoth
r;—L
MMSE; = tracd R3). (36) > Z dr;lAm%
k=0

Under Scenario 2By = L3, whereLs is computed from the

=tracd R.. pMSE—
Cholesky factorization &R amsp-pre)

R;' = LsDsL,. 37) where the last line follows from (21).
Therefore, the achievable MMSE under Scenario 2, which is ACKNOWLEDGMENT

denoted by MMSE, is . ) )
The authors would like to thank the Associate Editor for

MMSE; = tracg L;RsLs) = tracdD; ). (38) Pointing out detection scenario 3.
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