
4204 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 11, NOVEMBER 2005

Joint Rate and Power Control Algorithms
for Wireless Networks

Ananth Subramanian and Ali H. Sayed, Fellow, IEEE

Abstract—There is a fundamental tradeoff between power con-
sumption, data transmission rates, and congestion levels in a wire-
less network. These three elements influence the performance of
rate and power control strategies, and they need to be coordinated
judiciously. This paper proposes dynamic rate and power control
algorithms for distributed wireless networks that also account for
the congestion levels in a network. The design is pursued by for-
mulating state-space models with and without uncertain dynamics
and by determining control signals that help meet certain perfor-
mance criteria (such as robustness and desired levels of signal-to-
interference ratio). Simulation results illustrate the performance
of the proposed control schemes.

Index Terms—Congestion control, Kalman filter, model un-
certainties, power control, rate adaptation, robust filter, wireless
networks.

I. INTRODUCTION

POWER consumption is a key limiting factor in the per-
formance of wireless networks due to the presence of

nodes with limited power capabilities. This limitation is fur-
ther compounded by the fact that the nodes need to cater to
certain data rates, which in turn require the SNR level and,
consequently, the power level, to be above certain thresholds
(in view of Shannon’s capacity limit). In addition, the nodes
need to be responsive to congestion conditions in the network,
and therefore, they should be able to adjust their transmission
rates and, hence, their power levels accordingly. It follows from
these observations that a tradeoff exists between power levels,
data rates, and congestion in a network. These three elements
need to be coordinated in order to arrive at enhanced strategies
that not only maintain a minimum variance between the actual
and desired Signal-to-Interference (SIR) levels but that also
ensure a low probability of packet loss in the network.

The interest in wireless networks in recent years has mo-
tivated the investigation of several power control strategies
using different objective measures. For example, the strategies
proposed in [1]–[4] balance the signal to interference ratios
in a distributed way. The approaches from [5] and [6] include
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quality of service (QoS) requirements, while the Kalman fil-
tering approach from [7] uses admission control as the central
quality-of-service (QoS) issue. A unified framework for the
convergence analysis of some of these algorithms is proposed
in [8]. These power control algorithms assume perfect measure-
ments of SIR. Yet, perfect measurements are rarely available in
practice, and hence, the work in [9] proposes a stochastic power
control framework where noisy measurements are considered.
With regards to the joint control of power and rate, one might
consider at-least one of two strategies [10]–[14]. First, one
could consider having a look up table containing rates and the
corresponding power/SIR levels. For a given rate at which a
node desires to transmit, the corresponding power and SIR
levels could be read from the table. A second approach would
be to transmit a pilot frame along with the data at any rate
desired by the node. The node then increases the power level or
reduces the rate if the pilot frame fed back to it by the receiving
node is in error. While the first approach has the limitation of
having to examine a lookup table, thus increasing time and
complexity, the second approach suffers from time overhead.
Rate-regulated methods like those given in [12] alleviate these
problems. However, the methods assume perfect SIR mea-
surements, and they do not cater to congestion mechanisms in
situations like transport Control Protocol (TCP) over wireless
settings. Actually, many of the available solutions do not
combine in a cohesive manner the requirements of power, data
rate, and congestion. For instance, the above solutions may not
perform well when the desired data rates throughout the net-
work need to vary due to the use of rate adaptation algorithms
and congestion control algorithms. Allowing for such variable
data rates and congestion control is desirable nowadays in view
of the availability and affordability of wireless devices that
support multiple data rates and the growing interest in TCP
over wireless algorithms.

The purpose of this paper is to propose distributed strategies
for the joint control of power and data rates in a wireless network
by taking into account the congestion levels as well. We also
allow the channel and interference gains to vary and assume
incomplete knowledge of the underlying network dynamics. A
useful feature of our presentation lies in showing how to model
the network dynamics in terms of linear state-space models (by
using, for example, a change of variables from the linear scale to
the logarithmic scale). Once this is achieved, we then call upon
quadratic control strategies to jointly control the power and data
rate in the network. We also propose a robust algorithm to cater
to the uncertainties in the state-space models.

Notation: For a column vector , we write to denote its
Euclidean norm. For a matrix , we write to denote its
maximum singular value.
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Fig. 1. Schematic representation with three cells, three master nodes, and
active and interfering nodes. The active node is node i, and the interfering
nodes are nodes j and l.

II. NETWORK MODEL

Consider a wireless network operating under dynamic net-
work conditions. The space is divided into virtual geographical
cells with each cell having one master node—see Fig. 1 for a
schematic representation with three cells, three master nodes,
and active and interfering nodes. A frequency slot is allocated
to each node that wishes to communicate to the master node
in a cell. The nodes communicating in the same frequency slot
in other cells cause interference with this cell. The interference
is measured in terms of the SIR, which is defined as follows.
The SIR for node at time is defined by

(1)

where, for each time instant , denotes the channel gain
from the th node to the intended master node of the th node
and is assumed to have a log-normal channel distribution, is
the transmission power from the th node, and is the power
of the white noise at the receiver of the master node to which
node is connected. Moreover, denotes the set of all nodes
that are interfering with node from all cells.

III. ADAPTIVE POWER AND RATE CONTROL STRATEGY

Let denote the flow rate (in bits per second per Hertz) at
node at time . Here, is the slot index and the channel gains
are assumed to be constant during the slot. We shall initially as-
sume that each node in the network employs a flow-rate control
algorithm of the following form (see, e.g., [15]):

(2)

where is a positive step-size, is a measure of the amount
of congestion in the network at time , and controls the
amount of rate increase per iteration. In the absence of con-
gestion (i.e., when ), the rate is increased by .
When congestion is present, the change in the rate is decreased
by [15], [16]. Appendix A describes one method for
estimating . In our subsequent derivations, we shall assume
that is independent of the flow rates at different nodes.

Equation (2) is a typical rate control strategy incorporated
in computer networks. When there is no congestion or, equiva-
lently, when the sender node receives the acknowledgment back
from the final destination for every packet, then the sender in-
creases the rate of transmission by increasing the frame size.
This process is modeled by the additive term . When there
is congestion or, equivalently, when the sender node does not
receive acknowledgment back from the final destination, it is
assumed by the sender node that the packets that it sourced out
have been lost in some link in the network. Hence, the source
node reduces its rate by . The value of deter-
mines by how much the source node should reduce its rate. The

is normally user defined [17]—see Appendix A. The pa-
rameter in (2) will be modeled as a random variable with
mean and variance .

We shall assume that the receiving nodes have knowledge of
the channel gains for decoding purposes. In practice, there will
generally be a nonzero bit-error-rate (BER) at each receiver, and
the value of the BER will depend on the SIR level. Now, given
that we want to achieve a rate , at slot time , a natural
question is what SIR level we should aim for at the receiver
in order to get close to this desired rate at a reasonable BER.
Shannon’s capacity formula suggests a plausible choice. The
formula relates the maximum flow rate through a channel to the
SIR level; even though it does not specify the code structure that
would achieve the maximum rate.

Thus, ideally, and in view of Shannon’s capacity formula, in
order to achieve a flow rate of , it is necessary that the SIR
level be at a value related to via

(3)

Note that we are using this expression to select from the
given value of (and not the other way around). Our objec-
tive is to design the power sequence such that the actual
resulting SIR level , as measured by (1), would approach1

the desired SIR level , as defined by (3).
Let denote the decibel value of a variable , namely,

. Now, usually, during normal network operation,
, and hence, in (3) is proportional to .

Substituting this fact into (2), we find that if is to vary
according to (2), then the desired SIR level (in decibel scale)
should vary according to the rule

(4)

where .
Our aim is to select the power control sequence such

that the actual SIR levels will tend to (or track) the

1When the actual SIR  (k) is less than the desired SIR  (k), the receiver
will not get the rate for which we are aiming, and the BER would grow for some
coded systems. One way to alleviate this problem is to adjust (3) to include a
buffer zone, namely, we could employ instead a relation of the form

f (k)

�
=

1

2
log [1 +  (k)]

for some scaling factor � < 1. This additional factor � ends up being absorbed
into the constant � after (4). The factor � would ensure that we have a higher
value for the desired SIR level.
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Fig. 2. Adaptive power control scheme.

desired levels . Our first scheme for attaining this ob-
jective borrows from known ideas on power control in wireless
communications (see Fig. 2). In this scheme, the receiver mea-
sures the received power and compares it with a desired refer-
ence power. Based on this comparison, the receiver transmits
a one-bit signal, known as the power bit, to the sender com-
manding it to increase or decrease its power. Here, we shall
adopt the adaptive version developed in [18] due to its enhanced
tracking ability. Thus, we assume that each node in the network
adjusts its power according to the control algorithm:

(5)

where is a parameter (usually between 1 and 2) that
is allowed to vary from one node to another, and

sgn (6)

This way, the power level in (5) is either scaled up or down
according to whether is below or above the desired level

. Furthermore, is varied according to the rule

If then

else

for some small , and where .
The above adaptive method performs well when relatively ac-

curate measurements of the SIR level are available and
when small changes occur in the number of active nodes at any
time. The performance, however, deteriorates when the number
of active nodes vary considerably. For this reason, we now pro-
pose more elaborate joint rate and power control strategies.

Remark: Some power control algorithms, including the al-
gorithms proposed in this paper, operate under the assumption
that there exists a feasible set of power levels such that
the desired SIR can be met at all active nodes. By a feasible
power level, we mean power values that lie within an interval

. The nodes would drop out and stop their
transmission if they are not able to meet the SIR requirement
within the allowed power range. In the derivations that follow,
we will not be imposing the power constraints for simplicity.

IV. QUADRATIC JOINT POWER AND RATE CONTROL STRATEGY

We continue to assume that each node in the network employs
the flow-rate control algorithm (2) so that the desired SIR level

varies according to the rule (4). We shall further assume
that each node in the network adjusts its power according to the
power control algorithm

(7)

where is some given step-size parameter that is allowed
to vary from one node to another.2 Compared with the earlier
scheme (5), we see by taking the logarithms of both sides of
(5), and by using the fact that the logarithm is a monotonically
increasing function, that (5) amounts to

sgn (8)

In other words, the sign function is dropped from (7) in compar-
ison to (8). Now, let

denote the scaling factor that determines how affects the
achieved in (1), i.e.,

or, equivalently, in decibel scale

(9)

We shall refer to as the effective channel gain. We can
derive a model for as follows. Let denote the inter-
ference at node , i.e.,

It has been indicated in the literature that can be modeled
as (e.g., [7], [19], [21], and [22]):

(10)

where is a unit mean noise term. Here, models the
fluctuation in the interference levels when nodes either enter or
leave the system or increase or decrease their power levels. Like-
wise, the dynamics of the channel gains can be modeled
as (e.g., [7] and [19])

(11)

where is again a unit mean random variable. The above
models for the interference and the channel gains are similar to

2The ensuing analysis will be similar when log(1 +  ) �  (i.e., when 
is sufficiently small). In this case, we will have no need for the updates to be in
log domain. For example, we would update the power according to p(k+1) =
p(k) + �( (k) � (k)).
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those in [7] when the nodes are assumed stationary.3 Now, note
that

Using (14), we get

i.e., can be assumed to vary according to the random-walk
model

(14)

where is a zero-mean dis-
turbance of some variance and is independent of . Sub-
stituting this model for into (9), we find that the actual

varies according to the rule

(15)

Again, our objective is to design the power control sequence
such that the actual SIR levels , as given by

(15), will tend to the desired SIR levels , as defined by
(4). We will derive the algorithm without the power constraints
and assume that the nodes that are not able to achieve feasible
power levels drop out of the system without transmission. We
shall address this design problem by formulating a quadratic
control problem as follows. First, we drop the node index for
simplicity of notation (it is to be understood that the resulting
control mechanism is implemented at each node). Second, we
introduce the two-dimensional state vector

Then, combining (4) and (15), we arrive at the state-space model
for :

or, more compactly

(16)

3Indeed, a first-order Markov random model for the channel gains in the
decibel scale is given by [7]

�G (k) = �G + � �G (k) (12)

� �G (k + 1) =a� �G (k) + �m (k) (13)

where �m(k) is white zero-mean Gaussian noise, and a = 10 =D, with
v being the velocity of the node, T the sampling time, and D the distance at
which the gain falls to one tenth of its value near the source node. �G in the
above equation is the bias value. From (12) and (13), we get

�G (k + 1) = a �G (k) + (1� a) �G + �m (k):

When the nodes are stationary, i.e., when a = 1, we get (11). In a similar
manner, by relying on the models proposed in [7], [19], we can justify (10).

where the 2 2 coefficient matrix is given by

(17)

and where is a 2 1 random vector with covariance matrix

(18)

In order to drive toward the desired level , we shall
introduce a control sequence into (16), as follows:

(19)

for some 2 2 matrix and 2 1 control sequence to be
designed. For example, let

denote the individual entries of to be designed. Then, the
inclusion of the term in (19) amounts to adding the con-
trol signal to the power update (7). Likewise, the control
signal is added to the desired SIR update (4) [and, conse-
quently, into the rate-flow update (2)].

In addition to employing a control sequence , we shall
assume for generality that we have access to output measure-
ments that are related to the state vector as follows:

(20)

for some known matrix and where denotes measurement
noise with covariance matrix

Usually, so that the entries of correspond to
noisy measurements of the actual and desired SIR levels

.
We then seek a control sequence that minimizes the

following stochastic quadratic cost function:

where is a positive regularization parameter (chosen by the
designer) and (or some other more general choice).
This particular choice of results in

so that is a measure of the energy of the difference be-
tween . In this way, the cost function defined
above is such that it seeks to minimize, on average, the squared
Euclidean distance between the successive actual and desired
SIR levels, as well as the energy of the control sequence itself.
By varying the parameter , we can give more or less weight to
the term relative to ; larger values of give more
relevance to .

The problem we are faced with is therefore to select the con-
trol sequence in order to minimize the cost function
subject to the state-space constraint (19). Moreover, the solu-
tion should be a function of the available measurements

only. The solution to this stochastic control problem is
well-known [23], [24] and is known as the Linear Quadratic
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Gaussian (LQG) solution. The solution is given by the following
measurement feedback form. Start with

and iterate for all :

Specifically, the solution employs two Riccati recursions: One
is for and runs forward in time, whereas the other is for
and runs backward in time. The variable is used to compute
the gain matrix , which in turn is used to estimate the state
vector from the observations . On the other hand, the variable

is used to compute the gain matrix , which is used to
determine the optimal control sequence . It should be noted
that all matrix variables involved in the above recursions are
2 2, and hence, the computational complexity involved in
evaluating the solution is not significant.

The structure of the general solution can be simplified if we
assume that the network is operating under conditions that are
close to steady state. In this case, the congestion control function

would be assumed to have some steady-state value, say ,
and consequently, the coefficient matrix in (17) becomes a
constant matrix

(21)

Under these circumstances, we can simplify the construction of
the control sequence by replacing the Riccati recursions
for by Riccati equations, i.e., by replacing
by their positive-definite steady-state values , which are
obtained by solving the equations:45

(22)

(23)

where now

(24)

(25)

Moreover

(26)

(27)

4Unique positive definite solutions fP; P g are guaranteed to exist under
mild stabilizability assumptions on the pairs fA;Bg and fA;Lg and de-
tectability assumptions on the pairs fA;Cg and fA;Bg. Moreover, the
resulting closed-loop solution (26) and (27) will be stable—see [24].

5We assume the dynamics around an equilibrium point.

V. DEALING WITH DYNAMIC UNCERTAINTIES

IN THE NETWORK

We now formulate a more general design procedure that takes
into account uncertainties that arise due to the lack of perfect
knowledge of the network conditions. For example, the conges-
tion control function is usually not known exactly and has
to be estimated; the estimation process introduces errors into the
assumed state-space model. In addition, modeling errors may
arise from the fact that rate update (2) is ignoring delays due
to round-trip times in the network. In order to pursue control
design under such uncertainties in the models, we will replace
the stochastic quadratic formulation of the previous section by
a robust formulation that attempts to limit the influence of un-
certainties on system performance.

Consider again the state-space model (19) and the corre-
sponding coefficient matrix in (17). We shall now assume
that the congestion control function is not known exactly
due to modeling errors in the network. Specifically, we shall
assume that

(28)

for some known positive scalars . In this way, the ma-
trices themselves are not known exactly, but they can be
modeled as , where

(29)

and

(30)

with

(31)

Moreover, is in the interval [ 1,1]. We shall design the con-
trol sequence as follows. First, we use the robust algorithm of
[25] to estimate the state of perturbed state-space models as in
(26), (29), and (30). Let the state estimate be denoted by .
Then, we design the control sequence as a function of
these state estimates such that the effect of the noise distur-
bances on the error is limited in the
following manner:

(32)
for some constant and for the smallest possible , and
over all possible noise sequences and models

. In the above, denotes the expectation operator. The
solution is as follows—see Appendix B.

Robust Power and Rate Control Algorithm: Let
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Given a 2 1 vector and a 1 2 vector , the following is a
robust joint power and rate-flow control strategy:

1) Introduce a 2 2 matrix and a 2 1 vector (both
to be determined).

2) Let , for some . In
addition, let , and define

Determine the unique stabilizing and positive semi-
definite solution of the Riccati equation

and set

and

where

The matrix is stable [25].
3) Using the just found , define

for some 2 2 matrix to be determined. Determine
, , and the smallest that guarantee

where

and

(see Appendix B on how this inequality can be solved).
Then, set

4) Partition as

and update the rate flow and the power at the relevant
node as follows, as long as :

VI. SIMULATION RESULTS

In order to illustrate the performance of the three proposed
algorithms, we simulate a network using the model proposed in
[19] for the channel gain from the th node to its master node.
In this model, has a lognormal distribution, namely

(33)

where is a function of the carrier frequency, is the path
loss exponent (PLE), and is the distance of node from its
master node. The value of depends on the physical environ-
ment and varies between 2 and 6 (usually 4). Moreover, is a
zero mean Gaussian random variable with variance , which
usually ranges between 6 and 12.

Let . Then, based on the above statistical charac-
terization, the random variable has a Gaussian distribution

with mean

and standard deviation

We shall neglect the effect of fast fading since the power update
algorithm generally has a large time period. On the other hand,
for the shadowing effect, we shall assume that the correlation
sequence for the random process is given
by

where ranges between 3 and 10 dB, is speed, is the
time period for channel probing, and is the distance at which
the normalized correlation reaches the value 1/10. We assume
that the velocity of the nodes is small enough so that we can
approximate , and hence, .

We then simulate a network consisting of nine cells with eight
nodes per cell. Queries through nodes arrive at the master nodes
with a poison distribution with arrival rate . The service (or
holding) time for each node is an exponential distribution with
average holding time given by . We consider a traffic load
between 1 and 6 Erlang per cell, where the ratio of arrival rate
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Fig. 3. Difference between actual and desired SIR levels using different algorithms.

to departure rate denotes the traffic in Erlang per
cell. New nodes need to have at least 12 dB SIR to get admis-
sion into the system. To maintain a uniform power distribution
between nodes, we vary the master node randomly among the
nodes. The maximum acceptable power that a node can transmit
is the amount of power that causes the SIR level to reach 20 dB
without any other user interference at a distance of 25 m. Once
a node starts transmitting (or equivalently, a query has arrived
at the master node according to Poisson distribution), it updates
its power and rate jointly according to one of the algorithms
given in Sections III–V, as long as it is connected with the master
node. Once the master node has received the data from the node
(or, equivalently, the node has been rendered service), the node
departs.

To illustrate the performance of the adaptive algorithm of
Section III, we assume that each node that wishes to transmit up-
dates its rate of transmission as in (2). The value is chosen

as a random variable for the purpose of simulations, assuming
that the congestion levels in the network are random. It is chosen
as a uniformly distributed random variable between 0 and 0.5.
Moreover, is unit-mean with variance 0.001. Note that
the tradeoff between rate, power, and congestion levels is ad-
dressed by considering them jointly in the rate and power con-
trol equations. The power and rate are updated in a combined
manner, and the congestion levels enter the dynamics of the up-
date equations in terms of . The nodes are made to adjust
their power levels as according to (5). Each node transmits at
a particular frequency slot. Under similar conditions as given
above, we simulate the other rate and power control algorithms
of Sections IV and V.

The plots in Fig. 3 illustrate the performance of the different
algorithms. These plots show the difference between the ac-
tual SIR and the desired SIR. The smaller the difference in
steady-state between the actual and desired SIRs, the better the
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Fig. 4. Comparison of power levels for a desired SIR level of 6 dB. It is
indicated that all algorithms consume essentially the same power.

Fig. 5. Steady-state error variance in SIR tracking.

performance of the respective algorithms in tracking the desired
SIR. In order to highlight the distinctions among the algorithms,
each plot contains a smaller box that zooms in on steady-state
values. Observe how the box in Fig. 3(c) contains values that
range over a smaller interval when compared with the boxes in
the other plots. All smaller boxes have the same maximum range
of 5 for comparison purposes. In the figure, Fig. 3(a) illustrates
the performance of the adaptive algorithm of Section III, and
Fig. 3(b) illustrates the performance of the quadratic control al-
gorithm of Section IV. The performance of the robust algorithm
of Section V is shown in Fig. 3(c). Moreover, the following al-
gorithm from [1]6

(34)

which does not include a control term, performs as illustrated in
Fig. 3(d). It is further noted in Fig. 4 that the power consumption
is almost the same for (34) when compared with the other algo-
rithms. It should be noted that the algorithms try to reduce the

6The algorithm (34) is the same as the algorithm in [1] when � = 1.

Fig. 6. Steady-state error variance in SIR tracking for the Quadratic algorithm
using different values of �.

Fig. 7. Value of t(k) as a function of jbj.

SIR error variance and not the power consumption. Hence, all
the algorithms perform almost identically with respect to power
consumption. The power consumption is given in terms of the
ratio of power consumed to the floor noise power in decibels. For
example, in the simulations, the average power consumed by a
node at 1 Erlang traffic for the robust algorithm of Section V
is 10, whereas the floor noise power is . Hence, in decibel
scale, the power consumed is shown in Fig. 4 as 40 dB.

Fig. 5 shows the performance of the algorithms in terms of the
error variance in SIR tracking averaged over 350 experiments.
It is seen that the proposed algorithms outperform (34). Fig. 6
shows the performance of the quadratic algorithm in terms of the
error variance in SIR tracking averaged over 350 experiments
for different values of .

VII. CONCLUSIONS

In this paper, we proposed three distributed rate and power
control algorithms for wireless networks: 1) an adaptive scheme,
2) a quadratic control scheme, and 3) a robust scheme. All three
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schemes consume essentially the same power as a function of
network traffic (Fig. 4) and exhibit improved error variance be-
tween desired and actual SIR levels over the standard algorithm
(34)—see Fig. 5. In addition, the robust solution of Section V
exhibits the best performance among the four algorithms, albeit
at an increased computational complexity. The adaptive solu-
tion of Section III is the least complex at some deterioration in
performance. A key reason for the improved performance of the
quadratic control and robust solutions over the adaptive solution
is because the former algorithms are model-dependent. In other
words, they exploit the underlying state-space models.

APPENDIX A
CONGESTION ESTIMATION

We describe here a methodology by which can be esti-
mated at every iteration. Over a time period , let

(35)

where is the end-to-end network bandwidth as estimated
in [17]. In short, is the rate at which bits are acknowledged
by the destination node. We can then evaluate an end-to-end
congestion measure as follows:

If then

else

for some positive threshold . Let . Then,
compute as follows:

If then (36)

else (37)

(38)

for some and , and where is a desired
steady-state SIR level, and is a one-step-ahead predicted
SIR at time .

The value of determines by how much the source node
should reduce its rate. The is normally user defined, as
above [17]. The intuition behind such a is as follows. The
higher the rate at which the packets are sent by the source com-
pared with the rate at which acknowledgment are received, the
higher the value of and, hence, the higher the value of .
If increases, then the rate in (2) reduces, thus alle-
viating the level of congestion in the network. Another scenario
in which the rate could reduce is when the estimate of the actual
SIR present at the immediate receiving node is less than the de-
sired SIR. Then, increases, thus making higher again.
Fig. 7 shows a plot of as a function of . In other words,
whenever there is congestion in the network or when the SIR
level at the immediate receiving node is lower than it should be,
the rate is reduced by the amount dictated by .

For the algorithms of Sections IV and V, is readily ob-
tained from the Kalman and robust filters, respectively. For the
algorithm of Section III, can be obtained by estimating

as follows. Assume again that the effective channel gain
varies according to model (14). Assume also that we have a
noisy measurement of , say ,

with the variance of the measurement noise equal to .
Then, the one-step predicted estimate of can be obtained
via the Kalman filter as follows. Start with , and it-
erate for all :

Then, .

APPENDIX B
ROBUST PERFORMANCE

In this Appendix, we show that the algorithm of Section V is
stable and ensures a robust performance level of , as in (32).
Define

(39)

Let , for some to be determined in
order to satisfy the inequality

(40)
where , with all the quantities as
defined in Section V. We will show that for a given and , if

is determined such that the above inequality is satisfied, then
(32) is guaranteed. Indeed, if we sum inequality (40) over , and
if we assume that the system is exponentially stable (which will
be shown at the end of this appendix), we get for all ,

(41)

as desired. Now, assume a control structure of the form

(42)

for some given and unknown . Combining this
equation with

and assuming, for example, that is equal to one of the
boundary points, say , we find that satisfies the state-space
model

(43)

where

(44)
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and likewise for the boundary point . Using (43) and ex-
panding (40) gives

(45)

With taking values between and , condition (45) is
equivalent to requiring

(46)
where

Hence, (46) is satisfied if

(47)

for some , , and , as desired. Inequality (47) also
implies that the system is stable because of the following. Note
that for any boundary point , the Lyapunov function
satisfies, in the absence of noise

(48)

but inequality (47) implies that for all taking
values between and . This in turn implies that

for all uncertainties. Hence, the
process is exponentially stable.

APPENDIX C
OPTIMIZATION

We now show how to determine , and the smallest in
step 3 of the robust algorithm of Section V in order to guarantee
(47). We shall restrict to a block diagonal structure as

(49)

and define

(50)

Now, through a Schur complementation argument, (41) is satis-
fied if

(51)

Substituting (49) and (50) into the above inequality, we see that
(41) holds for any given and , if there exist positive defi-
nite matrices and a matrix that satisfy

(52)
Finding the that solve the above inequality for the
smallest is a convex optimization problem. Once
have been determined, is obtained from .

APPENDIX D
STABILITY OF THE NETWORK

Let denote the set of sources (or equivalently nodes) in the
network. Let denote a route. Without loss of generality, we
ignore routing choices and identify each source with a route.
We consider first a single route and a single source scenario.
Consider a particular source and a route adopted by the source.
The rate catered to by the route is proportionally given in terms
of (recall that the rate is proportional to ). Now,
the stability of implies the stability of .
Hence, we will derive conditions for the stability of , which
will imply stability of and, hence, that of route . Consider
again (43) in the absence of noises with taking values in the
polytope with vertices and :

(53)

where

(54)

and takes values in the polytope with vertices and .
Now, the above matrix is stable if

(55)

for some and , but it can be seen that and
satisfying (47) also satisfy (55). Condition (55) implies the

asymptotic stability of the process , and hence, the stability
of route is guaranteed.

For the scenario of multiple sources, when sources use
a route , each of the sources being stable will contribute to
a bounded arrival of packets in the route , ensuring network
stability.
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