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The Finite-Length Multi-Input Multi-Output
MMSE-DFE

Naofal Al-Dhahir, Senior Member, IEEE,and Ali H. Sayed, Senior Member, IEEE

Abstract—A new theoretical framework is introduced for ana-
lyzing the performance of a finite-length minimum-mean-square-
error decision feedback equalizer (MMSE-DFE) in a multi-input
multi-output (MIMO) environment. The framework includes
transmit and receive diversity systems as special cases and quan-
tifies the diversity performance improvement as a function of the
number of transmit/receive antennas and equalizer taps. Fast and
parallelizable algorithms for computing the finite-length MIMO
MMSE-DFE are presented for three common multi-user detection
scenarios.

Index Terms—Equalizers, FIR digital filters, mean square error
methods, MIMO systems.

I. INTRODUCTION

I N MULTI-USER communication over linear, dispersive,
and noisy channels, the received signal is composed of the

sum of several transmitted signals corrupted by intersymbol
interference (ISI), interuser interference (IUI), and noise.
Examples include TDMA digital cellular systems with multiple
transmit/receive antennas [4], [25], wideband asynchronous
CDMA systems [3], where IUI is also known as multiple
access interference (MAI), wideband transmission over dig-
ital subscriber lines (DSL) [1], where IUI takes the form of
near-end and far-end crosstalk between adjacent twisted pairs,
and high-density digital magnetic recording, where IUI is due
to interference from adjacent tracks [15].

This work is motivated by the desire to increase the capacity
of digital TDMA wireless networks by allowing multiple trans-
missions sharing the same time slot and frequency band and
separating them spatio-temporally at the receiver. On the up-
link, this corresponds to, for example, multiple synchronous
co-channel and co-cell users, where each is equipped with single
(or multiple) antennas transmitting in the same time slot and re-
ceived using an antenna array at the base station. On the down-
link, the base station antenna array provides transmitter spatial
diversity (and possibly additional coding gain using space-time
coding technology [25]), and spatio-temporal processing is per-
formed at the mobiles to detect the multiple-input signals.1
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1In this paper, an input signal corresponds to a signal transmitted from a single
antenna. Hence, multiple inputs could correspond to multiple distinct users,
where each is equipped with a single antenna or a single user (e.g., a base sta-
tion) equipped with multiple antennas or combinations thereof.

Multiuser detection techniques for MIMO systems have
been shown to offer significant performance advantages over
single-user detection techniques that treat IUI as additive colored
noise and lump its effects with background noise. Recently, it has
beenshownthat thepresenceof ISI in theseMIMOsystemscould
enhance overall system capacity significantly, provided that
effectivemultiuserdetection techniquesareemployed [12], [13]

The optimum maximum likelihood sequence estimation
(MLSE) receiver for MIMO channels was developed in [26];
however, its exponential complexity increase with the number
of users and channel memory makes its implementation costly
for multiuser detection on severe-ISI channels, especially as
the input signal constellation size increases to improve spectral
efficiency.2 Two alternative lower complexity transceiver
structures, which are widely used in practice for single-input
single-output (SISO) dispersive channels, namely, discrete
multitone (DMT) and minimum-mean-square-error decision
feedback equalizer (MMSE-DFE), have been recently proposed
for MIMO dispersive channels as well [2], [3], [12], [16], [17].

In this paper, we present a new analytical framework for an-
alyzing the MIMO MMSE-DFE that extends the work in [6] to
the MIMO case in a manner that is distinct from the work in
[2], [3], [16], and [17] in three key aspects. First, the MIMO
MMSE-DFE feedforward and feedback matrix filters are re-
stricted to be finite impulse response (FIR) for practical im-
plementation,3 and the decision delay is optimized, thus estab-
lishing finite-length analogs of the results in [2], [3], [16], and
[17]. Second, the assumption of an equal number of channel in-
puts and outputs made in [2] and [3] is relaxed.4 Third, the spe-
cial structure of the problem is exploited to derive fast and paral-
lelizable MIMO MMSE-DFE computation algorithms suitable
for real-time implementation. As shown in [3], computing the
MIMO MMSE-DFE for the infinite-length case requires com-
putationally intense spectral factorizations of matrix rational
spectra.

The organization of this paper is as follows. We start in
Section II by developing the input-output model for the MIMO
MMSE-DFE and deriving closed-form expressions for its
optimal filter settings. Several special cases of the MIMO
MMSE-DFE structure are discussed in Section III. In Section

2For the third-generation wireless TDMA proposal [11], 8-PSK modulation
is used. A typical urban EDGE channel (including the transmit pulse shape) has
a memory of at least 3. Even with two transmit antennas, the number of MLSE
states required is8 = 262144, which is clearly not practical.

3FIR filters are preferred over IIR filters due to their inherent stability, suit-
ability for adaptive implementations, better numerical properties under finite-
precision effetcs, and attractiveness for DSP and VLSI implementations

4In some scenarios, this asymmetry is dictated by cost considerations. For
example, in digital cellular networks, it is much more economical to deploy
more antennas at the base station than at the mobile.
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IV, we derive fast parallelizable algorithms for computing
these optimal filter settings. A detailed complexity analysis and
simulation results are presented in Section V, and the paper is
concluded in Section VI.

Notation

The notation adopted in this paper conforms to the following
convention

• Scalars are denoted in lower case:.
• Unless otherwise stated, vectors are column vectors and

are denoted in lower case bold:.
• denotes theth unit vector (it has a one in theth position

and zeros everywhere else).
• In situations where the components of the vectors are

to be emphasized, the first and last components, sepa-
rated by a colon, are given as a subscript to the vector:

.
• Matrices are upper case bold:.
• denotes the identity matrix of size.
• denotes an all-zeros matrix with rows and

columns.
• denotes the determinant of matrix.
• trace denotes the trace of matrix.
• denotes the expected value operator.
• A diagonal matrix with elements

on the main diagonal will be denoted by
diag .

• The symbol will be used to denote the complex-con-
jugate transpose of a matrix or a vector and the complex
conjugate of a scalar.

• The symbol will be used to denote the transpose of a
matrix or a vector.

• When a submatrix of a given matrix needs to be speci-
fied, indices of the first and last rows (and columns) of
the submatrix, separated by colons, are used as the first
(and second) component of an argument to the matrix:

.
For convenience, we summarize in Table I the key matrices used
in this paper and their sizes.

II. FIR MIMO MMSE-DFE

We start in this section by describing the input–output model
assumed throughout the paper. Then, we derive closed-form
expressions for the optimum filter settings of the finite-length
MIMO MMSE-DFE under three multiuser detection scenarios.
In the first scenario, only previous decisions of other users are
available at the input of the feedback filter for any user. In the
second scenario, previous decisions as well ascurrent decisions
of lower indexed users are available. This scenario assumes that
decisions are made sequentially, starting with lower indexed
users. In the third scenario, previous and current decisions of
all others users are assumed available (e.g., from a previous de-
tection stage).

A. Input–Output Model

We consider the general case of a linear, dispersive, and noisy
digital communication system with inputs and outputs.

TABLE I
SUMMARY OF KEY MATRICES USED IN THEPAPER AND THEIRSIZES

Fig. 1. Block diagram of the multi-input multi-output channel model.

Fig. 2. Block diagram of the multi-input multi-output decision feedback
equalizer.

We use the standard complex-valued baseband equivalent signal
model. Assuming an oversampling factor of, the samples at the
th channel output ( ) have the standard form (see

Figs. 1 and 2)

(1)

where
th channel output vector;

channel impulse response between theth input and
the th output, whose memory is denoted by ;
noise vector at theth output.

All of these three quantities are column vectors corre-
sponding to the time samples per symbol in the assumed
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temporally oversampled channel model. Furthermore, the
overall channel impulse response between theth input
and the th output is represented by the vector

. By grouping the received
samples from all channel outputs at symbol timeinto an

column vector , we can relate to the corresponding
column vector of input samples as follows:

(2)

where is the th MIMO channel matrix coeffi-
cient, and is a size input vector at time . The
parameter is the maximum length of all of the channel
impulse responses, i.e., .

Over a block of symbol periods, (2) can be expressed in
matrix notation as follows:

...
...

. . .
. . .

...

...
...

(3)

or more compactly

(4)

By defining the input auto-corre-
lation matrix

and the noise auto-correlation matrix

the input–output cross-correlation and the output auto-correla-
tion matrices are given by

(5)

(6)

B. Performance Analysis

The FIR MIMO MMSE-DFE consists of a feedforward filter
matrix

with matrix taps , each of size , and a feedback
filter matrix equal to

Furthermore, we define the matrix

with matrix taps , each of size . Therefore,
and have the forms

...
...

...
... (7)

where each entry in is an vector corresponding to the
output samples per symbol.
If we define the size matrix

, where is the decision
delay that satisfies the condition ,
then it can be shown that the MIMO MMSE-DFE error vector
at time is given by (assuming correct previous decisions)

(8)

Therefore, the error auto-correlation matrix of the
MIMO MMSE-DFE is equal to

(9)

where we introduced the matrices . When dealing with
multidimensional error random processes, either the trace or the
determinant of can be used as a mean square error measure.
The trace measure is equal to thearithmetic averageof the eigen-
valuesof ,whereas the determinantmeasure is related to their
geometric average. For the MIMO MMSE-DFE, it turns out that
the same feedforward and feedback coefficients minimize both
measures; hence, either one can be adopted. Corresponding to
these two measures, we define the following two decision-point
SNR performance measures for the MIMO MMSE-DFE

• Arithmetic SNR defined by

ASNR
trace

trace
(10)

• Geometric SNR defined by

GSNR (11)

In this paper, we adopt ASNR as a performance measure for
two main reasons. First, it is more widely used in the literature
back to the early work on multidimensional linear estimation.
Second, it simplifies the proofs of some key results given in
Appendices C–F.
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C. Optimum MIMO MMSE-DFE Coefficients

In this subsection, we derive closed-form expressions for
computing the optimal filter settings of the MIMO MMSE-DFE
from estimates of the MIMO channel matrix and the noise
auto-correlation matrix . These estimates can be obtained
using training sequences as described in [4] or estimated
blindly using second-order statistics of the received signals as
described in [28].

Applying the orthogonality principle, which states that
E , it can be shown that the optimum
matrix feedforward and feedback filters are related by

(12)

We show in Appendix A that this solution minimizes both the
trace and the determinant of .

Using the optimum feedforward matrix filter settings of (12)
in (9) and applying the matrix inversion lemma,5 we can write

(13)

(14)

where we defined the matrix . We consider three detection
scenarios.

Scenario 1: Only previous decisions of other users are avail-
able for any user at the present time (and, hence, their interfering
effect can be suppressed), i.e., . To determine the op-
timum matrix feedback filter coefficients, we need to solve the
following constrained optimization problem:

trace trace

subject to

where

and

It can be shown that the solution is given by (see, e.g., [20])

(15)

(16)

If we define the partitioning , where is of size

, then

(17)

(18)

5(AAA+BBBCCCDDD) = AAA �AAA BBB(DDDAAA BBB +CCC ) DDDAAA .

where the decision delay parameteris chosen to minimize the
trace of .

A second approach for computing and utilizes
theblockCholesky factorization

(19)

where is of size , and has
identity block entries on the diagonal. In addition,is formed
from blocks. Using the result in (15) and (16), we get

(20)

diag (21)

where, as mentioned before, the decision delay
is chosen to minimize the trace of

. Using (20) along with (5) and (6), the feedforward
matrix taps of (12) can be expressed as follows:

(22)

... (23)

In Section III, we present fast algorithms for performing the
block Cholesky factorization in (19).

Yet a third approach for computing and is by
partitioning as follows:

where , , and
. Therefore

(24)

(25)

We prove in Appendix B that (17) and (18) are equivalent to (24)
and (25), respectively.
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Scenario 2: Assume that users are ordered so that lower in-
dexed users are detected first, more specifically, thatcurrent de-
cisions from lower indexed users are used by higher indexed
users in making their decisions, i.e., is now a monic6 lower
triangular matrix. The general results in (17) and (18) can still
be applied in this case by setting , where

is an monic lower triangular matrix whose entries
are optimized to minimize trace . Toward this end, de-
fine the partitioning7

(26)

where is , and is . Therefore, (18)
simplifies to

(27)

It can be readily checked that the optimum monic lower trian-
gular that minimizes trace is given by the monic
lower triangular Cholesky factor of , i.e.,

(28)

We show in Appendix D that Scenario 2 achieves lower mean-
square-error (which is defined as the trace of ) than Sce-
nario 1.

A second approach for computing the optimum FIR MIMO
MMSE-DFE filter settings under Scenario 2 is by performing a
standard(i.e., not block) Cholesky factorization of the matrix

in the form . Then, the feedback
filter matrix is given by the adjacentcolumns of that cor-
respond to a diagonal matrix with the smallest trace. Therefore,
(20) and (23) are used to compute MIMO MMSE-DFE filter set-
tings with the understanding that is now a lower triangular
matrix and not a block lower triangular matrix. This result is
shown in Appendix C.

The equivalence of the two approaches can be easily shown
using thenesting propertyof Cholesky factorization. This prop-
erty states that if , then the lower triangular and
diagonal Cholesky factors of the submatrix of formed
from itsfirst rows and columns are equal to thefirst rows and
columns of and , respectively. Conversely, if ,
then the upper-triangular and diagonal Cholesky factors of the

submatrix of formed from itslast rows and columns
are equal to thelast rows and columns of and , respec-
tively.

Scenario 3: When multistage detectors [27] are employed,
current decisions from all other users, which are obtained from
a previous detection stage,8 are available for the detection of the
user of interest. Therefore, suppressing their interfering effects
would improve the performance of the MIMO MMSE-DFE.
This detection scenario has the same mathematical formulation

6A monic matrix has diagonal elements equal to one.
7Note thatRRR is a Hermitian matrix.
8In asynchronous CDMA, the previous detection stage could be, for example,

a bank of single-user matched filters or a decorrelating stage [27].

as Scenarios 1 and 2,exceptthat is now only constrained to
be monic, i.e., for all . The general
results in (17) and (18) still apply with ,
where is optimized to minimize trace . In sum-
mary, under Scenario 3, we solve the optimization problem

trace

subject to

for all

where was defined in (26). Using Lagranage multiplier tech-
nique, it is straightforward to show that the optimum monic
and the corresponding MMSE are given by

(29)

MMSE trace (30)

We show in Appendix E that Scenario 3 achieves lower MMSE
than Scenario 2.

Scenario 3 was presented for completeness of the analysis;
however, our main focus in this paper will be on Scenarios 1 and
2, and multistage detection will not be discussed any further.

Remark: In concluding this section, we would like to empha-
size the importance of optimizing the decision delay parameter

in all three scenarios, especially for short feedforward filters.
Using a suboptimum can result in significant performance
degradation, as it will be demonstrated in the simulation results
of Section V-C. This is also the case for the SISO MMSE-DFE,
as shown in [7].

For the MIMO case, allowing the different users to have dif-
ferent decision delays could result in improved decision-point
SNR for the MIMO MMSE-DFE. However, it might violate the
assumption of available previous decisions from all other users
in Scenario 1 and the additional assumption of availability of
current decisions from lower indexed users made in Scenario
2. Other drawbacks of allowing variable user decision delays
include the increased computational complexity in optimizing
these variable delays and computing the optimum MIMO
MMSE-DFE settings and the fact that the resulting feedback
filters will be of different lengths in general. For all of the
above reasons, we do not explore this variable-delay detection
strategy in this paper.

III. SOME SPECIAL CASES

In this section, we derive several special and limiting cases of
the general results of Section II.

A. Uncorrelated Input and Noise

When the input and noise processes are uncorrelated between
different time samples and from one input–output channel to the
other, the matrices and become block diagonal and
take the simple form

diag diag

diag
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diag diag

diag

The SNR at the output of the channel is defined by

SNR

(31)

B. MIMO Zero-Forcing (ZF) DFE

The optimal settings of the FIR MIMO ZF-DFE follow
as a special case of the MMSE-DFE by letting the noise
variances go to zero. The optimal matrix feedback filter
is computed from the lower triangular Cholesky factor of
the matrix . The matrix feedforward filter is given by

. Note that apseudo inverse
is used to compute when .

C. FIR MIMO MMSE-LE

The FIR MIMO MMSE-LE follows as a special case by set-
ting and all other to zero. The error auto-correla-
tion matrix is given by

(32)

The delay parameter is chosen to minimize the trace of
. The optimum FIR MIMO MMSE-LE settings

are given by

(33)

In Appendix F, we prove that the MIMO MMSE-LE results in a
higher MMSE than the MIMO MMSE-DFE. This result is well
known in the SISO case (see, e.g., [23]).

D. FIR SIMO MMSE-DFE

By setting , we get the FIR version of the single-input
multi-ouput (SIMO) MMSE-DFE studied in [8],assuming infi-
nite-length filters. One scenario where the SIMO MMSE-DFE
can be implemented is when multiple receive antennas are used
to achieve a diversity gain when detecting a single input. In
this case, is a column vector with elements, and

.

E. FIR MISO MMSE-DFE

The multi-input single-output (MISO) MMSE-DFE is ob-
tained by setting . Each feedforward tap in this
case is of size . This is an effective receiver structure in at
least two important transmission scenarios. In the first scenario,
the multiple inputs correspond to distinct users, and hence, the
MISO MMSE-DFE suppresses co-channel interference by de-
tecting the desired and the interfering user signals as received by
the single output channel. In the second scenario, the multiple
inputs correspond to transmit diversity paths for the same user
(e.g., multiple transmit antennas at the base station and a single
receive antenna at the mobile).

F. FIR SISO Fractionally Spaced MMSE-DFE

In this case, , and each is an column
vector. This is the standard fractionally spaced finite-length
MMSE-DFE studied in detail in [6]. In the presence of multiple
inputs, the SISO MMSE-DFE treats other input signals as
colored noise when detecting the desired input signal [5]. As
will be demonstrated by the simulations of Section V, this
results in significant performance degradation from the MIMO
and MISO MMSE-DFE structures, which detect allinputs.

IV. FAST COMPUTATION ALGORITHMS

We see from (20) and (23) for the optimal weight matrices
and that the fundamental step in evaluating these

optimal coefficients is the computation of the Cholesky factor
of in (19) or, equivalently, the factor in

where denotes a square-root factor for (which is de-
fined as lower triangular with positive-diagonal entries on the
diagonal). Actually, two Cholesky factorizations are required,
depending on whether is taken to be the identity matrix
or a lower triangular matrix. In the former case,is required to
be ablock lower triangular Cholesky factor with block
matrices along its diagonal. In the latter case,is required to
be lower triangular with scalar entries along its diagonal, viz.

or

The inverse of need not be computed explicitly in order to
evaluate in (23). Instead, one could solve, via back-sub-
stitution, the linear system of equations

determine , and then set

...
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Hence, we will focus on the computation of. Actu-
ally, we study the case of uncorrelated input and noise as
described in Section III-A. Now, since has dimensions

, these computations would generally
require operations by using the classical
Gaussian elimination technique.

However, we will show in the sequel that by exploiting the
block-Toeplitz structure of the matrix in (3), in addition to
the block-diagonal structure of the matrices , and
by using a fast so-called generalized Schur algorithm (see, e.g.,
[19], [21], and [24]), this step can be performed efficiently in

operations.
Introduce the block-diagonal matrices with input and noise

variances

...

...

where is , and is . Then,
can be expressed in terms of as

...

...

where consists of block-diagonal blocks, whereas
has block-diagonal entries. Moreover, is given by

...
...

...
. . .

where each is , and where has block rows and
block columns. We will denote the nonzero entries of

the top block row of by

which is .

A. Exploiting Matrix Structure

A powerful and convenient framework for exploiting the
structure of the matrix is displacement structure theory [19],
[21], [24]. In the sequel, we will first show that because of the
block-Toeplitz structure of the matrices , the

matrix itself exhibits displacement structure. Once this fact
is established, we will then show how it can be exploited for
the purpose of fast Cholesky factorization.

To begin with, define the following block shift matrices

...
...

.. .
. . .

where has block columns and rows, whereas has
block columns and rows. Then, it is easy to verify that

the matrices satisfy

Now, observe that the negative of the matrixin (19) can
be obtained as the Schur complement of the block-Hermitian
matrix

with respect to its leading block entry. Moreover, satisfies

If we further introduce thenormalizedquantities (i.e., we nor-
malize the rows of each )

then it is easy to verify that

where is a signature matrix given by
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and is a so-called generator matrix that is given by

...
...

...

...
...

...

...
...

...

where the number of block zero rows between and is
, whereas the number of block zeros in the last column

underneath is .
Matrices that satisfy equations of the above form are

called structured matrices, or matrices with displacement
structure (see, e.g., [19] and [24]). Two notable properties of
such matrices are the following:

1) The structure is preserved under Schur complementation.
Therefore, since can be obtained as a Schur comple-
ment of , it will follow that itself has a similar dis-
placementstructure(forsomeothermatrices ofap-
propriatedimensionsandfor thesamesignaturematrix).

2) There exists a fast (efficient) algorithm for the compu-
tation of the triangular factors of such structured ma-
trices , which is known as the generalized Schur algo-
rithm. The algorithm also provides the triangular factors
of Schur complements of the matrix. Thus, by computing
the triangular factors of , we will be able to obtain the
desired triangular factors of directly from those of .
In so doing, we would have derived an efficient proce-
dure for factoring and, therefore, for determining the
optimal coefficients .

B. Fast Standard Factorization Algorithm

We first show how to obtain thestandardCholesky factor-
ization of , viz., , where is lower triangular with
scalarentries along its diagonal.

First, note that the leading block matrix of is positive-
definite, whereas the Schur complement of with respect to
this entry is negative definite (and equal to ). Hence,
admits a triangular factorization of the following form:

where is lower triangular with positive diagonal entries, and
is a signature matrix. We will soon explain how to determine

efficiently by using the matrices above. Assume
for now that this has been done, and partitionas follows:

where has the same dimensions as. Then, it can be verified
that so that the desired lower triangular factor
is given by .

The so-called generalized Schur algorithm (see, e.g., [19],
[21], and [24]) is an efficient procedure for the computation of
the triangular factor of matrices that satisfy displacement
equations of the form

It starts with and iterates for a number of steps that
is equal to the size of . At each iteration, it produces a column
of .

There are various ways to describe the algorithm. Here, we
state it in a so-called proper form, which is suitable for parallel
implementations. Let us denote, for convenience, the entries of

by

That is, , and . In addition, let .

Algorithm 1 (Fast Algorithm)
Let , , and repeat for
1) At step , we have the matrices .

Let denote the top row of .
2) Starting from the top entry of the in-

ertia matrix , we associate with each
step of the algorithm an inertia entry.
We will say that the step is positive
if the corresponding entry is in ,
and the step is negative if the corre-
sponding entry is in .

3) Implement a sequence of Givens
rotations (or a single Householder
transformation [14]) that annihilates
the entries 2 through of , say

4) Implement a sequence of Givens
rotations (or a single Householder
transformation) that annihilates the
last entries of the transformed
vector, say

5a) If the step is positive , do the fol-
lowing. [Otherwise move to step 5b).]
Use one final hyperbolic rotation to an-
nihilate the entry in position ,

The sequence of rotations in steps 3),
4), and 5a) should also be applied to
all the other rows of . This leads to
a new matrix, say , where
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denotes the combined effect of all ro-
tations, and the top row of will thus
have the special form

top row of

5b) If the step is negative , then instead
of step 5a), we use one final hyperbolic
rotation to annihilate the entry in po-
sition 1

In this case, the sequence of rota-
tions of steps 3), 4), and 5b) should
also be applied to all the other rows
of . This leads to a new matrix, say,

, where denotes the combined
effect of all rotations, and the top row
of will thus have the special form

top row of

6) The (nonzero part of the) th column of
, which is denoted by , is given by

the first column of (if the step is
positive) or by the th column of
(if the step is negative)

(for a positive step)

(for a negative step)

7) To obtain , we multiply by ,
and use the result to replace the column
corresponding to in . All other
columns of remain unchanged. This
results in a new matrix whose top row is
zero. We then delete the top row to get

.
For example, for a positive step, this

construction corresponds to

whereas for a negative step, we perform

8) To get , we delete the first row
and column of .

9. Return to step 1), and repeat the
procedure.

At the end of the algorithm, we have available all the columns
of from which we can obtain the desired submatrix matrix
(or ).

We may remark that the above algorithm is parallelizable.
This is because the rotations can be applied to all rows of

simultaneously. Moreover, the numerical stability of this factor-
ization procedure in finite-precision implementations has been
established in [10] for the generalized form of the algorithm,
as well as in [9] and [22] for more specialized forms. One par-
ticular conclusion from these works is that numerical stability
requires that the hyperbolic rotations of steps 5a) and 5b) be im-
plemented with care. There are several ways to do so, e.g., by
using the so-called OD or H procedures of [10] or by using a
mixed downdating form [9], [22].

C. Fast Block Factorization Algorithm

We now show how to obtain a block Cholesky factorwith
block entries along its diagonal. For this purpose, note

again that the first steps of the above algorithm are pos-
itive steps, at the end of which we obtain a generator matrix

for . More explicitly, we obtain

We will assume that these initial steps have been per-
formed and that we have available a generator matrix .

With at hand, we can now obtain the de-
sired block factor as follows.

Algorithm 2 (Block Fast Algorithm)
Let , , and repeat for

1) At step , we have the matrices .
Let denote the top rows of .

2) Implement a sequence of -unitary ro-
tations that reduces to the form

where is now lower triangular. This
can be accomplished in a number of ways.
For example, we can first transform the
top row of to the form

and apply these transformations to all
other rows of . Then, we transform the
second row of the resulting to the
form

and apply the transformations again to
all other rows of . We continue in
this fashion until the top rows of
have been transformed to the form

where is lower triangular. After all
the transformations are applied to all
rows of , we obtain a new matrix, say,

, where denotes the combined
effect of all rotations, and the top
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rows of will thus have the special
form

top rows of

3) The (nonzero part of the) th block
column of , which is denoted by , is
given by the first columns of

4) To obtain , we shift down the first
columns of by positions and keep

the other columns unchanged:

The top zero rows are ignored to get
. To get , we delete the first

rows and columns of .
5) Return to step 1 and repeat the

procedure.

V. NUMERICAL RESULTS

In this section, we start by presenting a numerical example
that illustrates the computation of the optimum FIR MIMO
MMSE-DFE coefficients under the three scenarios of Sec-
tion II. Then, we provide estimates for the computational
complexity involved in computing these coefficients. Finally,
computer simulations results are presented and discussed.

A. Numerical Example

To illustrate the filter computation procedure of the finite-
length MIMO MMSE-DFE, consider a MIMO system
with the followingunit-energychannel impulse responses

Therefore, , . Furthermore, we assume
that , , and that the input and noise processes
are uncorrelated with auto-correlation matrices given by

diag diag diag

The matrix was computed to be as
shown at the bottom of the next page.

Scenario 1— Equal to Identity Matrix: Using (17), (18),
and (22), we get

ASNR dB

Scenario 2— Is Lower Triangular: Performing a standard
Cholesky factorization on , we get

diag

ASNR dB

Therefore, using current decisions from User 1 (in addition
to past decisions) in detecting User 2 improved ASNR by 0.52
dB. It is also interesting to note that the second-column entries
of and are identical under Scenarios 1 and 2.

Fig. 3 depicts the MIMO MMSE-DFE filter connections for
this example. We have made the following definitions [see also
(7)]
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Fig. 3. Filter connections for the MIMO MMSE-DFE computed in the
numerical example.

Note that the four feedback filters of the MIMO MMSE-DFE
arestrictly causal,exceptfor the filter in the case of a
lower triangular , where is causal filter, i.e., its zeroth-
order tap is not constrained to be zero. This extra tap results in
the 0.52 dB ASNR improvement calculated above.

Scenario 3: Is Monic: For completeness, we also com-
puted the optimum MIMO MMSE-DFE coefficients and ASNR
under Scenario 3. Using (17), (18), (22), (26), (29), and (30),
we get

ASNR dB

Under this scenario, the extra nonzero tap inresults in 0.57
dB improvement in ASNR over Scenario 2. It is also interesting
to note that the first-column entries of and are identical
under Scenarios 2 and 3.

B. Computational Complexity

In this section, we give a rough order-of-magnitude estimate
of the computational complexity involved in computing the
optimum filter coefficients of the MIMO MMSE-DFE using
(20) and (22).9 Several assumptions are made. First, we use
the number of instructions per coefficient update as a com-
plexity measure. Second, we only count complex multiplies
and assume that each complex multiply is equivalent to six
instructions (four real multiplies and two real adds).10 Third,
we assume white input and noise sequences. Finally, the
complexity incurred in estimating the MIMO channel matrix
is not included. We evaluate the computational complexity as
a function of the number of transmit and receive antennas,
number of equalizer taps, and the MIMO channel memory. The
results are shown in Figs. 4 and 5. The instruction counts given
in these figures can be readily translated into MIPS estimates
through multiplication by the MIMO MMSE-DFE coefficient
update rate, which is a design parameter set according to the
dynamics of channel time variations. As an example, assuming
a 2-ms update rate,11 then computing the coefficients of a

-spaced MIMO MMSE-DFE with (i.e., a total of
16 feedforward taps), four feedback taps for a channel memory
of 4 and two antennas at each of the transmit and receive ends
requires around 100 MIPS. This is well within the processing
power of state-of-the-art programmable DSP chips like the
TMS320C6X family of processors from Texas Instruments.

C. Computer Simulations

The channel impulse responses used in our computer simu-
lations are unit-energy four-tap FIR filters. The four taps are
randomly generated complex zero-mean uncorrelated Gaussian
random variables. The input and noise processes are assumed to
be uncorrelated. The performance results are calculated by av-
eraging over 100 channel realizations.

Fig. 6 shows the variation of the ASNR and GSNR perfor-
mance measures, as defined by (10) and (11), respectively, with
the decision delay parameterfor and .
It can be seen that both ASNR and GSNR are maximized by the
same optimum delay and that a suboptimum delay setting could

9The computational complexity can be reduced by an order-of-magnitude by
using the fast algorithms of Section IV.

10This is a pessimistic assumption since state-of-the-art DSP’s can typically
perform a complex multiply and add operation in a single instruction.

11A GSM mobile travelling at 55 mi/hr sees a channel coherence time of
�13:6 ms. Hence, the channel can be assumed time-invariant over a 2-ms time
window.
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Fig. 4. Instructions count for computing MIMO MMSE-DFE coefficients
versusN andN .

Fig. 5. Instructions count for computing MIMO MMSE-DFE coefficients
versusn andn .

result in significant performance degradation. In Fig. 7, we plot
the MIMO MMSE-DFE ASNR difference between Scenarios 1
and 2. We assume , , and set the SNR of the
second user (the higher indexed user) at 10 dB while increasing
the SNR of the first user (the lower indexed user) from 10
dB to 30 dB. It can be seen from the figure that constraining

to be lower triangular (as in Scenario 2) always results in
better performance than the case (as in Scenario 1). As
expected, this performance improvement increases as the SNR
of the lower indexed user (whose current decisions are also fed
back and used in detecting the higher indexed user) is increased.

For the rest of the simulations presented in this section, we

• adopt ASNR as a decision-point SNR performance mea-
sure;

• optimize the decision delay;
• constrain to be a lower triangular matrix.

Fig. 6. Variation of ASNR and GSNR with decision delay for the MIMO
MMSE-DFE with� = 3, n = n = 2.

Fig. 7. MIMO MMSE-DFE ASNR gain of Scenario 2 over Scenario 1 versus
input SNR of first user assuming second user at 10 dB SNR andN = � = 3.

Fig. 8. Variation of ASNR of the MIMO MMSE-DFE and MMSE-LE with
N for � = 3 andn = n = 2. Input SNR of first and second users equal 20
dB and 10 dB, respectively.
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Fig. 9. Variation of ASNR of the MIMO MMSE-DFE and MIMO ZF-DFE
versus input SNR of both users (assumed equal) forN = � = 3 andn =

n = 2.

In Fig. 8, we compare the decision-point of the MIMO
MMSE-DFE and the MIMO MMSE-LE as is increased
for . SNR of the first and second users is equal
to 20 dB and 10 dB, respectively. Therefore, according to
the SNR definition in (31), SNR SNR dB,
and SNR SNR dB. It is clear from Fig. 8
that the MIMO MMSE-DFE offers significant performance
advantage over the MIMO MMSE-LE at the expense of
additional feedback filters. The decision-point SNR of the
MIMO MMSE-DFE and the MIMO ZF-DFE are depicted in
Fig. 9 for and an equal input SNR on all four
channels that is increased from 0 to 40 dB. As expected, use
of the MMSE criterion results in a higher decision-point SNR,
especially at low input SNR levels. Therefore, for the rest of the
simulation results, we consider only the MIMO MMSE-DFE
structure.

In Fig. 10, we investigate the performance improvement
attained by increasing the number of output channels and
implementing a SIMO MMSE-DFE over the case of a SISO
MMSE-DFE. The SNR of the first output channel is set at 20
dB, whereas the SNR’s of the other output channels are all
equal and increase simultaneously in value from10 dB to 20
dB. It is intuitively appealing to see that the performance ad-
vantage of the SIMO MMSE-DFE over the SISO MMSE-DFE
increases as the SNR of the outputdiversitychannels increases.

Next, we examine the effectiveness of the MIMO
MMSE-DFE structure in suppressing co-channel interfer-
ence from other users. In Fig. 11, we assume two simultaneous
users having an SNR of 20 dB. We compare three detection
strategies.

1) SISO MMSE-DFE that treats co-channel interference
from the other user as colored noise;

2) MISO MMSE-DFE with and that detects
both users using a single output channel;

3) MIMO MMSE-DFE with that detects both
users by processing two output channels.

Fig. 10. Variation of ASNR of the SIMO MMSE-DFE withn and SNR of
output channels 2 throughn for N = � = 3.

Fig. 11. Variation of ASNR of the MIMO, MISO, and SISO MMSE-DFE in
presence of two users at 20 dB SNR for different channel realizations andN =

� = 3.

It is clear from Fig. 11 that the MIMO structure is always su-
perior in performance. In Fig. 12, we fix the SNR of the first
user at 20 dB while increasing the SNR of the second user
from 10 dB to 30 dB. In agreement with intuition, when
the channel of the second (co-channel) user is very noisy,
the performance of the SISO MMSE-DFE approaches that of
the MISO MMSE-DFE with and . However,
as the SNR of the co-channel user improves, using a MISO
MMSE-DFE results in very significant performance improve-
ment over the SISO MMSE-DFE. Even better performance is
achieved by processing two output channels for the two users,
as in the MIMO MMSE-DFE structure.

VI. CONCLUSIONS

New closed-form expressions for the optimum finite-length
MIMO MMSE-DFE filters and decision-point SNR were de-
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Fig. 12. Variation of ASNR of the MIMO, MISO, and SISO MMSE-DFE in
the presence of two users versus input SNR of second user, assuming the first
user at 20 dB SNR andN = � = 3

rived under the three most common multiuser detection sce-
narios. Fast and parallelizable algorithms for computing these
filters were derived by exploiting the block-Toeplitz structure
of the MIMO channel matrix. The presented analytical frame-
work allows for quick MIMO MMSE-DFE performance evalu-
ation as a function of the number of transmit antennas, receive
antennas, and filter taps.

APPENDIX A
OPTIMUM MIMO MMSE-DFE SETTINGS MINIMIZE TRACE

AND DETERMINANT OF

We show that the solution in (12) minimizes both the trace
and determinant of . Define to be a unit vector with anth
element of 1 and zeros everywhere else. Using (9)

trace trace

with equality if and only if , which occurs when (12) is
satisfied. Similarly

The last inequality follows from the positive semi-definiteness
of .

APPENDIX B
PROOF THAT (17) AND (18) ARE EQUIVALENT TO (24) AND

(25), RESPECTIVELY

Starting with (24) and using the formula for the inverse of a
block matrix given on [18, p. 656], we get

where . Starting from (24)

which is identical to (17). Similarly, starting from (25)

which is identical to (18).

APPENDIX C
OPTIMUM MIMO MMSE-DFE SETTINGS FORSCENARIO 2

Starting from (14) and (19), we have

trace

where . Therefore

trace

MSE

To minimize this sum, we need to chooseto minimize each
term MSE . It can be readily checked that MSEis minimized
by searching for the maximum diagonal elements of(call
it ), where , and setting

, which results in MSE equal to its minimum
value of . Since we are restricting all users to have
the same decision delay, it is clear that trace is minimized
by setting where , which
is equivalent to (20) and results in

trace

(34)

which is identical to (21).
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APPENDIX D
PROOF THAT SCENARIO 2 ACHIEVES LOWER MMSE THAN

SCENARIO 1

The achievable MMSE under both scenarios can be expressed
as

MMSE trace (35)

Under Scenario 1, ; therefore, the resulting MMSE,
which is denoted by MMSE, is given by

MMSE trace (36)

Under Scenario 2, , where is computed from the
Cholesky factorization

(37)

Therefore, the achievable MMSE under Scenario 2, which is
denoted by MMSE, is

MMSE trace trace (38)

From (36) and (37), we get

MMSE trace

since is a lower triangular monic matrix

trace MMSE

APPENDIX E
PROOF THAT SCENARIO 3 ACHIEVES LOWER MMSE THAN

SCENARIO 2

Under Scenario 3, the achievable MMSE is given by [cf. (30)]

MMSE

Starting from (37), we have

MMSE trace MMSE

APPENDIX F
PROOF THAT MIMO MMSE-LE IS INFERIOR TOMIMO

MMSE-DFE

Starting with (32)

trace

trace

where the last line follows from (21).
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