A Message from the Editor-in-Chief: New EDICS Categories for the TRANSACTIONS

C IGNAL processing is a highly dynamic and far-reaching field. Over the years, it has evolved into a fascinating blend of theoretical studies, algorithm and filter design, performance analysis, and applications. Its tools have proven essential in modeling and analyzing the performance of a wide range of problems in several areas of heightened interest including, but not limited to, wireless and multi-input multi-output (MIMO) communications, wireless networks, sensor networks, and biomedical signal processing. In an effort to recognize the widespread influence of signal processing, as well as the various strong research trends in the field, we have embarked on a revised Editor's Information Classification Scheme (EDICS) for the TRANSACTIONS. The EDICS are meant to describe, broadly, the areas of interest of the TRANSACTIONS. They also help facilitate the assignment of papers to associate editors and reviewers, who are experts in the topic of each submission. The signal processing fields are dynamic, and thus, the EDICS also are dynamic and should be adjusted regularly in order to reflect and capture the interests of our authors and researchers.

The new EDICS for the TRANSACTIONS are the result of an extensive consultation process carried out by the Editor-in-Chief with the various Technical Committees of the IEEE Signal Processing Society, the Publications Board of the Society, and with the Editorial Board of the TRANSACTIONS. In its April 2004 meeting in Boston, MA, the Publications Board of the IEEE Signal Processing Society approved our proposed plan for the new EDICS. The EDICS now comprise 14 broad categories with several sub-EDICS under each category. All sub-EDICS within a category have a consistent theme. A new numbering system is used for the sub-EDICS. The 14 EDICS categories follow:

- 1) Statistical Signal Processing (SSP).
- 2) Adaptive Signal Processing (ASP).
- 3) Digital Signal Processing (DSP).
- 4) Nonlinear Signal Processing (NSP).
- 5) Multidimensional Signal Processing (MDS).
- 6) Machine Learning (MAL).
- 7) Sensor Array and Multichannel Processing (SAM).
- 8) Signal Processing for Communications (SPC).
- 9) MIMO Communications and Signal Processing (MSP).
- 10) Signal Processing for Sensor Networks (SEN).
- 11) Signal Processing for Wireless Networks (WIN).
- 12) Biomedical Signal Processing (BIO).
- 13) Implementation of Signal Processing Systems (HDW).
- 14) Other Areas and Applications (**OTH**).

The complete listing of the categories and their sub-EDICS appears below. **STATISTICAL SIGNAL PROCESSING (SSP)**

STATISTIC	AL SIGNAL PROCESSING (SSP)
SSP-a	Filtering
SSP-b	Detection
SSP-c	Parameter estimation
SSP-d	Tracking algorithms
SSP-e	Classification methods
SSP-f	Performance analysis and bounds
SSP-g	Statistical signal analysis
SSP-h	Spectral analysis and spectral estimation
SSP-i	Nonstationary statistical signal processing
SSP-j	Cyclostationary signal analysis
SSP-k	Higher order statistical methods
SSP-I	Deconvolution
SSP-m	Signal separation
SSP-n	Signal restoration
SSP-o	Non-Gaussian signals and noise
SSP-p	Signal and noise modeling
SSP-q	Hierarchical models and tree structured signal processing
SSP-r	System identification
SSP-s	System modeling
SSP-t	Nonparametric methods
SSP-u	Applications of statistical signal processing techniques
ADAPTIVE	SIGNAL PROCESSING (ASP)
ASP-a	Adaptive filter analysis and design
ASP-b	Fast algorithms for adaptive filtering
ASP-c	Frequency-domain and subband adaptive filtering
ASP-d	Applications of adaptive filters
DIGITAL A	ND MULTIRATE SIGNAL PROCESSING (DSP)
DSP-a	Filter design and structures
DSP-b	Filterbank design and theory
DSP-c	Multirate processing and multiresolution methods
DSP-d	Wavelets theory and applications
DSP-e	Quantization effects and roundoff analysis
DSP-f	Sampling, extrapolation, and interpolation
DSP-g	Signal reconstruction
DSP-h	Fast algorithms for digital signal processing
DSP-i	Algorithm analysis
DSP-j	Applications of digital and multirate signal processing
NONLINEA	R SIGNAL PROCESSING (NSP)
NSP-a	Nonlinear signals and systems
NSP-b	Rank-order and median filters
NSP-c	Morphological signal and system analysis
NSP-d	Polynomial signal processing
NSP-e	Chaotic and fractal signals and systems
NSP-f	Nonlinear system identification; linearization
NSP-g	Nonlinear random process models
NSP-h	Applications of nonlinear signal processing

Digital Object Identifier 10.1109/TSP.2004.837512

MULTIDIN	IENSIONAL SIGNAL PROCESSING (MDS)	
MDS-a	Filtering	
MDS-b	Spectral estimation	
MDS-c	Signal and system modeling and identification	
MDS-d	Algorithms and transforms	
MDS-e	Applications of multidimensional signal processing	
MACHINE	LEARNING (MAL)	
MAL-a	Learning theory and algorithms	
MAL-b	Bayesian learning; Bayesian signal processing	
MAL-c	Sequential learning; sequential decision methods	
MAL-d	Information-theoretic learning	
MAL-e	Neural network learning	
MAL-f	Graphical and kernel models	
MAL-g	Source separation	
MAL-h	Independent component analysis	
MAL-i	Bounds on performance	
MAL-j	Pattern recognition and classification	
MAL-k	Intelligent multimedia and web processing	
MAL-l	Applications of machine learning	
SENSOR ARRAY AND MULTICHANNEL PROCESSING (SAM)		
SAM-a	Array calibration	
SAM-b	Source detection	
SAM-c	Beamforming	
SAM-d	Direction-of-arrival estimation and source localization	
SAM-e	Synthetic aperture methods	
SAM-f	Space-time adaptive methods	
SAM-g	Nonwave-based array processing	
SAM-h	Performance analysis	
SAM-i	Radar signal processing	
SAM-j	Sonar signal processing	
SAM-k	Geophysical and seismic signal processing	
SAM-l	Remote sensing of the environment	
SAM-m	Multichannel processing	
SAM-n	Imaging with array data	
SAM-o	Applications of sensor and array multichannel processing	
SIGNAL PH	ROCESSING FOR COMMUNICATIONS (SPC)	
SPC-a	Channel characterization and modeling	
SPC-b	Channel estimation and equalization	
SPC-c	Blind/semiblind estimation and equalization	
SPC-d	Signal representation, coding, and compression	
SPC-e	Scalar and vector quantization	
SPC-f	Space-time coding, design, and analysis	
SPC-g	Detection, estimation, and demodulation	
SPC-h	Modulation and encoding	
SPC-i	Performance analysis and bounds	
SPC-j	Interference suppression and rejection	
SPC-k	Acquisition, synchronization, and tracking	
SPC-I	Multicarrier, OFDM, and DMT communications	
SPC-m	CDMA and spread spectrum communications	
SPC-n	Ultra wideband communications	
SPC-0	Telephone networks and digital subscriber loops	
SPC-p	Broadband and packet switched networks	
SPC-q	Applications involving signal processing for communications	

MIMO COMMUNICATIONS AND SIGNAL PROCESSING (MSP)		
MSP-a	MIMO precoder/decoder design	
MSP-b	MIMO capacity and performance	
MSP-c	MIMO space-time coding and capacity maximization	
MSP-d	MIMO space-time coding and decoding algorithms	
MSP-e	MIMO channel estimation and equalization	
MSP-f	MIMO channel modeling	
MSP-g	MIMO multi-user and multi-access schemes	
MSP-h	Applications of MIMO communications and signal processing	
SIGNAL PROCESSING FOR SENSOR NETWORKS (SEN)		
SEN-a	Data fusion from multiple sensors	
SEN-b	Distributed signal processing	
SEN-c	Distributed control and feedback mechanisms	
SEN-d	Collaborative signal processing	
SEN-e	Power control algorithms	
SEN-f	Adaptive sensing algorithms	
SEN-g	Distributed channel and source coding	
SEN-h	Information-theoretic studies	
SEN-i	Source localization in sensor networks	
SEN-j	Applications of sensor networks	
SIGNAL PROCESSING FOR WIRELESS NETWORKS (WIN)		
WIN-a	Cross-layer design	
WIN-b	Scheduling and queuing protocols	
WIN-c	Cooperative networking	
WIN-d	Resource management issues	
WIN-e	Physical layer issues	
WIN-f	System level optimization	
WIN-g	Information-theoretic studies	
WIN-h	Ad hoc wireless networks	
WIN-i	Applications involving signal processing for wireless networks	
BIOMEDIC	AL SIGNAL PROCESSING (BIO)	
BIO-a	Bioinformatics	
BIO-b	Genomics/proteomics signal processing	
BIO-c	Life sciences signal processing	
BIO-d	Biological modeling	
BIO-e	Medical diagnostic methods	
BIO-I	Signal processing methods for medical aids	
BIO-g	Sensor arrays for medical signal and image processing	
BIO-n	Spectral methods for biosignals	
BIO-1 IMDI EMEN	Applications of biomedical signal processing	
	Dragrammable and reconfigurable DSD grabitactures	
HDW-b	System on chip architectures for signal processing	
HDW-e	Algorithm and architecture co. optimization	
HDW-d	Compilers and tools for DSP implementation	
HDW-0	DSP algorithm implementation in hardware and software	
HDW_f	I ow-nower signal processing techniques and architectures	
OTHER AR	EAS AND APPLICATIONS (OTH)	
OTH-9	Industry technology	
OTH-h	Signal processing education	
OTH-c	Emerging techniques	
	oo volunques	

ALI H. SAYED, Editor-in-Chief