
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 11, NOVEMBER 2001 2565

RLS-Laguerre Lattice Adaptive Filtering:
Error-Feedback, Normalized, and Array-Based

Algorithms
Ricardo Merched, Student Member, IEEE,and Ali H. Sayed, Fellow, IEEE

Abstract—This paper develops several lattice structures for
RLS Laguerre adaptive filtering including a posterioriand a priori
based lattice filters with error-feedback, array-based lattice filters,
and normalized lattice filters. All structures are efficient in that
their computational cost is proportional to the number of taps,
albeit some structures require more multiplications or divisions
than others. The performance of all filters, however, can differ
under practical considerations, such as finite-precision effects and
regularization. Simulations are included to illustrate these facts.

Index Terms—Array algorithm, error feedback, Laguerre net-
work, lattice filter, normalized lattice, order-recursive filter, regu-
larized least-squares, RLS algorithm.

I. INTRODUCTION

I N recent work [1], the authors have addressed the problem
of developing fast lattice (i.e., order-recursive) RLS filters

for Laguerre structures. The regression vectors that arise in such
filters do not exhibit the standard shift structure that is charac-
teristic of tapped-delay-line implementations. In other words,
successive regression vectors are not shifted versions of each
other. Still, the authors showed in [1] that a more general form
of data structure exists and that it can be exploited to derive a
fast order-recursive filter. In related works [2], [3], the authors
have further shown that fixed-order (as opposed to order-recur-
sive) fast RLS Laguerre filters can also be derived by relying on
certain structural data constraints established in [4] and [5].

The usefulness of these fast RLS Laguerre filters stems
from the fact that it has been realized for some time that
Laguerre networks offer superior modeling capabilities than
FIR networks, at a reduced number of tap coefficients and
with a guaranteed stable performance (see, e.g., [6]–[9] and
the references therein). However, the computational cost of
existing RLS Laguerre filters has been of the order of
operations per iteration, where is the order of the filter
(number of taps). The fast versions reduce this complexity to

operations per iteration.
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Now, the RLS lattice algorithm that was derived in [1] ap-
pears in a form that is based ona posteriorierrors, and it does
not involve an error feedback mechanism. Although this is a
common lattice form (see, e.g., [10]–[12]), several other equiv-
alent lattice forms can be derived such as error-feedback forms,
array-based forms, and normalized forms. All these algorithms
are, of course, theoretically equivalent. However, they tend to
differ in performance under different operating conditions that
arise, for example, in finite-precision implementations or as a re-
sult of noise and regularization. These facts are well understood
for RLS lattice filters that result from tapped-delay implemen-
tations (see, e.g., [13]–[18]).

The purpose of this paper is to develop similar lattice variants
for Laguerre structures. Due to the special form of the regression
vectors in the Laguerre case, and due to the lack of shift-struc-
ture in the regression vectors, the derivation of these alternative
lattice filters is not a direct extension of what has been done be-
fore for tapped-delay lines. Some care is needed in deriving the
new forms from thea posteriorirecursions of [1]. In particular,
it will be useful to first introduce an extended RLS algorithm; it
is a simple yet very convenient extension of the classical RLS al-
gorithm. Once this is done, we will then derive, in sequence, an
a priori-based lattice filter, error-feedback-based lattice filters,
and a normalized lattice filter. In a later section, we will com-
pare the performance of these different forms using fixed-point
implementations. Several simulation results are included.

II. M ODIFIED RLS ALGORITHM

Consider a column vector and a data matrix
. The exponentially weighted least squares

problem seeks the column vector that solves

(1)

where is a scalar positive regularization parameter (usually
small), and

diag

The so-called forgetting factor satisfies .
The vector is a growing length vector whose entries are

assumed to change according to the following rule:

(2)
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for some scalar .1 The individual rows of will be denoted
by

...

Let denote the optimal solution of (1). It is given by

(3)

where we introduced the coefficient matrix

(4)

We will further denote the estimate of by . We
will refer to it as the (regularized) projection of onto .

Now, let be the solution to a similar problem
with the variables in (1) replaced by

. That is

Using (2) and the fact that

in addition to the matrix inversion formula, it is straightforward
to verify that the following recursions hold:

(5)

(6)

(7)

(8)

(9)

with and . It also holds that .
These recursions tell us how to update the weight estimates

in time. The well-known exponentially weighted RLS
algorithm corresponds to the special choice . The intro-
duction of a nonunity scalar, however, allows for a level of
generality that is sufficient for our purposes in the coming sec-
tions.

Notation: Since, in this paper, we deal primarily with order-
recursive least-squares problems, it becomes important to ex-
plicitly indicate the size of all quantities involved (in addition
to a time index). For example, we will write from now
on instead of in order to indicate that it is a vector of order

that is computed by using data up to time. We will also
write instead of to indicate that it is a matrix with
row vectors of size and with data up to time .

III. A POSTERIORIRLS-LAGUERRELATTICE FILTER

Before deriving the new lattice variants, we briefly review and
summarize thea posteriori-based lattice algorithm of [1]. This

1Why we introduce the scalara will be understood very soon. The classical
recursive least-squares (RLS) problem corresponds to the special choicea = 1.

Fig. 1. Transversal Laguerre structure for adaptive filtering.

algorithm was motivated by a (complex) Laguerre structure of
the form shown in Fig. 1, where

and

(10)

In this structure, successive regression vectors are not
shifted versions of each other. However, they still satisfy certain
structural properties that can be exploited to derive an efficient
RLS lattice filter. The resulting algorithm is listed in Table I ,
and the resulting lattice structure is shown in Fig. 2.

The recursions of Table I assume , and they are based
on the propagation of certaina posterioribackward and forward
estimation errors, which are denoted by

In addition, five reflection coefficients, which are denoted by

are evaluated as ratios of certain quantities for which recursions
are also provided. Comparing Fig. 2 with the conventional lat-
tice structure for shift-structured data [19], we see that the new
lattice filter is still fundamentally simple, although it now con-
sists of two lattice structures running in parallel.

Although the definitions of the forward and backward errors
are standard in the adaptive filtering literature (e.g., [16], [19]),
subtle differences do arise in the Laguerre case in view of the
fact that the regression vectors do not possess shift structure. For
this reason, and for the sake of reference, we briefly reproduce
here the definitions introduced in [1]. Thus, consider the data
matrix (whose rows are -dimensional) and
partition it as

Note that we are denoting the last column of by
and its first column by . Note also that while in

the case of regressors with shift structure, there exists a simple
relation between and , this relation is less obvious
in the Laguerre case.

Further, let denote the column vector
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TABLE I
A POSTERIORI-BASEDRLS-LAGUERRELATTICE FILTER

which is defined in terms of the pole of each section .
Now, the filter listed in Table I provides order-recursive up-
dates fora posteriorierrors that arise from the problems of pro-
jecting (in a regularized manner) the vectors
onto and and the vectors onto

. More specifically, consider the error vectors

where, for example, is the solution to

(11)

This problem projects the first column onto . Sim-
ilarly, we define (see [1]). The last en-
tries of the above error vectors are denoted by

These are the quantities that appear in the recursions of Table I.

IV. ERROR-FEEDBACK LATTICE FILTERS

As mentioned above, the order updates for thea posteriori
estimation errors in Table I are described in terms of certain re-
flection coefficients, which are in turn computed as ratios of cer-
tain quantities. For example, the reflection coefficient
is computed as the ratio , with separate recur-
sions available for both the numerator and the denominator.

An error-feedback form of the algorithm can be obtained by
deriving explicit recursions for the reflection coefficients them-
selves. We shall arrive at this form in three steps. First, we define
certaina priori errors; then, we derive order-update relations for
them, and finally, we derive time-update relations for the reflec-
tion coefficients.

A. A Priori Estimation Errors

We first introducea priori, as opposed toa posteriori, esti-
mation errors. Thus, define thea priori error vectors

where now, , for example, is the solution to a
problem similar to (11) with all s by . Com-
paring these expressions for thea priori error vectors with
the expressions above for thea posteriori error vectors

, the only differences
lie in the use of the prior weight vector estimates.

The last entries of thesea priori error vectors are denoted by

and they play a fundamental role in all future developments.
In particular, by following the same argument as in [1, Sec.
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Fig. 2. A posteriori-basedRLS-Laguerre lattice filter, where~c (N) = (a=a ) 1� jaj .

III], it can be verified that these errors satisfy the following
order-update relations in terms of the same reflection coeffi-
cients that are defined in Table I:

(12)

(13)

(14)

A recursion for thea priori error that corresponds to
requires a little more effort. For this purpose, we first recall from
[1] that satisfies the order-update relation

However, since the vector evolves in time according to the
relation

then, by resorting to the modified form of the RLS algorithm
of Section II, we readily conclude that thea priori error that is
associated with should have the form

(15)

Using this definition, the following order update for can
be established by again relying on the arguments of [1]:

(16)

B. Relating and

In order to complete the recursions (12)–(14) for thea priori
errors, we still need to know how to update . This can be
done as follows. We first recall from [1] that the optimal weight

vectors and are related by

(17)

where

It was further shown in [1] that the data matrices and
are related via , where is the

lower triangular Toeplitz matrix (here for
the complex case)

...
...

. . .
. . .

(18)
Thus, multiplying (17) from the left by and
subtracting from both sides, we obtain

(19)
where denotes the last row of and is given by

and denotes the leading entries of ,
which we partition as follows:
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If we substitute these partitionings into (19) and expand, we
obtain, after some manipulations, the relation

(20)

where is thea priori error defined in (15). Having de-
rived the order-update relations for the variousa priori estima-
tion errors, it only remains to derive time-update relations for
the reflection coefficients

C. Time Updates for the Reflection Coefficients

Unlike conventional derivations of error-feedback lattice al-
gorithms for tapped-delay line structures, we will obtain time-
update relations for the reflection coefficients in a more direct
way by exploiting the fact that these coefficients can be regarded
as solutions to least-squares problem of first order [5].

We start with the reflection coefficient

(21)

where, from Table I, the numerator and denominator quantities
satisfy the time updates

Now, define theangle normalizederrors

in terms of the square-root of the conversion factor .
It then follows from the above time updates for and

that can be recognized as the inner
products

which are written in terms of the following vectors of angle
normalized prediction errors:2

...
...

In this way, the defining relation (21) for becomes

2Observe that the vectorsb andb differ in a fundamental way. The
entries ofb cannot be interpreted asfb (0); b (1); . . . ; b (N)g, that
is, all the elements ofb change with a change inN and likewise fore
ande .

which shows that can be interpreted as the regularized
least-squares solution of a first-order least-squares problem,
namely, that of projecting (in a regularized manner) the vector

onto the vector . This simple observation shows
that can be readily time updated via a standard RLS
recursion of the form3

The last equation is obtained from the order update for
in (12). Similarly, using (13) and (14), we can justify the fol-
lowing updates for and :

(22)

(23)

Now, let us examine the reflection coefficient . Defining
the angle-normalized quantity , we
can express as a least-squares solution of the form

where diag . This means that we
can again time update via an RLS recursion of the gen-
eral form (7), i.e.,

Finally, we need to update the reflection coefficient .
Again, using the time updates for and , it can be
expressed as a least-squares solution of the form

or, equivalently

Writing the RLS recursion for this variable, we obtain

where the last equation is obtained from (20). Fig. 3 illustrates
the resulting RLS-Laguerre lattice structure that is based ona
priori errors. The corresponding recursions are listed in Table II.

3This geometric argument avoids some typical algebraic derivations.
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Fig. 3. RLS-Laguerre lattice network based ona priori errors with error feedback.

TABLE II
ERROR-FEEDBACK RLS-LAGUERRE LATTICE FILTER BASED ON

A PRIORI ERRORS

D. A Posteriori-Based Error Feedback Filter

A similar error feedback filter can be derived by relying
on a posteriorierrors rather thana priori errors. This can be
achieved simply by expressing the updates for the reflection
coefficients in terms ofa posterioriquantities and rearranging

terms. For example, consider the first recursion shown previ-
ously for , which can be written as

Here we used the following relation from Table I:

In a similar manner, we can derive time updates for the other
reflection coefficients. The resulting equations are summarized
in Table III.

V. ARRAY-BASED LATTICE ALGORITHM

We now derive another equivalent lattice form, albeit one that
is described in terms of compact arrays. This form involves only
orthogonal rotations and tends to exhibit good numerical prop-
erties.

To arrive at the array form, we first define the following quan-
tities:

The second step is to rewrite all the recursions in Table II in
terms of these quantities and in terms of the angle normalized
prediction errors defined
before, e.g.,

(24)

(25)

(26)

(27)
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TABLE III
ERROR FEEDBACK RLS-LAGUERRE LATTICE FILTER BASED ON A

POSTERIORIERRORS

The third step is to implement a unitary transformation matrix
that lower triangularizes the following prearray of numbers:

for some . The values of the resulting can be
determined from the equality shown at the bottom of the page.

Using (25) and (26), we can make the identifications

Proceeding similarly, we can derive three additional array trans-
formations, all of which are listed in Table IV. The resulting
algorithm is also represented schematically in Fig. 4. The ma-
trices are 2 2 unitary
(Givens) transformations that introduce the zero entries in the
post-arrays at the desired locations.

VI. NORMALIZED RLS-LAGUERRELATTICE ALGORITHM

The final lattice form that we consider is one that al-
lows us to reduce the number of reflection coefficients.
Thus, note that the lattice filters considered this far
require the propagation of five reflection coefficients

. An equiva-
lent variant can be derived that requires the propagation of
only three reflection coefficients. We will denote these new
coefficients by .

A. Recursion for

We start by defining the coefficient

along with the normalized prediction errors

Now, referring to Table IV, let us substitute the updating equa-
tion for into the updating equation for .
This yields

(28)

Multiplying both sides by the ratio , we ob-
tain

(29)
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TABLE IV
ARRAY-BASED RLS LAGUERRELATTICE FILTER

However, from the time-update recursion for and
, the following relations hold:

Substituting these equations into (29), we obtain the desired
time-update recursion for the first reflection coefficient:

This recursion is in terms of the errors . We
now determine order updates for these errors. Thus, dividing the

order update equation for by , we
obtain

(30)

Using the order-update relations for , we also have

(31)

In addition, by following the arguments of [1], can be
seen to satisfy the relation

(32)

which can be written as

(33)

Substituting (31) and (33) into (30), we obtain

(34)

Similarly, using the order updates for , and
, we obtain

(35)

B. Recursion for

In a similar vein, we introduce the normalized error

and the coefficient

Using the order update for and , we can estab-
lish the following recursion:

To obtain a time update for , we first substitute the recur-
sion for into the time update for . Then, mul-
tiplying the resulting equation by the ratio
and using the time updates for and , we obtain

Note that when , the recursions derived
so far collapse to the well-known FIR normalized RLS-lattice
algorithm. For Laguerre structures, however, we need to derive
a recursion for the normalized variable as well. This can
be achieved by normalizing the order-update for

(36)
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Fig. 4. Schematic representation of the array-based RLS Laguerre lattice filter.

TABLE V
NORMALIZED RLS-LAGUERRE LATTICE FILTER BASED ON

A POSTERIORIERRORS.

In order to simplify this equation, we need to relate to
and to . We have shown in [1] that the

following equation holds:

(37)

TABLE VI
COMPARISON OF THECOMPUTATIONAL COST OF THEDIFFERENT

RLS-LAGUERRELATTICE ALGORITHMS FORFILTERS OFORDERM .

which implies

(38)

In order to relate , note that can
be written either as in Table I or as in (32). That is

This leads to the following desired relation:

(39)

Substituting (38) and (39) into (36), we obtain

This equation requires an order update for the normalized quan-
tity . From the order update for , we can write

(40)

From the order update for [1], we have
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Fig. 5. MSE decay of the various Laguerre lattice forms under finite precision
(ten bits).

Fig. 6. MSE decay of the various Laguerre lattice forms under finite precision
(15 bits).

Substituting this equation, along with the order update for
into (40), we get

C. Recursion for

Finally, we define the coefficient

In order to derive an update for it, we proceed similarly to the
former recursions. First, we substitute into the recur-
sion for from Table II. Then, multiplying the resulting
equation by and using the time updates for

and , we obtain

Fig. 7. MSE decay of the various Laguerre lattice forms under finite precision
(10 bits) with an impulsive disturbance atN = 200.

Fig. 8. MSE decay of the various Laguerre lattice forms under finite precision
(15 bits) with an impulsive disturbance atN = 200.

Table V summarizes the resulting normalized RLS-Laguerre lat-
tice algorithm. Observe that, both for compactness of notation
and in order to save in computations, we introduced the vari-
ables

Note that the normalized algorithm returns the normalized
least-squares residual . The original error
can be easily recovered since the normalization factor can be
computed recursively by

VII. SIMULATIONS

Although all the RLS Laguerre lattice variants studied here
are theoretically equivalent, they differ in computational cost
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and perhaps more importantly in robustness to finite-precision
effects. Table VI summarizes the computational cost of these
algorithms for a least-squares problem of order. We see that
some forms are more costly in terms of multiplications while
other are more costly in terms of divisions.

In addition, the algorithms exhibit different behavior under
different operating conditions, such as finite-precision imple-
mentations and regularization. For example, for small regular-
ization factor , the array lattice algorithm exhibits the best per-
formance among all the lattice variants. The other algorithms
can break down due to divisions by small numbers (especially
for longer filters). We observed this behavior in simulations.
The breakdown is a consequence of the fact that in the ab-
sence of regularization, the initial least-squares problems be-
come rank-deficient. Moreover, for small regularization, some
quantities can become zero if quantization is performed with
short wordlength. In this case, divisions by zeros may occur. In
the array lattice form, however, no regularization is needed. The
behavior is also typical of lattice filters for shift-structured data
(see [18]).

Figs. 5 and 6 compare the performance of the lattice filters
in finite-precision (fixed-point) implementations with a varying
number of bits (and using rounding). A simple fifth-order La-
guerre filter was used in a system identification scenario. The
regularization factor for the algorithms was set to . In
both simulations, it is seen that the performance of the normal-
ized lattice and thea posteriorierror feedback versions are the
worst. We should also mention that for 10 bits, we noticed in
our simulations that the mean square error (MSE) curve starts
growing slowly for the array anda priori error feedback forms
after 5000 iterations, whereas for the standard lattice form, it re-
mains in steady state.

In Figs. 7 and 8, we compare the performance of the different
lattice (excluding the normalized anda posteriorierror feed-
back) forms for the same filter order when an impulsive distur-
bance is introduced at . A similar simulation scenario
was performed in [18] for tapped-delay lattice filters in order
to illustrate the recovery of the MSE convergence following a
sudden nonstationarity. We used zero regularization for the array
form and for the other versions. For a ten-bit
wordlength, the standard lattice form breaks down after the im-
pulsive disturbance. The error feedback form can still recover
its final MSE, whereas the array form achieves a higher MSE
value. For a 15–bit wordlength, the array form returns to its final
MSE faster than thea priori error feedback form, whereas the
standard lattice form achieves a higher final MSE.

We have also noticed that for high-order Laguerre lattice fil-
ters, the regularization factor has to be high in order to avoid
breakdown of the algorithm (in a 15–bit quantization). The array
form has shown the best performance in this case since its re-
cursions are valid even for zero regularization.

VIII. C ONCLUSION

In this work, we developed several lattice forms for RLS La-
guerre adaptive filtering. One form is based ona priori errors

with feedback, and it involves propagating the reflection coeffi-
cients in time. A second form is based on unitary rotations, and
a third form is based on propagating a fewer number of normal-
ized reflection coefficients. The algorithms are all theoretically
equivalent but differ in computational cost and in robustness to
finite-precision effects and to regularization.
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