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RLS-Laguerre Lattice Adaptive Filtering:
Error-Feedback, Normalized, and Array-Based
Algorithms

Ricardo MerchedStudent Member, IEEENd Ali H. SayedFellow, IEEE

Abstract—This paper develops several lattice structures for ~ Now, the RLS lattice algorithm that was derived in [1] ap-
RLS Laguerre adaptive filtering including a posteriorianda priori  pears in a form that is based arposteriorierrors, and it does
based lattice filters with error-feedback, array-based lattice filters, ¢ jnyolve an error feedback mechanism. Although this is a
and normalized lattice filters. All structures are efficient in that . .
their computational cost is proportional to the number of taps, Common_ lattice form (see, e.g., [10]-{12]), several other equiv-
albeit some structures require more multiplications or divisions alent lattice forms can be derived such as error-feedback forms,
than others. The performance of all filters, however, can differ array-based forms, and normalized forms. All these algorithms
under practical considerations, such as finite-precision effects and are, of course, theoretically equivalent. However, they tend to
regularization. Simulations are included to illustrate these facts. differ in performance under different operating conditions that

Index Terms—Array algorithm, error feedback, Laguerre net-  arise, for example, in finite-precision implementations or as a re-
work, lattice filter, normalized lattice, order-recursive filter, regu-  sult of noise and regularization. These facts are well understood

larized least-squares, RLS algorithm. for RLS lattice filters that result from tapped-delay implemen-
tations (see, e.g., [13]-[18]).
l. INTRODUCTION The purpose of this paper is to develop similar lattice variants

N i K11 th thors h dd dth bIfor Laguerre structures. Due to the special form of the regression
frdecenl wor f[ ],t | 3. autnors a:;/e addresse Rl?spfr'clat §&tors in the Laguerre case, and due to the lack of shift-struc-
of developing fast lattice (i.e., or er-recursive) > MeTH e in the regression vectors, the derivation of these alternative
for Laguerre structures. The regression vectors that arise in Sﬁjéztlﬂce filters is not a direct extension of what has been done be-
filters do not exhibit the standard shift structure that is charaﬁ)-re for tapped-delay lines. Some care is needed in deriving the
teristic O.f tapped—dglay—line implementatiqns. In other ward ew forms from thex posteriorirecursions of [1]. In particular,
Sltjﬁ cesSs:y”e tLegrest,rs]mn VECtorz are 1”?; sthn‘ted versions ?; ERWIII be useful to first introduce an extended RLS algorithm; it
other. Stil, the authors showed In [1] that a more general 1oy simple yet very convenient extension of the classical RLS al-
of data structure exists and that it can be exploited to deriv 8rithm. Once this is done. we will then derive. in sequence, an

fhast ofrdetrr]-remrj]ravetfrllltetzrf._ Indrelactied works [2], [dg]t’ the dauthor priori-based lattice filter, error-feedback-based lattice filters,
ave further shown that fixed-order (as opposed to order-reclfy ; ormalized lattice filter. In a later section, we will com-

sive) fast RLS Laguerre filters can also bg deri\{ed by relying Od?;lre the performance of these different forms using fixed-point
certain structural data constraints established in [4] and [5]. implementations. Several simulation results are included.
The usefulness of these fast RLS Laguerre filters stems

from the fact that it has been realized for some time that

Laguerre networks offer superior modeling capabilities than

FIR networks, at a reduced number of tap coefficients andConsider a column vectery € CY*! and a data matrix

with a guaranteed stable performance (see, e.g., [6]-[9] aHd: € CV+DXM_ The exponentially weighted least squares

the references therein). However, the computational cost prbblem seeks the column vectore CV that solves

existing RLS Laguerre filters has been of the orderidt .

operations per iteration, wher®/ is the order of the filter H,lui)ll[/vb)\]\‘ﬂ||w||2 + (yv — Hyw)* Wi (yny — Hyw)] (1)

(number of taps). The fast versions reduce this complexity to

M operations per iteration. wherey is a scalar positive regularization parameter (usually
small), and

Il. MODIFIED RLS ALGORITHM

Wy = diag{\™, AN~ A 1
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for some scalat.! The individual rows of y will be denoted **.I; " L) R L&)
by {u:} “N,0) wN.) WNM-1)
U wo/ w” W am
Uy 7 7 7/
HN = . . * — e(N)

UN
Fig. 1. Transversal Laguerre structure for adaptive filtering.

Let wy denote the optimal solution of (1). It is given by

algorithm was motivated by a (complex) Laguerre structure of
the form shown in Fig. 1, where

Lo(z) = Vi-laP

A *
wy = PnHyWxyn )

where we introduced the coefficient matrix

r and
Py = (p\N P I+ HyWyHy) b (4) 1—az1!
Z_l —a*
We will further denote the estimate 9f by jx = Hywy. We Lz)= = 0<lal<1. (10)

will refer to it as the (regularized) projection gf onto H y .

Now, let wy_; be the solution to a similar problemin this structure, successive regression vectors; are not
with the variables{yy, Hx, Wx, AV} in (1) replaced by shifted versions of each other. However, they still satisfy certain
{yn—1, Hx—1,Wn_1, AV}, That is structural properties that can be exploited to derive an efficient
RLS lattice filter. The resulting algorithm is listed in Table I,
and the resulting lattice structure is shown in Fig. 2.

The recursions of Table | assume= 1, and they are based
on the propagation of certaiposterioribackward and forward
HN—l:| estimation errors, which are denoted by

wyn_1=(NNI+Hy_  Wy_1Hn_1) *HyY_  Wx_1yn_1.

Using (2) and the fact that

H]\T = |: un

Tt (V) by 1 (N ), enr1(NV), Ear1(N )}
in addition to the matrix inversion formula, it is straightforward Uaen (V) +1(N) 1) +(V)}

to verify that the following recursions hold: In addition, five reflection coefficients, which are denoted by

’y_l(N) =1+ )\_luNPN_lu}k\f (5)

f b c [
gy = AT Py _1uiyy(N) (6) {“A4(N)a“A4(N)a"3/\4(N)ali/w(N)aHM(N)}
wy = awy -1 +gne(N) (7) " are evaluated as ratios of certain quantities for which recursions
e(N) =d(N) — aunwn_1 (8) are also provided. Comparing Fig. 2 with the conventional lat-
Py = X"1Pyv_q — gny HIN) gk (9) tice structure for shift-structured data [19], we see that the new

lattice filter is still fundamentally simple, although it now con-
withw_; = 0andP-; = p~'I.Italso holdsthagy = Pyuy.  sists of two lattice structures running in parallel.
These recursions tell us how to update the weight estimates\ithough the definitions of the forward and backward errors
{wn} in time. The well-known exponentially weighted RLSzre standard in the adaptive filtering literature (e.g., [16], [19]),
algorithm corresponds to the special choice= 1. The intro- subtle differences do arise in the Laguerre case in view of the
duction of a nonunity scalat, however, allows for a level of fact that the regression vectors do not possess shift structure. For
generality that is sufficient for our purposes in the coming sehis reason, and for the sake of reference, we briefly reproduce
tions. here the definitions introduced in [1]. Thus, consider the data

Notation: Since, in this paper, we deal primarily with ordermatrix Hjri2.n (Whose rows aréM + 2)-dimensional) and
recursive least-squares problems, it becomes important to grtition it as

plicitly indicate the size of all quantities involved (in addition
to a time index). For example, we will write s » from now
on instead ofv, in order to indicate that it is a vector of order
M that is computed by using data up to timfve We will also
write Hyy y instead ofH x to indicate that it is a matrix with
row vectors of sizel/ and with data up to timeév.

Hypon =[Hpysinv  Tpt1,n]
=[ron HunN min]|

Note that we are denoting the last column Bf;12 v by

xm41,~ and its first column byzg, x. Note also that while in

the case of regressors with shift structure, there exists a simple

relation betvveetﬁM,N andH ;s w, this relation is less obvious
Before deriving the new lattice variants, we briefly review angh the Laguerre case.

summarize the posteriortbased lattice algorithm of [1]. This  Further, letcy denote the column vector

Ill. A POSTERIORRLS-LAGUERRELATTICE FILTER

1why we introduce the scalarwill be understood very soon. The classical
A T T _
recursive least-squares (RLS) problem corresponds to the special echeide v =a*/1—|a2[a™ ! N2 oo 1 el
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TABLE |

A POSTERIORIBASED RLS-LAGUERRELATTICE FILTER

Initialization

Form =0to M —1 set

1 is a small positive number.

Om(=1) = pm(-1) = 7'171(_1) =0

G =g -D=¢) =0
c(-1)=1

For N > 0, repeat:

u(N) = au(N — 1) + /1 — |a|?s(N
Y (N)=1 eo(N) = d(N)
Fo(N) =1 Jo(N) = u(N)

BNy = &V/T=Ta  bo(N) = u(N)

Form =10 to M — 1, repeat:

Tm(N) = a* (N —1)+ﬂ—-N)(b)
Co(N) = laf¢, (v - 1) + L
BNy =2

BnlN) = =1 (b () = KB (N)em (V)

CANY = (4N - 1) + L=GD0

b (N)|?
CallV) = GV = 1) + Bt
GuN) = (N — 1) + Beligf

Fm (N)
Sm(N) = (N = 1) + J_N%j_
- e (N)bm (N)
pm(N) = Pm(N D+ =
T (9) = () — Lot
7 2
Fm1 (N) = Fm(N) — J_é‘ﬁ%

Emr1(N) = Em(N) = &5, (N)bm(N)
emt1{N) = emn{N) = kb {N)bm (N
m+1(N) (N) — kB (N) fm (N)

Alternative order-updates:

s V) = GH(N) — L5000

Gt (V) = (V) - %
Crer (V) = G (V) g 2L
Ny = c,';(N) LA

¢ (V)
<m+1(N) L‘E—)‘L
Ym+1(N) = (N ﬁﬂ—

2567
Hyy v . More specifically, consider the error vectors
b
byi+1,N = Trm41,N — HM+1,NwM+1,N
7 7 v
by,N =Zpmy1,N — HM,NwM,N
frsi,N =208 — HM,NwﬁLN
em,N =yn — Hy nwn N
euN = o — Hy nwiy n
where, for exampley?, , is the solution to
. N+1 2 r7
Igln[li)\ w4+ (o, v — Hyvwn)™
W pr
W (zon — Hy nvwn)). (11)

This problem projects the first colummy x onto Hy; n. Sim-
ilarly, we define{w}, v, w§; n,wn,n} (see [1]). The last en-
tries of the above error vectors are denoted by

{041 (N), bas(N), far1(N), ens(N), Ear (N)}

These are the quantities that appear in the recursions of Table I.

IV. ERRORFEEDBACK LATTICE FILTERS

As mentioned above, the order updates for ahgosteriori
estimation errors in Table | are described in terms of certain re-
flection coefficients, which are in turn computed as ratios of cer-
tain quantities. For example, the reflection coefficiefjj (V)
is computed as the ratig;, (N)/¢4,(N), with separate recur-
sions available for both the numerator and the denominator.

An error-feedback form of the algorithm can be obtained by
deriving explicit recursions for the reflection coefficients them-
selves. We shall arrive at this form in three steps. First, we define
certaina priori errors; then, we derive order-update relations for
them, and finally, we derive time-update relations for the reflec-
tion coefficients.

A. A Priori Estimation Errors
We first introducea priori, as opposed ta posteriorj esti-

mation errors. Thus, define tkeepriori error vectors

v
By+1,N = Tm41,8 — Hyp Nwiyp1 voy

5 5 b
Bu,N = xpm+1,8 — Hynwiy vy

_ (7 f
an+1,8 = Zo,n — Hy nwiy y_q

em,N =yn — Hpy ywar,v—1

where now, w]{4 ~_1, for example, is the solution to a
problem similar’ to (11) with allNs by N — 1. Com-
paring these expressions for tlepriori error vectors with
the expressions above for the posteriori error vectors
{b/\4+171\f,b/\47]\f,f]\4+17]\f,6]\471\f,&]\471\f}, the Only differences
lie in the use of the prior weight vector estimates.

The last entries of thesepriori error vectors are denoted by

which is defined in terms of the pole of each sectiorf.(z).
Now, the filter listed in Table | provides order-recursive up- {Brra1(N), Bar(N), anr g1 (N), enr(N)}

dates fora posteriorierrors that arise from the problems of pro-

jecting (in a regularized manner) the vectdrs, v, zar+1,~}  and they play a fundamental role in all future developments.
ontoHMW andH s +1,n and the vectors{yn, car,nv} onto In particular, by following the same argument as in [1, Sec.
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Fig. 2. A posterioribasedRLS-Laguerre lattice filter, wheré,(N) = (a/a*)\/1 — |a|?.

1], it can be verified that these errors satisfy the following/ectorSwﬁL N_1 andwﬁ’m ~_; are related by
order-update relations in terms of the same reflection coeffi-
cients{k(N), k1, (N), k4, (N)} that are defined in Table I: w?w,N—l = w?w,N—l

er+1(V) = ep(N) —en(V = 1)Bu(N)  (12) _ Pat, -1 Hyy, -1 ON 10K -1 ban—1 (17)
1—cy HunaPun-Hy v jov-1

Brs1(N) = Bar(N) — by (N = Dap(N)  (13)  where

_ A T T
arrpt(N) = ay(N) =, (N = DBy (V). (14)  ev-1=aV1-[af[a"™ o™ e 1%

A recursion for thea priori error that corresponds o, (V) It was further shown in [1] that the data matricHs, v and

requires a little more effort. For this purpose, we first recall frorff 3. are related viaH, vy = @y Huy,n, wheredyy is the
[1] that &, (V) satisfies the order-update relation (N +1) x (N + 1) lower triangular Toeplitz matrix (here for
the complex case)

Ev1(V) = en (V) — Ky (N)bar (N). iy
_ 2 *
However, since the vectaefy evolves in time according to the 1-|a| 9 v 2 N
relation dy=| al-la?) 1-|a® —a
acN_1 : : . .
cn = (N-1)(1—|q|? cee 1 —lal? *
A LM(N)} ™ D(1~[af?) o e

then, by resorting to the modified form of the RLS algorithnd hus, multiplying (17) from the left by ps, v = ®Hy x and
of Section II, we readily conclude that tlaepriori error that is subtractinge a1, v from both sides, we obtain

associated witlgn, (V) should have the form © b

= Cn_19M,N—1 c

Bu(N) = ¢nPu,n + 1]\;—A¢NHJ\LNWJ\LN_1
— Cn_1CM,N-1

A c
v (N) = epr(N) — QUM NWh N1 (19)

a
= E\/l —|al® — aun NWi N1 (15)

where¢ denotes the last row @ - and is given by

oy 2N af) o (A= laf) —a”]
Using this definition, the following order update fex; (V) can a .
be established by again relying on the arguments of [1]: = [}V 1—lal*ey —a}
a1 (N) = vpr(N) — a5 (N — 1) 8a(N). (16) andcy,v—1 denotes the leading entries ofHyy vw§y nv—1,

which we partition as follows:

B. RelatingB,;(N) and By, (N)

In order to complete the recursions (12)—(14) foraheriori
errors, we still need to know how to updétgy (V). This can be Bun = by, n—1
done as follows. We first recall from [1] that the optimal weight M B (V)

CM,N—1 }

c _
Hynvwyy vy = c
UMNWpr N1
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If we substitute these partitionings into (19) and expand, wehich shows that:; (V) can be interpreted as the regularized

obtain, after some manipulations, the relation least-squares solution of a first-order least-squares problem,
_ P namely, that of projecting (in a regularized manner) the vector
Pu(N) = —afu(N) + k(N = Drm(N) — (20) ¢y n Onto the vecto), . This simple observation shows

that x,(V) can be readily time updated via a standard RLS

wherewy;(N) is thea priori error defined in (15). Having de recursion of the forfh

rived the order-update relations for the vari@ugriori estima-

tion errors, it only remains to derive time-update relations for o _ V(N -,
the reflection coefficients ra(N) = rar (N = 1) + ¢&(N) [ (V)
- /
{rona (M), V), i (), 5 (), 5 (V) } ~ PhaNras (N = 1)
= Ii]w(N — 1) + b}b\f(N) [6]\4(N)
. _ - (V)
C. Time Updates for the Reflection Coefficients — Bar(N)kp (N = 1))
Unlike conventional derivations of error-feedback lattice al- (N — 1) + B (N)yam(N) . (N)
gorithms for tapped-delay line structures, we will obtain time- - M ¢t (V) M+1VE )

update relations for the reflection coefficients in a more direct

way by exploiting the fact that these coefficients can be regardb€ 1ast equation is obtained from the order update fpfV)
as solutions to least-squares problem of first order [5]. in (12). Similarly, using (13) and (14), we can justify the fol-

; f 2 .
We start with the reflection coefficient lowing updates fok:;, (V) andx}, (NV):

* (N Bt (N3 (N
ryp(N) = Zéng; (21) ﬁil(N) = ’iil(N -+ M(Cz )(]i\f{)( _) arv1(N)  (22)
M M
whgre, from Table I, the numerator and denominator quantitiesi‘;w(N) = ,QI;W(N -1+ w Bu+i(N). (23)
satisfy the time updates G (V)
ot (N) = par(N — 1) + et (N)bar(IN) Now, let us exami.ne the reflt_action coef{iciefm(]\fl)/.QDefining
var () the angle-normalized quantif, (N) = éx(N) /vy, (IV), we
, , bar(IV)[2 can express$, (V) as a least-squares solution of the form
Cu(V) = (N = 1) + — . , , N
() Ky (N) = (p+ bl\*4,N //\4,1\f)_lb/\>k4,1\fAl\’C//\4,i\f
Now, define theangle normalizearrors where Ay = diag{a”,a™"1,... a,1}. This means that we
, A b (N) 12 can again time update;, (V) via an RLS recursion of the gen-
m(N) =~ = PNy (V) eral form (7), i.e
Ty (V) T
/ N . . Grr(N) v (N
@/M(N) 2 761]\/42((1\7)) = GAl(N)’YJl\f(N) ky(N) = arfy (N — 1) + —M(C?w)(]y)( ) va41(V).
T
in terms of the square-root of the conversion facigr(&V).  Finally, we need to update the reflection coefficiefij (V).

It then follows from the above time updates fof;(N) and Again, using the time updates fof, (V) andr (V), it can be
¢4 (N) that{par(N), ¢4, (N)} can be recognized as the inneeXpressed as a least-squares solution of the form

products 3 ¥ 9 o —1 ,
rp (V) = (1 +c M,NANCM,N) c J\l,NANbJ\l,N

* _gl* /
pi‘f(N) =0 MJ\"/CMJ\’/ or, equivalently
Cu(N) =+ 3y Ny N . . 1k
. ) . ) ki (N) = (1 + él]\l,NA?\’é/J\LN) ' 5/M,NA2f (Aﬂflb/M,N) .
which are written in terms of the following vectors of angle
normalized prediction erros: Writing the RLS recursion for this variable, we obtain
b (0) hy(0) ; 13 & (V)
kpy(N)= —rpy (N -1+
AN L2 ] BN R wD =N = Dr e )
M,N = . v CmN = . : , 1, b
;o , x [ M(N) — ECM(N)“M(N - 1)}
Vi (V) ey () 1 © (N )yar (V)
- y _
In this way, the defining relation (21) for,;(N) becomes = <If?w(N -1)- % /3/\4(1\7))
M
i (N) = (460 v )V 0 vy where the last equation is obtained from (20). Fig. 3 illustrates

2Observe that the vectots, - andb,  differ in a fundamental way. The the resulting RLS-Laguerre lattice structure that is based on

entries ofb,,, v cannot be interpreted g% ,:(0), b (1), .. ., b (N)}, that priori errors. The corresponding recursions are listed in Table 1.
is, all the elements dfy,, » change with a change iV and likewise fore s, ~
ande’y, . 3This geometric argument avoids some typical algebraic derivations.
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d(N) §(V) &(N) £,(V)
n® -0 - O
ko(N=1) ki (N=1) ky(N-1) Ky (N=1)
Vo (V) ) ~ V) e
kg' (N-1) k’f (N-1)
kg (N=1) K (N-1)
Bo @) M ~[Bw B o~ o B (V)
U _ o\ _ -
Wiy k-1 Hv-1
H KE(N-1) KEW-1)
¢ % (V) N = Ly (V)
Fig. 3. RLS-Laguerre lattice network based arpriori errors with error feedback.
TABLE I terms. For example, consider the first recursion shown previ-
ERRORFEEDBACK RLSA-ll_DA';(IBCL)JREIRERRERlz)A};I;I'ICE FILTER BASED ON 0us|y fOI’Ii]w(N), which can be written as
7 2 7% /
Initialization ﬁ]\l(N) =(1= Wﬂ /ij\l(N _ 1) + M
Form=0to M —1 set: CM(N) ’VM(N)CM(N)
4 is a small positive number. N 5*
m( 1)-,‘9(1)—.‘6f( 1)“K,°(1)‘I€m( 1)=0 :W-i——lj(\f) li]\{(N—].)—i- J\l( )61\4( )
(-1 =G~ = (-1 = e (N) Yar (V)G (N — 1)
(-1 = 1 . .
Here we used the following relation from Table I:
For N > 0, repeat:
- b
u(N) = au(N - 1) + /T = [aPPs(N) T (N) CMEN -1)
(M) =1 eo(N) = d(N) () CGr(V)
0 E ; s TTTaE O‘O(N;T“UX)U(N) In a similar manner, we can derive time updates for the other
° ° reflection coefficients. The resulting equations are summarized
Form =0 to M — 1, repeat: in Table 111
Ga(N) = [alP (N = 1) + |vm (V) Pym (N)
Bm(N) = —a"Bm(N) + K5, (N — )rm(N) V. ARRAY-BASED LATTICE ALGORITHM
BN = L (kB (N — 1) — vm)rm(N) 3
Kf"(N) : (nm(N 1) R ﬁm(N)) We now derive another equivalent lattice form, albeit one that
Cn(N) = G (N = 1) + Iﬁm(N)!z*‘rm(N) is described in terms of compact arrays. This form involves only
CR(N) = ChL(N = 1) + |am (N)[25m(N) orthogonal rotations and tends to exhibit good numerical prop-
Cn(N) = (N = 1) + B (N) Py (V) erties
Vm11(N) = vm(N) — arl, (N = 1)fn (N) i i i i -
Emj_ll(N) = (V) — R (N — () _ _To.arrlve atthe array form, we first define the following quan
B2 (N) = Bm(N) = kb, (N = Daum (N) tities:
m — Um N - & -1 _m £
1 (V) = am(N) = 61, (N = 1)B(N) b(N)é(SJW(N) f( )351\4(1\7)
Kfn(N) — ( 1) + ﬁm(N ’Ym(N)Vm+1(N) dnm - CZ/Q(N) ’ s - f/Q(N)
R (N) = ( 1y e oy M N
N)(,iv)(N) b A TJW(N) c A TJ\I(N)
Ry (N) = kb, (N = 1) + —’”—;#)—ﬂ mt1 (V) qu ( )_W’ aa )—5/2—-
B (N) = km(N = 1) + &Mem+l(1\l) M (N) M (V)
it (N) = ym(N) - bmgzyv))z The second step is to rewrite_all the recursions in Table I! in
i1 (V) = 3 (V) — (V)2 terms of these quantities and in terms of the angle normalized
i i G () prediction errors{t),(N), ey (N), &, (N),¥,,(N)} defined
before, e.g.,
D. A Posteriori-Based Error Feedback Filter TM(N) = arpr (N — 1) + &3 (N (V) (24)
A similar error feedback filter can be derived by relying CEr(N) = |a®¢5 (N — 1) + |&), (N))? (25)
on a posteriorierrors rather t_hala priori errors. This can be_ CEN) = CM( — 1) + [V (V)2 (26)
achieved simply by expressing the updates for the reflection 5 2
coefficients in terms of posterioriquantities and rearranging Crr(IN) = G ‘QM ‘ . (27)
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TABLE Il Using (25) and (26), we can make the identifications
ERROR FEEDBACK RLS-LAGUERRE LATTICE FILTER BASED ON A B _,
POSTERIORIERRORS m = %2(1\7)7 n = qﬁ}(N), p=by(N).
o Proceeding similarly, we can derive three additional array trans-
Initialization formations, all of which are listed in Table IV. The resulting
Form=0toM—1 set algorithm is also represented schematically in Fig. 4. The ma-
trices{©%,(N), 05,(N), ©%,(N), 05, (N)} are 2x 2 unitary
# is a small positive number. (Givens) transformations that introduce the zero entries in the
Sn(=1) = o (=) =7 (~1) =0 post-arrays at the desired locations.
E?E }; = im(_l) = Cm(_l) = p
" N VI. NORMALIZED RLS-LAGUERRELATTICE ALGORITHM
For N >0, repeat: The final lattice form that we consider is one that al-
- lows us to reduce the number of reflection coefficients.
uw(N) = au(N — 1) + /1 — [a]Zs(N) Thus, note that the lattice filters considered this far
Ny =1 (V) = d(N) requwe the propagation of five reflection -coefficients
¥ = e = ;
V) =1 () = u(N) {r (N, 15 (N), 15, (N), w5, (N), mar(N) ). An - equiva-
G(N)=2yT—[af  bo(N) = u(N) lent variant can pe derive.d. that requirgs the propagation of
only three reflection coefficients. We will denote these new
Form =0 to M — 1, repeat: coefficients by{na;(N), war(N), oa (N)}.
GnN) = laf’ G (N = 1) + R ™) A. Recursion fory;(N)
RE(N) = by [aC (V= ), (V = 1) + Sl i) - -
N We start by defining the coefficient
bn(N) = =% (bm(IV) = K5, (N)em(N) ) 5t ()
A M
2 mu(N) = 57—
CLIN) = Ch(N - 1) + U=til V(NN
5 b _ b (N)[2
C’_"(N) - C’_"(N b+ Igm(gv’\’))‘z along with the normalized prediction errors
(n(N) = (N 1) + 52wy bar(N)
A M
N) =~ (N) — Lm0 (V) = 1/2 b/2
TYm+1{V) = 1 (N) be (NN))Z Y (N) M (N)
T (N) = 3 (N) — gL Ny A Ju (V)
M - _1/2 /2
Reu(V) = 22800 fae (N = 1) + 2 a0 ] Tar (N)Gar (V)
. A by (N)
KD (N) = ZomtalN [K (N=1)+: f (N)bim (N) ] Mu(N) = 20N b/2
mA T ANy <’ (V-1 v (V)G (N)
Fmp1(N) /
hN) = 24 [*“W-l e () 2 —1/2<czﬂvl>(—c/)2<zv>'
Em(N) = l:yn,:(l}(vN)_) [Nm(‘N -1 Nl;g)se'?[(vN)l)] M M

Emsr (N) = e (N) — 5. (N m(N) Now, referring to Table IV, let us substitute the updating equa-

emi1(N) = em(N) — Km(N)bm(N) tion for {ps41 (V) } into the updating equation fe{m@(N)}.
by 1(N) = bn(N) = &3, (N) fm(N) This yields
fm+1(N):fm( )'—K'f (N)bm(N)
7 N)b3, (V)
I (N) =k (N - 1)1 — [, (N T .
K (V) = ki ( ) |6y ( )|) CM(N) (V)
(28)

The third step is to implement a unitary transformation matrix
© that lower triangularizes the following prearray of numbersMultiplying both sides by the ratltjb/Q( )/¢LP (), we ob-

c . tain
a l\f(N— 1) cM(N) } o— {m 0} 5/2( :
be(N —1 V(N n.p N 7
BN =4 V) mr(N) = 23~ (N = 1) = [ (V)P)
for some{m, n, p}. The values of the resultingn, »n, p} can be M (V)
determined from the equality shown at the bottom of the page. + fi (NN, (29)

Fo el Sl -l
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b/2 1/2

TABLE IV order update equation fé N)b N),we
ARRAY-BASED RLS LAGUERRELATTICE FILTER obtain P q M'H( ) yCJ\l-l—l( )’YM.H( )
Eﬂf( ) — “A{( Jfm(N)
/1
Initializati a1 (N) = . (30)
nitialization C?\ﬁ—l( )711\4-21-1(]\7)
Form=0to M —1 set: Using the order-update relations f¢f; (V), we also have
 is a small positive number. i C}’W_H(N) = Cj_’w(N)(l — |l (N)]?). (31)
g5 (=1) = gh(=1) = g5 (=1) = g (-1) = K3, (-1) = 0 . .
FI20 1y = ¢¥2(_1) = ¢¥/2(—1) = In addition, by following the arguments of [1},,(N) can be
m (—D)=m (1) =@ (-1)=yp . s
c(-1) =1 seen to satisfy the relation
_ | far(N)?
~ N) =4y (N) - =~ (32)
For N > 0, repeat: M+1( ) M( ) C}J\}(N)
(V) = au( — 1) + /T TaPs(N) which can be written as
Y Y41 (V) = 3 (N (L = [ Fi(N)). (33)
(N)=1
eO(N) d(N) Substituting (31) and (33) into (30), we obtain
fo(N) _bo(N) = u(N) T ok /"
&(N) = /T=|al? /J(l—l—l(N) _ Uy (V) — my (V) £ (V) ) (34)

VA=A = I (V)7

Form =0 to M — 1, repeat:
i Similarly, using the order updates fgf;1(N), C}\}(N), and

alP(N-1) Ex(N) ] &b ) dUNY 0 Y (N), we obtain
-1 bnN |7 & (N)  Ba(N) F(N) = 2 (N) = nar (V) (V) (35)
- - M+1 — .
1) ) ] ety o VA= BN~ s ()
af’:(N_l) Em(N) 0 (N) = qi':(N) Em(NV) B. Recursion fotwy (V)
9m (N 1) /2(N) @ (N) e"‘/“(N) In a similar vein, we introduce the normalized error
1 1/2
L 0 Y (N) ] i X 'Ym+1(N) y ( )é CM(N)
_ M = TH1/2, i 179, v
GV =D W) ] o, gy [ )0 T N)GEN)
| ¢fr(N-1) ¥;.(N) B afx(N) b (N) and the coefficient
- ~ A Prr(V)
YN —1) BN YAN 0 wu(N)= 75— —-
ol LIRS FGEW)
L qnt(N - 1) fm(N) qm (N) m-+—1(N) i /2
Using the order update faitjlw (N) and~,/(V), we can estab-
lish the following recursion:
. 1N = wa (N (N
However, from the time-update recursion fof,(/N) and (V) = V) — war(N)by (V)

VA= NP = wa (NP

¢f,(N), the following relations hold:
To obtain a time update fary, (V), we first substitute the recur-

/2y = b/Q(N 1) sion forey, 1 (V) into the time update fomM( ). Theer)2 mul-

M - L _W(N tiplying the resulting equation by the rat(ifif N)Y/Cy (V)
= o (V)P and using the time updates f¢ff, (V) and(x (V), we obtaln
v -1

W= e as (N 1) = (L= PR ) = [, (V)2 (V)

+ b7 (V) el (V).
Substituting these equations into (29), we obtain the desired » Y ) .
time-update recursion for the first reflection coefficient: Note that wheb}, (V) = b}, (V —1), the recursions derived
so far collapse to the well-known FIR normalized RLS-lattice

- algorithm. For Laguerre structures, however, we need to derive
— _ _ 2 _ _
ma(N) = mu(N 1)\/(1 |63 (V)L = |FR (N )7| ) arecursion for the normalized varial (V) as well. This can
+ [ ()Y (IN).  be achieved by normalizing the order-updateligi V)

This recursion is in terms of the errof&},(N), fi;(N)}. We Vl(N) = _1om(N) = mhy (N)em (N) (36)
now determine order updates for these errors. Thus, dividing the a %2(1\,)%1\42(]\7)
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Fig. 4. Schematic representation of the array-based RLS Laguerre lattice filter.

TABLE V TABLE VI
NORMALIZED RLS-LAGUERRE LATTICE FILTER BASED ON COMPARISON OF THECOMPUTATIONAL COST OF THEDIFFERENT
A POSTERIORIERRORS RLS-LAGUERRELATTICE ALGORITHMS FORFILTERS OF ORDER M.
Algorithm Mult. Div. Add. NG
Initialization Standard o postertori 17M + 2 14M 14M +1

A priori error feedback 24M +2 M 16M+1

A posteriori error feedback || 27M + 2 16M 16M + 1 -
Array-based lattice 48M 8M 24M 4M

Normalized lattice 30M+4 | 5M+2 16M 8M +2

Form=01to M —1 set:

w is a small positive number.

G- = G-1) = (m(-1) =

which implies
For N > 0, repeat:

u(N) = au(N ~1) + /1= Tal*s(N) Cha(N) = (M) = leons (M) (38)
GN) =GN = 1) + [u(N)?
C(N) = G(N - 1) +[d(N)}?

BN = (N)—u(N)/Cb/Z(N) In order to relatg 7, (N), vas (V) }, note thatyy, 41 (V) can

el(N) = (N)/(é 2(N) be written either as in Table | or as in (32). That is
(V) = F/1-af
_ |far(N)? |oa (V)P
Form =0 to M — 1, repeat: ’yM(N) = ’yM(N) -
(V) Gr(N)

(V) = VI[P rh(N) = VI [FaiP
P (V) = VI= [ (NP rea(N) = /T [y (N)

[

This leads to the following desired relation:

en(N +1) = &rs (N)rb (N)pm(N) + by (V)& (N)

(V) = VI TV _ 1 — |bi, (V)

B (V) = — s (B (V) = (V) (V) M N) =N T e 39)
b (N) = /1= [B,(N )I2

N (N) = 18 (NYrE (N (N = 1) + . (N)B.5(N) Substituting (38) and (39) into (36), we obtain

2 Y) = V1= [ (V)P '
wm (N +1) = r (N)rp (N)wn (N) + b, (N)ep, (N) 77 " -
r2 (N} = /T wom (W) BN = — 1= [/ (V)P N) — eu(N)ey, (V)

i /T~ P — Tear (V)

Eniit(N) = ey (En(N) — @l (N)BL (V)
em+1(N) = srmyrewy (Em (V) — wm (N)br (V) ) . _ .
B (N) = oL (B (N) — nf(N) F2(N)) This equation requires an order update for the normalized quan-
PR Ti Eﬁ;? (1,3))( 1 (N) ~ i (N)BL (V) tity ¢{,(N). From the order update fa@f,(/V), we can write
N e (N K5 by (N
B (V) = M(C/Q) ME/Q) el ) (40)
In order to simplify this equation, we need to reldfg(N) to i (V)73 (V)
¢4, (N) and7,, (V) to v (V). We have shown in [1] that the
following equation holds: From the order update f@/,”(IV) [1], we have
; N2
PN = () — DI 37 . ¢
GelN) = GV = T 37) G (V) = GV = Ten(N)P).
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Fig. 6. MSE decay of the various Laguerre lattice forms under finite precisic
(15 bits).
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(Tab. V) form (Tab. Ity
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Substituting this equation, along with the order update f@{5 bits) with an impulsive disturbance &t = 200.

~va(N) into (40), we get

=1

Sy (V) — @ ()b, (V) )
V=185, (NP = [eam(N)[?)

5/1(4+1(N) =

C. Recursion forpp, (N)
Finally, we define the coefficient
T]\{(N)

VNG

pum(N) 2

Table V summarizes the resulting normalized RLS-Laguerre lat-
tice algorithm. Observe that, both for compactness of notation
and in order to save in computations, we introduced the vari-
ables

b . .
{71\4(N)77]{4(N)77

€
M

(N)7 7)?\4(N)7 719\94(N)
PRV, 7 (V). () }

Note that the normalized algorithm returns the normalized
least-squares reS|dud}(4+1( ). The original errorep; 41 (N)

In order to derive an update for it, we proceed similarly to thean be easily recovered since the normalization factor can be

former recursions. First, we substitutg ; (V) into the recur-
sion for x5, (V) from Table Il. Then, multiplying the resulting

equation byc’,?
¢, (N) and(§, (IN), we obtain

V-

~//

| (NP = B (N)2) o (V)

07 (N ) (V).

om(N+1)

(N )/CC/2( N) and using the time updates for

computed recursively by

Y2 (N) (N) = ri (N)r§ (V)

1/2
Cary1

1/2
Yrr+1

M

1/2

(V)™ ().

VII. SIMULATIONS

Although all the RLS Laguerre lattice variants studied here
are theoretically equivalent, they differ in computational cost
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and perhaps more importantly in robustness to finite-precisiarth feedback, and it involves propagating the reflection coeffi-
effects. Table VI summarizes the computational cost of thesients in time. A second form is based on unitary rotations, and
algorithms for a least-squares problem of orflerWe see that a third form is based on propagating a fewer number of normal-
some forms are more costly in terms of multiplications whilezed reflection coefficients. The algorithms are all theoretically

other are more costly in terms of divisions.

equivalent but differ in computational cost and in robustness to

In addition, the algorithms exhibit different behavior undefinite-precision effects and to regularization.

different operating conditions, such as finite-precision imple-
mentations and regularization. For example, for small regular-
ization factoru, the array lattice algorithm exhibits the best per-
formance among all the lattice variants. The other algorithms[l]
can break down due to divisions by small numbers (especially
for longer filters). We observed this behavior in simulations.
The breakdown is a consequence of the fact that in the abl?
sence of regularization, the initial least-squares problems bef3)
come rank-deficient. Moreover, for small regularization, some
quantities can become zero if quantization is performed with [4]
short wordlength. In this case, divisions by zeros may occur. In[s)
the array lattice form, however, no regularization is needed. The
behavior is also typical of lattice filters for shift-structured data [
(see [18]). [7]

Figs. 5 and 6 compare the performance of the lattice filters[8]
in finite-precision (fixed-point) implementations with a varying
number of bits (and using rounding). A simple fifth-order La-
guerre filter was used in a system identification scenario. Thel®
regularization factor for the algorithms was segite- 0.01. In [10]
both simulations, it is seen that the performance of the normal-
ized lattice and tha posteriorierror feedback versions are the
worst. We should also mention that for 10 bits, we noticed in[ll]
our simulations that the mean square error (MSE) curve starts
growing slowly for the array and priori error feedback forms  [12]
after 5000 iterations, whereas for the standard lattice form, it rep 3)
mains in steady state.

In Figs. 7 and 8, we compare the performance of the differerifl
lattice (excluding the normalized aralposteriorierror feed-
back) forms for the same filter order when an impulsive distur{15]
bance is introduced @& = 200. A similar simulation scenario
was performed in [18] for tapped-delay lattice filters in order|ig
to illustrate the recovery of the MSE convergence following a
sudden nonstationarity. We used zero regularization for the arre{ﬂrn
form (1 = 0) andy = 0.1 for the other versions. For a ten-bit [1g]
wordlength, the standard lattice form breaks down after the im-
pulsive disturbance. The error feedback form can still recove
its final MSE, whereas the array form achieves a higher MS
value. For a 15-bit wordlength, the array form returns to its final
MSE faster than tha priori error feedback form, whereas the
standard lattice form achieves a higher final MSE.

We have also noticed that for high-order Laguerre lattice fil-
ters, the regularization factor has to be high in order to avoid
breakdown of the algorithm (in a 15-bit quantization). The array
form has shown the best performance in this case since its re-
cursions are valid even for zero regularization.

19]

VIIl. CONCLUSION

In this work, we developed several lattice forms for RLS Le
guerre adaptive filtering. One form is basedapriori errors
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