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Abstract—This paper solves the problem of designing recur- compared with FIR networks at a reduced number of tap co-
sive-least-squares (RLS) lattice (or order-recursive) algorithms for - efficients and with a guaranteed stable performance. This is in
adaptive filters that do not involve tapped-delay-line structures. In - conirast with some adaptive IIR filter implementations that re-
particular, an RLS-Laguerre lattice filter is obtained. quire stability monitoring. Excellent accounts of adaptive IIR
_Index Terms—taguerre network, lattice filter, order-recursive filters and of the convenience of Laguerre-based filters can be
filter, regularized least-squares, RLS algorithm. found in [13]-[18]. An example of an application in echo can-

cellation appears in [19]. In particular, assuming stationary data,

l. INTRODUCTION [18] proposes an LMS-like Laguerre-based lattice filter that is a

HIS PAPER solves the problem of designing recurgg:)?ir;“nz]a(gzr; c[);]t)he so-called gradient adaptive lattice (GAL)
sive-least-squares (RLS) lattice algorithms for adaptive In this paper. we. derive an exact RLS Laguerre-based lattice
filters that do not involv_e tf_;lpped-delay-line s_tructures. AS _Eﬁgorithm. One’ advantage of the RLS-based algorithm, besides
well-known, all the derivations that are available so far i timality, is that least-squares methods offer considerably su-

. at ar B
the literature for RLS order-recursive filters are based on térgegrior convergence performance and lower misadjustment when

assumption of regression yectors with shift structurg (s mpared with stochastic gradient solutions (see the simulation
e.g., [1]-[6]). The resulting filters are therefore not appllcablreeSmtS in Section V and, in particular, Fig. 6).

to situations that involve other filter structures, such as La- We start our discussions in Section Il with a brief review of

guerret—bzgfctad d netw_o rks, ;/vherr(]e stEccesswe regression Vec{l‘?ésregularized least-squares problem, followed by derivations

ar? nots |te vlfr5|;)ns8o iac N her. that fafiked-ord in Sections Il of several order- and time-update relations.
n recent works [7], [8], it was shown tha ed-order Although mostofthe expressionsinthis section may look familiar

RLS algorithms can be derived for certain more general Sm{%’ readers acquainted with the theory of least-squares lattice

tures in the regression vectors, other than the shift SthtL_lﬁﬁers, our presentation actually has three contributions. First,
These extended fast array methods turn out to be generahzatlgw xpressions are derivediithout assuming any underlying

of earlier well-known fast transversal schemes fortapped—delgt)(ucture in the regression vectors. The derivation of some
lines known as the fast posteriorierror sequential technique i

) . of the relations derived in this section has been restricted
(FAEST) [9] and the fast transversal filter algorithm (FTF) [10]'rn the literature to the case of shift structured data. Second,

As an examplg of the usefulness of these extensions, 't. WaS{{E derivation shows that it is possible to deriefficient
cently shown in [11] that the_ regression vectors tha.‘t. anse Nyder-recursive RLS filters, even for cases where the regression
Laguerre-based network .S&.lt'Sfy. the structural conditions of [l yors- o not possess shift structure. This is achieved by
and that, therefore, an efficient fixed-order RLS scheme for u

. - o ointing out the exact variable whose update is intimately
dating the coefficients of a Laguerre-based adaptive filter ¢ fected by the data structure. The derivation also shows what
indeed be derived.

kinfds of data structure lead to fast order-recursive filters. Finally,

These res_ults motivate us to_pursue here the _developr_nen(tiﬁ) order-recursive relations are derived by explicitly solving
order-recursiveas opposed to fixed-order, adaptive algonthmﬁé

; i | filter struct ther than th i Eularizedleast-squares problems from the start. In contrast,
or certain general iter structures, other than the conventio ilar relations have always been derived in the literature
FIR structure. A consequence of our derivation will be the fll‘%-

L . L thout taking into account the need for regularization; this
RLS Laguerre-based lattice filter. While the existing RLS—bas%ci3 : L . .

. . ) ed is usually accounted for by initializing the lattice algorithm
Laguerre solutions are ap (M?) algorithms (e.g., [12]), with y y g g

; ' o ; with certain nonzero initial conditions. Our arguments will
M being the order of the filter, the lattice filter of this paper of- g

; O (1) solution for th ¢ bl Thi fhow that these two ways of handling the initialization issue
fers an ( )s_ou lon for Ihe €xact same probiem. ThiS resu bad to different interpretations of some of the variables in
is useful especially since it has been realized for some time t

L works off . deli biliti h resulting algorithms.
aguerre networks ofier superior modeling capabllities WNeN v ang our discussions with a derivation of the RLS La-

guerre-lattice filter in Section IV. The algorithm is summarized
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Il. REGULARIZED LEAST-SQUARES PROBLEM They are both related by a conversion factor

We first provide a brief review of the regularized least-squares
problem. Thus, given a column vectpe CN*! and a data ma-
trix H € CV+UxM the exponentially-weighted least squares

problem seeks the column vectore C that solves where

HVLin[/J)\N'i'l||w||2 + (y — Hw)*"W(y — Hw)] Q) (V) =1—unPruy.

where is a scalar positive regularization parameter (usuallthe well-knownRLS algorithm allows us to updatey recur-
small), and¥ = (AY @ A"t @ .. @ 1) is a weighting matrix sively as follows:
that is defined in terms of a forgetting factdrsatisfyingd <

A < 1. The symbok denotes complex conjugate transposition. FyHN) =1+ XA tuy Py_july (6)
The individual entries of will be denoted by{d(¢)}, and the gn = A" Py_juiy(N) 7
individual rows of H will be denoted by{u;
Wit wy =wy—_1 + gne(V) (8)
d(0) o Py =A"'Py_1 — gvy NN )
d(l) Uy
v= Lo H= Cl with w_; = 0 and P_; = p~'I. It also holds thayy =
a(N) Py 2
Let wn denote the optimal solution of (1). It is given by lIl. ORDERRECURSIVE RELATIONS
wy = (AN T + H*WH) TH* Wy We now derive several order-recursive relations. As men-
A PvH*Wy ) tioned in the introduction, we re-emphasize that the presentation
‘ in this section has three contributions. First, the arguments do
where we introduced the coefficient matrix not assume shift structure. Second, the derivation introduces
N1 . . and singles out a variable whose update is affected by data
Py =@pA T I+ HWH)™. (3) structure. Third, the derivation explicitly incorporates regular-
N ization.
We further letj denote the vector Before proceeding, we should remark that since in the re-
g a Huwy. 4) mainder of this paper we deal primarily with order-recursive

least-squares problems, it becomes important to explicitly in-
We will refer toy as theregularizedprojection (or simply pro- dicate the size of all quantities involved (in addition to a time
jection) of the observation vectgronto the range space &, index). For example, we will writev,;, - instead ofwx to in-

which is written asR(H). dicate that it is a vector of orde¥/ that is computed by using
We also define two estimation error vectors: thposteriori  data up to timeV. We will also write ;v instead ofH to
error vector indicate that it is a matrix with row vectors of sidé and with
data up to timeV. Similarly, we writey instead ofy andW
eny =y — Hwy instead of so that problem (1) becomes

and thea priori error vector . ; "
IHIII[M)\A+1||TUJ\4||2 +(yn—Hy, vwn)" W (yv —Hyr, nwag)]
W s

ey =y— Hwn_y

and its solution isvys ». In @ similar vein, we will write
wherew 1 is the solution to a least-squares problem similar

to (1) with data up to timeV — 1 (and withu AN ** replaced by
pAN). The minimum cost of (1) will be denoted gyN), and
it is given byt

{yl\l, N, €M,N; €M, N, eAl(N)v f]\l(N)v ’YJ\l(N)v £A4(N)}

EN) =y Wey. (5) A. Order Updating
Assume (for simplicity of presentation) thaf = 3, and

The last entries of - ande 5 are called the posterioriand the consider the data matrix

a priori estimation errors at timé/, and they are given by
©(0,0)  ©(0,1) (0, 2)
e(N)=d(N) —unwyn, eN)=dN)—unwn_1. w(1,0) w(l, 1) w1

Iwe may note here that in the absence of regularizdjios 0), the expres- H; v = U(2a 0) “(2a 1) “(2a 2)
sion for the minimum cost can also be expressed in the equivalent{a¥im = ’ . . .

e Wen. This follows from the orthogonality propertf *Wex = 0. How- . . .

ever, when regularization is present, we need to use (5) instead. This fact distin- u(N, ()) u(N, 1) u(N, 2)

guishes the derivations we will provide for the updates of the minimum costs of

the so-called forward and backward prediction problems from those that assum®&\Ve may remark that without the factar’+1 in the cost (1), the above RLS
no regularization. More on this later. recursions would not be accurate.
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The (regularized) projection afy onto R(H3 ) is given by where we define the scalar

[cf. (4)] A U5 NWiyn
: "N = N g
U3, v = Hs NP3 nH3 xWiyn. r L8
Now, suppose that one more column is appenddd4oy, i.e., pANTL 4 5N
Hyn=[Hsn a3 n] (10) We thgrgfore derived an order-upc_iate relation (14) for the
a posteriorierror vectors. The recursion however depends on
where b3, n. We are thus motivated to study the propagatioof
more closely.
(0, 3)
u(1, 3) B. Backward Estimation Problem
T3, N = u(2, 3) We start by partitioningZs y of (10) into
u(N, 3) Hz n =[x0N FQ,N]
The (regularized) projection afy ontoR(H4 ) is now so thati, i is now partitioned as
Hyn=[zo,n Haon z3n] (16)

Oa, v = Hy NPy, NHY x\WryYN. (11)

o Using arguments similar to those that led to the update equation
In order to relate both projections of the vectar, we note the (14) for e4. v, it is straightforward to verify thabs. x can be
following. The coefficient matrice§Ps, -, Py, v} are3x3and gptained as follows: ’

4 x 4, respectively, and they are defined by [cf. (3)]

by N =bo n — KS(N)fo, N

P?:]]L\, = (AN ¢ H; yWNH3 N)

Priy =AY + Hy \WrHy n). where the scalar coefficient, (V) is defined as
They are therefore related via KS(N) A I3 nWNas, N
2 N+l g ef
Pl [ P:%_:JL\ Hf)f NWnzs, N N HA 62&§2 (&)
SN oy NWhHs x o p AT af Wias w = (17)

AN 4 ()

Inverting both sides, we get . . .
9 9 and f, n is the residual error that results from the solution of

Pyv = [P&N 0} 1 the least-squares problem
Y N = - -
) 0 0 N+1 b ) . _ . _
R wninly A a2+ (0, — o, 0] Wy (o, —H, o))
: [_wﬁ“} [l n 1] 12 "
whose minimum cost we denote tg{gN). This problem
wherew?,  is the solution to the least-squares problem: ~ Projectswo, v ONtOR(H>, ). Likewise, by, v is the residual

error that results from the solution of the least-squares problem

min[pA | wh||*+ (w5, v — Hs, nwy)* Wi (w5, v — Hs ywi)] T — . — 3
wh minfp AN [ wh||? + (s, y—Ha, nwh) Wi (w3, n—Ha, nw$)]

Wa

and&(N) is the corresponding minimum cost. This problem _
projectszs, x ontoR(Hs, y). Let whose minimum cost we denote (). This problem

projectszs y ONtOR(Ho, n).

b37 N = {L’37 N — H37 ]\ng7 N . .
C. Forward Estimation Problem

denote the resulting (backward) estimation error vector. SubstiBy similar argumentsf, » can be updated as follows:
tuting (12) into (11), we find that the projectiof$s -, s, v} ’
are related via fa.n = fo,n — RL(N)ba n

b* TW TUN
?’r’]\—]\b]\ bz, n- (13)
pANTE + (V)

Ya, N =Us, Nt wherer{(N) is defined as

Subtractingyx from both sides, we obtain a relation between A U yWiwo N

the corresponding a posteriori estimation error vectors ra () = PANFL 4 SQ(N)
__ sy
(14) PANTL + E5(IV)

(18)

ea, v =3 N — ka(V)bs, N
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Note that we used (V) in the numerator o (N) ands, (V) Now, assume that one more row is appended to the matrix
in the numerator of%(V) in (17) since it can be easily verified (20), say
that 7
X z A 7
- =[xy H, =z
[fz2, h\Wnxs, N]" =03 yWiao, N (19) [04 h /3} lon Hioal

Summarizing, we have so far derived the following orde@nd introduce the corresponding facthy = =W, 2, where
update relations for the error vectofsy, v, by v, far n} W1 = (AW @ 1). We would like to related; andA (i.e., we

(which are written here for a generic ordef): would like to determine an order-update relation £ox.
As above, letw,, denote the solution of a problem
emt1, N = em, N — Kpm(N)by, N similar to (21) with {z, H, W, \N*'} replaced by
b, N = bar, v — £ (N) S, v {z, Hy, Wy, AN+2}. Likewise, let w,, denote the solu-
v N = fa v — 55 (N )bar, v tion of a problem similar to (21) with{z, H, W, AN*1}

replaced by{z;, H;, Wi, AN*2}. Now, define thea poste-
We still need to derive a relation fén,, . We postpone this riori errors

discussion to Section IlI-G due to its intrinsic dependence on

data structure. Gd=a—hw,,, [=0-hw.,
If we extract the last entries of the above vectors, we obtain
the following relations: and the conversion factor

epm+1(IN) = enr(N) — rar(N)bar (V) v =1— AN 2L+ HYWyH |7 21— hPLh*
by+1(N) = by (N) — ’iM( ) (N) .
Frsr(N) = far(N) — mM(N)b 1(N) From the definition ofA,;, we have

- st 1l 8- [£]-)

(N -
kp(N) = #(52(]\7) =AWzt o™ — (A"WH + " h)w,, . (22)
M
b (N) Sp(N) TheRLSrecursion (6) allows us to relate,, andw. as
iy T ONN+1 o .
pA + £A4(N) w., = w. + ’y_lﬁlh*ﬁ.
Iif (N) — 67\4 (N)
\ M PANFL 4 5%4(N)~ Substituting into (22), we obtain, after grouping terms
We now show how to update the quantities & B
_ A=)+
{80(N), par(N), Ehe(N), &, (), € (N)} ) (23)

which are needed in the evaluation of the (reflection) coeffi-
cients {rar(N), x4,(N), x4, (N)}. To do so, we first derive E. Time-Update Relations

below a general update result. It is important to re- emphasuewe can now use the general result (23) to derive updates for
that this result will be independent of any data structure in the

matrix H]w’ N (Cf [20]) {6/\4(N)7 p/W(N)7 55)\4 (N)7 Sgi(N)v 5{4(]\7)}

D. General Time-Update Result Consider, for example, the quantity

Consider a generic data matrix of the form v —
om(N) =25 nWibm, v
[z H 2] (20)
which appears in the numeratorm@ ) [see (18) forM =
wherez andz are column vectors, anH is a matrix of appro- 2]. We can partitionH ;2 y as
priate dimensions. Define the weighted inner product _

Hypo v =[zo,n Hu n oy, n]
A2 Wi _lxon—1 Humno1 Ty, nv—t
U,(N, 0) U/W, N U,(N, M + 1)

wherez is the residual vector from a regularized projection of ~ o
z ontoR(H ), namely,z = z — Hw,, wherew, is obtained by and make the identifications; — xo n, 21 — by, v, H1 =
solving Hp n, andW; — Wi It then follows that

min[pAY Jw||? + (2 — Hw)*W(z — Hw)]  (21) « (NG
un/ w z w z w 5ar(V) = Aar (N — 1) + fM(_N)bM(N)

. N
where, as beforgy = diag{ A", ---, A, 1}. Tar(N) (24)
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where the conversion factar,; (V) in this case is defined by 4™ O 4 M et
Far(N) =1 —TUng, NPos, NUhs v e - . .
ﬁ]w? N = [u)\N-HI + F?\LNWNFJ\L N]_l. 0 ! 2 -
bo(N) |T|50(N) ~ bl(N)l_F)_|51(N) by (N)
quSai;ilOsnlrsr?llar vein, we can justify the following tlme-updatef@_ PN P
. b b
BN A faa)
e (N)opr (N 7
pym(N) =X ppr (N — 1) + M]]\\f() (25)
3 Tm (V) Fig. 1. GeneraRLSIattice network structure.
() =gl (v — 1) 4 2O @)
Far(V) G. Significance of Data Structure
¢l (N) =X (N = 1) + |2 (V)2 27) Thus far, we have derived almost all the necessary recursions
Y (V) for the development of an adaptive lattice filter. All the results
b b |bar(N)? hold for arbitrary data structures. The only update missing is
En (V) = A8 (N = 1) + yar(IN) (28) the one for the error sequengl; (NV)}. As is shown schemat-
ically in Fig. 1 by the boxes with question marks, we need to
where the conversion factef, (V) is defined by know how to generate the errof8,,(V)}. It is the update of
these variables that is directly affected by data structure and it is
Ym(N) =1 —up, NPrr, N, N the key to achieving a fast algorithm [by fast, we me&agM)
Py n= [NANHI + Hy; NWNHy N]—l. operations per iteration for a filter of ordéf].
’ To illustrate this point, consider, as an example, the case of
prewindowed input data with shift structure, e.g., Mdr= 3
F. Order-Update Relations w(0) 0 0 0
We can order update the conversion factors as follows. Note u(1) u(0) 0 0
that the last row of{ ;41 ; can be partitioned as u(2) u(1) u(0) 0
Hy v = | u(3) u(2) u(1) 1(0)
UM+1, N = [UM, N u(N, M)] : : .
so that by multiplying a relation of the form (12) @ty 11 n wN) w(N—-1) wN-2) wiN-3)

by uar41, 4 from the left and by its conjugate transpose frorqh

i en, any two successive columfs; ~, ;41 ~} Of Har &
the right, we get y (8, v, Tig1, v} ,

are related by the lower triangular shift maté i.e.,

B ba(N)? Titl, N = 4%; N (31)
pANHL 4 €8 (V)

Ym+1(N) = ymu(N)

(29) so that the following always holds for allf :

Similarly, we get Hy n = ZHy s ZHyp = [H 0 } '
M,N—1
_ _ b (N2 . . . L — ) i
Fniar(N) = Fp (V) — (—)b_| US|ng these relations in the definitionslof;, xy andba,, v, viz,,
pANTL 4 €8 (N) (30) in

In addition, using the order-update relations for the vectors

bary1, v and faz41, & and the defining relations

7 _ b
by, N =xm41, v — Hy nwy n (32)
_ b

by, N =xm, N — Hy, nwhy v

P we can easily verify that
Evit1 (N)= 373, NWN v+ N

b * 7 _ 0
N)y=zx r[/[’ rb 7 b —
£M+1( ) M+1, NYWNUM+1, N M, N |:bM,N—1:|

we obtain the following order recursions for the minimum costgnd hence

&b (V) andéf, (V): _
b/\/[(N) = b}\/[(N — 1)

Sy (V)2
f _of M
S (V) =& (N) — AV € (N) which is a widely known result. In a similar vein, it will also
a M hold that
Sp (V)|

b N) = b N — B
Shra (V) =3 (V) pANHL 4 ¢ (V). EN) =N - 1) and7 (N) = yar(N — 1).
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d(N) ™\ 4(N) ) 2(N) . ew(N)
ko)
b (M)
(V)
S (N)

Fig. 2. RLSlattice network for the case of shift data structure.

These equalities eliminate the need for recursions (26) and (30),
and the general lattice recursions of this paper collapse to the
well-known tapped-delay-line lattice network depicted in Fig. 2.
The corresponding regularized lattice equations are listed in
Table 1.

3005

TABLE |
CLASSICAL RLS-FIR ADAPTIVE LATTICE ALGORITHM

Initialization

For M =01to M —1 set:

¢ is a small positive number.
om(-1) = pm(-1) =0
(=1 = Ge(=1) = u

For N > 0, repeat:

Yo(N) =1
bo(N) = fo(N) = u(N)

For M =0 to M — 1, repeat:

We may note that we have redefined the minimum cost vari-
ables in order to save addition operations. For example, we de-

' CENY = AL (N — 1) + Ll
fined

’rbM(I;’v"lz)
Che(N) = A3 (N — 1) + LDl
Cr(N) 2 AN gt ()

S (N) = Mg (N — 1) + LMoy (N-1)
A 7

() 2 N el (),

Then, itis easy to verify that these new quantities satisfy recur-

- _ Lo v?
sions similar to those of¢%, (), ¢1,(V)}, namely v+ (N) =1 (N) = S,

oo e )2 Rhe(N) = 460
(V) = Ay (N = 1)+ (N —1) i (N) = cM’? Ty
AN bar(N)[? war (N) = S5
(V) =2 (N -1 + (V)
) =l 18P oo (V) = V1) = () )
a1 \V) = Car (V) fu+1(N) = far(N) = v} (N)bar(N 1)
7 1621(N)]?
(V) = (V) — W

IV. RLS LAGUERREADAPTIVE FILTERING

but with the initial conditiong?,(—1) = Cf4(—1) = /. Consider the Laguerre-based model of Fig. 3, where
Observe that the variableg},(V), ¢3,(N)} do notcor- = J
respond to the exact values of the minimum costs for they(z) = 1 ; andL(z) = 1“71, 0<lal <1.
— az — az

backward and forward prediction problems. Only wher: 1 (33)

and N — s they tend to coincide with the actual valuefote thatL(~) is a first-order allpass system and that, unlike
{&h (), & (V)2 a generalllR structure, the poles of the Laguerre-based
Now, what if two successive columns of the input data M@yodel are fixed atz. (The choice ofa can be optimized
trix Hyy, v are not shifted versions of each other as in (31) byffiine according to some criterion; see, e.g., [21].) The input
are instead related by a more general mab®Would it still be {5 the Laguerre filter at timeV is denoted bys(V), and the
possible to derive a fast lattice algorithm? Interesting enougtyefficients that combine the outputs of the successive sections
the answer is positive. We demonstrate this fact in the next S8%,(2), L(2)} are denoted byw;}.
tion by considering an important example. The result will show now, consider the case of prewindowed input data (i.e.,
that it is possible to move beyond what has been developedsm = 0fori < 0 and zero initial conditions). Using the
farin thg Iiteraturg for shift-structured data and to devedgact gjfference equations that defifido(z), L(z)}, itis possible to
RLS lattice algorithms for more general data. relate two successive columns of the data matrix in this case as

3This point serves as a good example of one of the issues we raised earlier,
namely, by solving regularized problems from the start, we can clarify the sig-
nificance and the meaning of the different variables that appear in the latticéThe case of complex poles can also be handled. For simplicity, we assume
recursions. reala.

Tiy1, N = Pnwi N



3006
(N)
o L@ L) L@
u(N,0) u(N,I} w(N,M-1)
”
Wy W1/ WM:( d(N)

Fig. 3. Transversal Laguerre structure for adaptive filtering.

where®y is an(N + 1) x (N + 1) lower triangular Toeplitz
matrix of the form

—a
1—a? —a
a(l — a?) 1—a?> —a
Oy = i
aN=1(1 — a?) 1—a? —a
(34)
Of course, it also holds that

Hy vy =%nHy N (35)

A. Exploiting Data Structure

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 11, NOVEMBER 2000

For simplicy, definev 2 H. Then, using the matrix inversion
lemma, we get
Py*yP
vPv* — 1.

Substituting this expression into (38) leads to a desired relation
between{w}, y, wh; y}:

(Pt —v*) =P

v*vPv*c*
vPv* — 1 M, N

N-

v v PH* .
wPorr —1  °°
o __ PHYce b
TUMN T T e HPH e

wg@]\f:P(H* -

If we now multiply by Hj; x from the left and subtract
zm+1, N, then using (32) and (35), we obtain

by, v
1—c* 61\47 N

by N = Py v + Dy N (39)

where we defined the vector
. A .
em, N = Hy NPy, nHy yen.

This vector has the interpretation of being the regularized pro-
jection of ey ONtOR(H s, nv ).

Now, referring back to the definitions of the error vec- In view of the above, we find that the last entrylofi x is
tors {ba, v, b, v} in (32), we see that we need to relatgiven by

{whs, v» why, v} These vectors are given by

w?\L N = PJW: NHXL NWN-TJ\L N

why, x =Py, vHy yWNeari, v

Py n =AY + Hyy W Hp, v
Py oy = XN T+ Hy yWhHu )7

For simplicity of notation, we are going to write?, P, ¢, W}
instead of{ Hy; v, Py, n, @, Wy} in the following deriva-

tion. Later, we will state the results with the correct subscripts.

We will also assume in the sequel that= 1 so that = 1.5
Using (35), we get

why y = [l + H*O*@H] ' H* ®*®xpy v (36)

- b, N .
byp(N) = dnbar, N + —2———— dném, N
1—cyem, n

(40)

where ¢y is the last row of® 5. The above relation involves
four growing-length inner products on the right-hand side:

{¢nbar, v, Enba, N, ENEM, N, ONEM, N}

'e will show that the first two are related to each other, whereas
the last two are also related to each other. This will follow as a
result of the fact that - andcy have similar forms. In this way,
we shall need only to develop order-recursive updates for two
of these inner-product terms.

To this end, first note that we can simplify (40) by exploiting

Now note thatd*® is a rank-one modification of the identity the similarity between the vectogsy andcy, viz.

matrix, namely, it satisfies
(I)R’(I)N =1- CNCR’ (37)
where

cN 2 V1—a2[a oV !

[We will also write ¢ instead ofcx for simplicity.]
Substituting (37) into (36), we obtain

a 1]%.

wgﬁ N =l + H*(I — cc)H| "' H* (I — ec)apm, v

=(P '~ Hrcc*H) ' H*(I — ec®)rp, v (38)

SFor more generdll” and®, the arguments of this section would require the

differenceW — &*W & to have low rank.

1—a2 | 1
=Y o o Y]
a a
to write
1—a? by (N

dnby, N = a cvba, N — Mc(z )

N \/1—@2 . A é]w(N)
dNCM, N = CNCM N T

Substituting these expressions into (40), we obtain, after some
manipulations

i) =+

cRrb]\47 N&]\{(N)
1-— CRré]\L N

- bM(N)>
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am -~ gN) ~_aN o eV
_HH i _\) _(_ —
ko(N) ky(N) k(N ki)
Eo) ~__aw A~ W) ae®
B KEW)
kg (V) KN
bO ) 1/a EO )] N\ bl ) VVa Bl N ~ bM—I(N)
v 9 - _ I i
e Ko(N) KNy
! kM K
‘UH | ™ ) = FactN)
Ny =/

Fig. 4. RLSLaguerre lattice filter, wher&,(N) = v/1 — a2.

and subtracting one from both sides, we get the following order-
update recursion fofn,(V):

which contains only two inner products

AN c A * A
T™™m(N) = cnby, v, Cu(N)=1—cyém, N |72 (V)]
TM

CGraa () = G = T

With these definitions, we can write

From (39), we can derive an alternative recursiorfﬁq(N )
To see this, we multiply (39) by}, n = 23, v®* from the
left and get

Bar(V) = = (bar(N) = o, (V) (V)

where we defined & (IN) = oy y O By, v + Koy (V)T v ©* Béns, v

v (N) Tam(N) Now, using (37) and the substitutiomﬁﬁ o N = &L (N,
Fm - f\l(N) CRer\L N = 7']\4(N), anchréM, N=1-— Cﬁf(N), we get

T]\{(N)

— .’L’}kw NEJW: N-
G (N)

andépy(N) = ey (N) — én(N). [Here,cpr (V) andépg (V) ng(N) = & (N)

denote the last entries of; ; andéy,, n, respectively.]
Hence, all we really need to know is how to update the quapmwever, similar to (19), it holds thati, véu. n = Uiy ven

tity ¢as(V) and the inner productsy (V) and(as (V). so that we arrive at the recursion
First, note thaty; y andéys, » can be order updated, in the

same fashion as in (13) and (14), namely

()P

Cal¥) = (W) =

by, N (V)

CM+41, N =CMm, N+

1+ &4 ()
. . bar(N)TI (N . Fi ime- i
entan(N) = ar(N) — M )b MJ(V ) B. Final Time-Update Recursions
p &y (N) Finally, it only remains to determine a recursive relation for

L

Zep(N) — 15, (N)bpr(N) 7m (V). This step requires more effort. We start by noting that

we can writerp(N) in the form

7']\4(N)I \/1—@2[1 1

where Ay = diag{a”, a’¥~%, ---, a, 1}. Observe that in so
doing, we expresserth; (V) as the product of a constant vector
by a diagonal weighting matrid . Now, in order to update
v (N) to Tpr41(N), we need to generalize our earlier result
on the update oA to A, in Section IlI-D.

Thus, consider again a generic data matrix of the form

where we defined
1]ANba, N

. A Ta(N
(V) = —ME ) .
pt &y (N)
In addition, multiplying the above recursion féy; n by ¢
from the left, we obtain

£ A % A I CRer\L NbRL NCN
CNCM+1,N = CNCM, N S R — Ir
w+ 5?\4(1\7) [37 H Z]
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and introduce the weighted inner proddct= x*A %, for some
positive-definite diagonal matrix. Here,z denotes the residual
vector from a regularized projection efonto H, namely,z =

z — Hw., wherew, is obtained by solving

lrylin[u)\J\‘r"'l||w||2 +(z— Hw)*W(z — Hw)]  (41)

where, as befordy = diag{\", ---, ), 1}. Note that now,
however, the definition ofA involves a center matriA that is
distinct fromW . Now, consider the extended matrix
zr H z| a —
[a h /3} Sz Hi 2]

and introduce the corresponding facthy = xjA;Z;, where
Ay is related toA via A; = (nA ¢ 1), for somen. We again
would like to relateA; andA (i.e., we would like to determine
an order-update relation fak).

As above, letw,, denote the solution of a problem
similar to (41) with {z, H, W, ANt} replaced by
{z1, Hi, QW @ 1), AN+2}. Likewise, letw,, denote the
solution of a problem similar to (41) withz, H, W, AN +1}
replaced by{x,, Hi, (AW @ 1), AN*2}. In addition, define
the a posteriorierror

B=p—hw.,.

Then, an argument similar to that in Section I11-D will show that

A =nA+ [oc — g ]LPF*AJ}:| " 8

(42)

whereP is defined by
r —% N1
pP= (u)\’“’l T H WH) .

Returning to the update of,;(/V), we can now make the fol-
lowing identifications:

rp—V1-a2[1 1 --- 1]F

a=yv1-a? n=a Ai=1

51 — b/\47 N W1 = I, A1 — AN

nAx — /1 —a2[a oVt ... a]”

thatis,nAx corresponds to the top entrieswf. In this case, the
termphPH Az would correspond to the (regularized) estimate
of « that is based on the prior data Fh. Then, the difference
a—nhPH' Az becomes equal to theepriori error in estimating

«, which can be transformed to thgyosteriorierroréy (N) by
means of the conversion factey; (V). This leads to the desired
update equation

S (N)bar (V)

T]\4(N+1) ICLT]w(N)—‘r ’y]w(N)

TABLE I
O (M) RLSLAGUERRELATTICE FILTER

Initialization

For M =01to M —1 set:

 is a small positive number.
6ur(=1) = pu(-1) = 7m(-1) =0
Che(=1) = Ge(-1) = Ga(-1) = ¢
(-1 =1

For N > 0, repeat:

u(N) = au(N — 1) + V1 — a%5(N)
Y(N)=1  eo(N)=d(N)
Fo(N) =1 fo(N) =u(N)
Z(Ny=+v1-a? bo(N) = u(N)

For M =0 to M — 1, repeat:

&rg (N)bpg (N
T (N) = arp (N — 1) + D0l

CS/I(N) =a2§§4(N_ 1) +15_Mﬁ|_

: ) v (N)
ra
ku(N) = G (D)

Bar(N) = =2 (bar(N) = Kb (W) (V)

LN = ¢L (N — 1) + DL

Fm (V)

Cor(N) = Che(N — 1) + [l

A B7M(I\IIV)2
he(N) = (N — 1) + BRI

A (N)Bar (N
Sar(N) = Sar(NV ~ 1) + Ll )

* (N)bps (N
pa(N) = par(N = 1) + BT

2

a1 (N) = ar (N) = BRI

7 2

1 (N) = o (N) - B

M

= f'gd(N)
KEJ(N) - CM(N)
K3 (N) = B

v (V)

o

SE(N)

ma (M) = iy
N

R (N) = G4

E1(N) = e (N) = w5 (V)b (N)
em+1(N) = em(N) — kar (N)baur(N)
barr1(N) = bar(N) — e (N) far (N)
Fur1(N) = fu(N) = 65 (N)Bar(N)

Alternative order-updates:

Chen(N) = che(v) - 1BE
Craa(N) = Che(N) — 1240C
G (V) = (V) - LB
(V) = () - LRl

Gir(V) = [1 - clven] — civérr, v = a

Using similar arguments and the fact that

AN

+) EneM, N
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TABLE I
COMPARISON OF THECOMPUTATIONAL COST OF AN RLS-LAGUERRE
LATTICE FILTER OF ORDER M WITH THAT OF AN RLS-FIR LATTICE
FILTER OF ORDER M’ (USUALLY M <« M)

Filter [ Mult. Div. | Add.
Laguerre || 17M +2 | 14M | 14M +1
FIR 8M’ 8M' 8M’

we can also obtain the following time-update recursion fc
Cir(N):

|ear(N)?

Cjc\l(N) = GQC]CW(N - 1) + 'YA{(N)

Fig. 4 illustrates the structure of tHiRLS-Laguerre Lattice
algorithm, which is listed in Table Il. Here again, we redefined

the minimum cost variables in order to save addition operatiofiéd: - Comparison of the learning curves of a 500-section RLS-FIR lattice
with a six-sectiorRLS-Laguerre lattice in an IR modeling experiment.

namely

o

113

N‘i‘g?w(N)
N+£J_{4(N)
N"‘S?\{(N)-

Chr ()
Cr(N)
Chi(IN)

Table Il compares the computational cost of a Laguerre latti
filter of order M with a shift-structured (FIR) lattice filter of
order M’ with A = 1 (recall that, in generaly/ < M’).
Comparing Fig. 4 with the conventional lattice structure ¢
Fig. 2, we see that the new lattice filter is still fundamentall
simple; the major modification is in the substitution of the dela
blocks of Fig. 2 by a second lattice filter that runs in paralle
This, in effect, corresponds to replacing the delay blocks t
simple time-variant lattice sections. We may also mention th

113

1173
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2500 3000 3500 4000

the algorithm of Table Il is based on propagatingdtposteriori
estimation errors. Alternative implementations that are bas

-60
0

p——

\

.

j . Gradient Adaptive Laguerre Lattice

* ALS-Laguerre latice

L

500

1000

1500
ITERATION

i
2000

2500

3000

ona priori errors, or even on normalized errors, can be derived ) ) )

and will be pursued elsewhere [22]. This is in addition to arr?‘g‘dig'm_E:gmugfrgsgt‘ﬁé’; the leaming curves of RLS-Laguerre lattice and
forms. Note also that in the listing of Table Il, we employe

time-updates for the variable$¢?,(N), ¢4,(N), ¢4, (N)};

order-update relations are also possible and can be used. better suited to modeling the IIR system, which is accomplished

at significantly less computational burden.
We also compare the performance of ReS-Laguerre al-
gorithm with the corresponding gradient-Laguerre lattice algo-
In order to illustrate the advantages of using a Laguerre-basgflm proposed in [18]. We consider a system identification sce-
adaptive lattice structure, we compare the performance ohario where the unknown system to be identified is itself a La-
sixth-order Laguerre lattice filter with a shift-structured RLSuerre network of the same ord&f = 6 as the Laguerre adap-
lattice implementation of order 500. For this purpose, Wge filters. The input signal is simply white noise, and the La-
consider the same IIR system used in [A8}, guerre pole is fixed at = 0.5. Fig. 6 shows the learning curves
of both algorithms averaged over 1000 experiments. We see that
the RLS-Laguerre lattice offers significantimprovement in both
convergence performance and misadjustment, as is expected for
heeast—squares designs.

V. SIMULATIONS

0.001721(1 + 0.673z1)
(1—0.3682~1)(1 — 0.8192—1)(1 — 0.9952-1)"

G(z) =

The input signal is a first-order AR process, and the SNR at t
output is 50 dB. The Laguerre pole is located at 0.978, asin
[18]. Fig. 5 shows the resulting learning curves that are obtained
by averaging over 20 experiments. It is clear that the mean-We developed a framework for efficient order-recursive RLS
square error of the Laguerre structure is considerably bettetaptive filtering for input data that do not necessarily arise from
during the training phase. As expected, the Laguerre networkapped-delay lines. A special important case occurs in Laguerre-

VI. CONCLUSIONS
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based networks, where successive columns in the data matrigg] z. Fejzo and H. Lev-Ari, “Adaptive Laguerre-lattice filters|EEE
while not shifted versions of each other, can still be related by Trans. Signal Processingol. 45, pp. 3006-3016, Dec. 1997.

. 19] J. W. Davidson and D. D. Falconer, “Reduced complexity echo cancela-
more general operation.

) . tion using orthonormal functions/EEE Trans. Circuits Systvol. 38,
The approach of this paper can be extended to other filter net-  pp. 20-28, Jan. 1991.
works, other than the Laguerre structure, especially when diffed20] A B Sayed, “Adapdve fitering,” unpublished lecture notes, Dept.
. ect. Eng., Univ. Calif., Los Angeles, .
ences of the forntV” — ®*IW® have low rank. In addition, we |, o 9

! i - ] T. O. Silva, “On the determination of the optimal pole position of La-
can also develop normalized versions, array versions, and lat-  guerre filters,”|EEE Trans. Signal Processingol. 43, pp. 2079-2087,

tice schemes with feedback. These extensions will be published_ Sept. 1995. o
%22] R. Merched and A. H. Sayed, “RLS-LaGuerre adaptive filtering: Error-

feedback, normalized, and array-based algorithms,” , submitted for pub-
lication.

elsewhere [22].
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