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Abstract—This paper solves the problem of designing recur-
sive-least-squares (RLS) lattice (or order-recursive) algorithms for
adaptive filters that do not involve tapped-delay-line structures. In
particular, an RLS–Laguerre lattice filter is obtained.

Index Terms—Laguerre network, lattice filter, order-recursive
filter, regularized least-squares, RLS algorithm.

I. INTRODUCTION

T HIS PAPER solves the problem of designing recur-
sive-least-squares (RLS) lattice algorithms for adaptive

filters that do not involve tapped-delay-line structures. As is
well-known, all the derivations that are available so far in
the literature for RLS order-recursive filters are based on the
assumption of regression vectors with shift structure (see,
e.g., [1]–[6]). The resulting filters are therefore not applicable
to situations that involve other filter structures, such as La-
guerre-based networks, where successive regression vectors
are not shifted versions of each other.

In recent works [7], [8], it was shown that fastfixed-order
RLS algorithms can be derived for certain more general struc-
tures in the regression vectors, other than the shift structure.
These extended fast array methods turn out to be generalizations
of earlier well-known fast transversal schemes for tapped-delay
lines known as the fasta posteriorierror sequential technique
(FAEST) [9] and the fast transversal filter algorithm (FTF) [10].
As an example of the usefulness of these extensions, it was re-
cently shown in [11] that the regression vectors that arise in a
Laguerre-based network satisfy the structural conditions of [7]
and that, therefore, an efficient fixed-order RLS scheme for up-
dating the coefficients of a Laguerre-based adaptive filter can
indeed be derived.

These results motivate us to pursue here the development of
order-recursive, as opposed to fixed-order, adaptive algorithms
for certain general filter structures, other than the conventional
FIR structure. A consequence of our derivation will be the first
RLS Laguerre-based lattice filter. While the existing RLS-based
Laguerre solutions are all algorithms (e.g., [12]), with

being the order of the filter, the lattice filter of this paper of-
fers an solution for the exact same problem. This result
is useful especially since it has been realized for some time that
Laguerre networks offer superior modeling capabilities when
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compared with FIR networks at a reduced number of tap co-
efficients and with a guaranteed stable performance. This is in
contrast with some adaptive IIR filter implementations that re-
quire stability monitoring. Excellent accounts of adaptive IIR
filters and of the convenience of Laguerre-based filters can be
found in [13]–[18]. An example of an application in echo can-
cellation appears in [19]. In particular, assuming stationary data,
[18] proposes an LMS-like Laguerre-based lattice filter that is a
generalization of the so-called gradient adaptive lattice (GAL)
algorithm (see [5]).

In this paper, we derive an exact RLS Laguerre-based lattice
algorithm. One advantage of the RLS-based algorithm, besides
optimality, is that least-squares methods offer considerably su-
perior convergence performance and lower misadjustment when
compared with stochastic gradient solutions (see the simulation
results in Section V and, in particular, Fig. 6).

We start our discussions in Section II with a brief review of
the regularized least-squares problem, followed by derivations
in Sections III of several order- and time-update relations.
Althoughmostof theexpressionsin thissectionmaylookfamiliar
to readers acquainted with the theory of least-squares lattice
filters, our presentation actually has three contributions. First,
all expressions are derivedwithout assuming any underlying
structure in the regression vectors. The derivation of some
of the relations derived in this section has been restricted
in the literature to the case of shift structured data. Second,
the derivation shows that it is possible to deriveefficient
order-recursive RLS filters, even for cases where the regression
vectors do not possess shift structure. This is achieved by
pointing out the exact variable whose update is intimately
affected by the data structure. The derivation also shows what
kinds of data structure lead to fast order-recursive filters. Finally,
all order-recursive relations are derived by explicitly solving
regularizedleast-squares problems from the start. In contrast,
similar relations have always been derived in the literature
without taking into account the need for regularization; this
need is usually accounted for by initializing the lattice algorithm
with certain nonzero initial conditions. Our arguments will
show that these two ways of handling the initialization issue
lead to different interpretations of some of the variables in
the resulting algorithms.

We end our discussions with a derivation of the RLS La-
guerre-lattice filter in Section IV. The algorithm is summarized
in Table I, and its schematic representation is shown in Fig. 4.
Comparing with the classical lattice filter of Fig. 2, we see that
the new RLS Laguerre lattice filter still has a similar cascade
structure. The main difference is that the delay blocks of Fig. 2
are replaced by a parallel lattice filter. This essentially amounts
to replacing each delay element by a simple time-variant lattice
section. We provide simulation results in Section V.

1053–587X/00$10.00 © 2000 IEEE
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II. REGULARIZED LEAST-SQUARESPROBLEM

We first provide a brief review of the regularized least-squares
problem. Thus, given a column vector and a data ma-
trix , the exponentially-weighted least squares
problem seeks the column vector that solves

(1)

where is a scalar positive regularization parameter (usually
small), and is a weighting matrix
that is defined in terms of a forgetting factorsatisfying

. The symbol denotes complex conjugate transposition.
The individual entries of will be denoted by , and the

individual rows of will be denoted by

...
...

Let denote the optimal solution of (1). It is given by

(2)

where we introduced the coefficient matrix

(3)

We further let denote the vector

(4)

We will refer to as theregularizedprojection (or simply pro-
jection) of the observation vectoronto the range space of,
which is written as .

We also define two estimation error vectors: thea posteriori
error vector

and thea priori error vector

where is the solution to a least-squares problem similar
to (1) with data up to time (and with replaced by

). The minimum cost of (1) will be denoted by , and
it is given by1

(5)

The last entries of and are called thea posterioriand the
a priori estimation errors at time , and they are given by

1We may note here that in the absence of regularization(� = 0), the expres-
sion for the minimum cost can also be expressed in the equivalent form�(N) =
e We . This follows from the orthogonality propertyH We = 0. How-
ever, when regularization is present, we need to use (5) instead. This fact distin-
guishes the derivations we will provide for the updates of the minimum costs of
the so-called forward and backward prediction problems from those that assume
no regularization. More on this later.

They are both related by a conversion factor

where

The well-knownRLSalgorithm allows us to update recur-
sively as follows:

(6)

(7)

(8)

(9)

with and . It also holds that
2

III. ORDER-RECURSIVERELATIONS

We now derive several order-recursive relations. As men-
tioned in the introduction, we re-emphasize that the presentation
in this section has three contributions. First, the arguments do
not assume shift structure. Second, the derivation introduces
and singles out a variable whose update is affected by data
structure. Third, the derivation explicitly incorporates regular-
ization.

Before proceeding, we should remark that since in the re-
mainder of this paper we deal primarily with order-recursive
least-squares problems, it becomes important to explicitly in-
dicate the size of all quantities involved (in addition to a time
index). For example, we will write instead of to in-
dicate that it is a vector of order that is computed by using
data up to time . We will also write instead of to
indicate that it is a matrix with row vectors of size and with
data up to time . Similarly, we write instead of and
instead of so that problem (1) becomes

and its solution is . In a similar vein, we will write

A. Order Updating

Assume (for simplicity of presentation) that , and
consider the data matrix

...
...

...

2We may remark that without the factor� in the cost (1), the above RLS
recursions would not be accurate.
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The (regularized) projection of onto is given by
[cf. (4)]

Now, suppose that one more column is appended to , i.e.,

(10)

where

...

The (regularized) projection of onto is now

(11)

In order to relate both projections of the vector, we note the
following. The coefficient matrices are and

, respectively, and they are defined by [cf. (3)]

They are therefore related via

Inverting both sides, we get

(12)

where is the solution to the least-squares problem:

and is the corresponding minimum cost. This problem
projects onto . Let

denote the resulting (backward) estimation error vector. Substi-
tuting (12) into (11), we find that the projections
are related via

(13)

Subtracting from both sides, we obtain a relation between
the corresponding a posteriori estimation error vectors

(14)

where we define the scalar

(15)

We therefore derived an order-update relation (14) for the
a posteriorierror vectors. The recursion however depends on

. We are thus motivated to study the propagation of
more closely.

B. Backward Estimation Problem

We start by partitioning of (10) into

so that is now partitioned as

(16)

Using arguments similar to those that led to the update equation
(14) for , it is straightforward to verify that can be
obtained as follows:

where the scalar coefficient is defined as

(17)

and is the residual error that results from the solution of
the least-squares problem

whose minimum cost we denote by . This problem
projects onto . Likewise, is the residual
error that results from the solution of the least-squares problem

whose minimum cost we denote by This problem
projects onto .

C. Forward Estimation Problem

By similar arguments, can be updated as follows:

where is defined as

(18)
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Note that we used in the numerator of and
in the numerator of in (17) since it can be easily verified
that

(19)

Summarizing, we have so far derived the following order-
update relations for the error vectors
(which are written here for a generic order):

We still need to derive a relation for . We postpone this
discussion to Section III-G due to its intrinsic dependence on
data structure.

If we extract the last entries of the above vectors, we obtain
the following relations:

where

We now show how to update the quantities

which are needed in the evaluation of the (reflection) coeffi-
cients . To do so, we first derive
below a general update result. It is important to re-emphasize
that this result will be independent of any data structure in the
matrix (cf. [20]).

D. General Time-Update Result

Consider a generic data matrix of the form

(20)

where and are column vectors, and is a matrix of appro-
priate dimensions. Define the weighted inner product

where is the residual vector from a regularized projection of
onto , namely, , where is obtained by

solving

(21)

where, as before, diag .

Now, assume that one more row is appended to the matrix
(20), say

and introduce the corresponding factor , where
. We would like to relate and (i.e., we

would like to determine an order-update relation for).
As above, let denote the solution of a problem

similar to (21) with replaced by
. Likewise, let denote the solu-

tion of a problem similar to (21) with
replaced by . Now, define thea poste-
riori errors

and the conversion factor

From the definition of , we have

(22)

TheRLS recursion (6) allows us to relate and as

Substituting into (22), we obtain, after grouping terms

(23)

E. Time-Update Relations

We can now use the general result (23) to derive updates for

Consider, for example, the quantity

which appears in the numerator of [see (18) for
]. We can partition as

and make the identifications , ,
and . It then follows that

(24)
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where the conversion factor in this case is defined by

In a similar vein, we can justify the following time-update
equations:

(25)

(26)

(27)

(28)

where the conversion factor is defined by

F. Order-Update Relations

We can order update the conversion factors as follows. Note
that the last row of can be partitioned as

so that by multiplying a relation of the form (12) for
by from the left and by its conjugate transpose from
the right, we get

(29)

Similarly, we get

(30)

In addition, using the order-update relations for the vectors
and and the defining relations

we obtain the following order recursions for the minimum costs
and :

Fig. 1. GeneralRLS lattice network structure.

G. Significance of Data Structure

Thus far, we have derived almost all the necessary recursions
for the development of an adaptive lattice filter. All the results
hold for arbitrary data structures. The only update missing is
the one for the error sequence . As is shown schemat-
ically in Fig. 1 by the boxes with question marks, we need to
know how to generate the errors . It is the update of
these variables that is directly affected by data structure and it is
the key to achieving a fast algorithm [by fast, we mean
operations per iteration for a filter of order ].

To illustrate this point, consider, as an example, the case of
prewindowed input data with shift structure, e.g., for

...
...

...
...

Then, any two successive columns of
are related by the lower triangular shift matrix, i.e.,

(31)

so that the following always holds for all :

Using these relations in the definitions of and , viz.,
in

(32)

we can easily verify that

and hence

which is a widely known result. In a similar vein, it will also
hold that

and
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Fig. 2. RLS lattice network for the case of shift data structure.

These equalities eliminate the need for recursions (26) and (30),
and the general lattice recursions of this paper collapse to the
well-known tapped-delay-line lattice network depicted in Fig. 2.
The corresponding regularized lattice equations are listed in
Table I.

We may note that we have redefined the minimum cost vari-
ables in order to save addition operations. For example, we de-
fined

Then, it is easy to verify that these new quantities satisfy recur-
sions similar to those of , namely

but with the initial conditions .
Observe that the variables do not cor-

respond to the exact values of the minimum costs for the
backward and forward prediction problems. Only when
and , they tend to coincide with the actual values

.3

Now, what if two successive columns of the input data ma-
trix are not shifted versions of each other as in (31) but
are instead related by a more general matrix? Would it still be
possible to derive a fast lattice algorithm? Interesting enough,
the answer is positive. We demonstrate this fact in the next sec-
tion by considering an important example. The result will show
that it is possible to move beyond what has been developed so
far in the literature for shift-structured data and to developexact
RLS lattice algorithms for more general data.

3This point serves as a good example of one of the issues we raised earlier,
namely, by solving regularized problems from the start, we can clarify the sig-
nificance and the meaning of the different variables that appear in the lattice
recursions.

TABLE I
CLASSICAL RLS-FIR ADAPTIVE LATTICE ALGORITHM

IV. RLS LAGUERREADAPTIVE FILTERING

Consider the Laguerre-based model of Fig. 3, where

and

(33)
Note that is a first-order allpass system and that, unlike
a generalIIR structure, the poles of the Laguerre-based
model are fixed at .4 (The choice of can be optimized
offline according to some criterion; see, e.g., [21].) The input
to the Laguerre filter at time is denoted by , and the
coefficients that combine the outputs of the successive sections

are denoted by .
Now, consider the case of prewindowed input data (i.e.,

for and zero initial conditions). Using the
difference equations that define , it is possible to
relate two successive columns of the data matrix in this case as

4The case of complex poles can also be handled. For simplicity, we assume
reala.
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Fig. 3. Transversal Laguerre structure for adaptive filtering.

where is an lower triangular Toeplitz
matrix of the form

...
...

.. .
.. .

(34)
Of course, it also holds that

(35)

A. Exploiting Data Structure

Now, referring back to the definitions of the error vec-
tors in (32), we see that we need to relate

. These vectors are given by

For simplicity of notation, we are going to write
instead of in the following deriva-
tion. Later, we will state the results with the correct subscripts.
We will also assume in the sequel that so that .5

Using (35), we get

(36)

Now note that is a rank-one modification of the identity
matrix, namely, it satisfies

(37)

where

[We will also write instead of for simplicity.]
Substituting (37) into (36), we obtain

(38)

5For more generalW and�, the arguments of this section would require the
differenceW � � W� to have low rank.

For simplicy, define . Then, using the matrix inversion
lemma, we get

Substituting this expression into (38) leads to a desired relation
between :

If we now multiply by from the left and subtract
, then using (32) and (35), we obtain

(39)

where we defined the vector

This vector has the interpretation of being the regularized pro-
jection of onto .

In view of the above, we find that the last entry of is
given by

(40)

where is the last row of . The above relation involves
four growing-length inner products on the right-hand side:

We will show that the first two are related to each other, whereas
the last two are also related to each other. This will follow as a
result of the fact that and have similar forms. In this way,
we shall need only to develop order-recursive updates for two
of these inner-product terms.

To this end, first note that we can simplify (40) by exploiting
the similarity between the vectors and , viz.

to write

Substituting these expressions into (40), we obtain, after some
manipulations
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Fig. 4. RLS-Laguerre lattice filter, where~c (N) =
p
1� a .

which contains only two inner products

With these definitions, we can write

where we defined

and . [Here, and
denote the last entries of and , respectively.]

Hence, all we really need to know is how to update the quan-
tity and the inner products and .

First, note that and can be order updated, in the
same fashion as in (13) and (14), namely

where we defined

In addition, multiplying the above recursion for by
from the left, we obtain

and subtracting one from both sides, we get the following order-
update recursion for :

From (39), we can derive an alternative recursion for .
To see this, we multiply (39) by from the
left and get

Now, using (37) and the substitutions ,
, and , we get

However, similar to (19), it holds that
so that we arrive at the recursion

B. Final Time-Update Recursions

Finally, it only remains to determine a recursive relation for
. This step requires more effort. We start by noting that

we can write in the form

where diag . Observe that in so
doing, we expressed as the product of a constant vector
by a diagonal weighting matrix . Now, in order to update

to , we need to generalize our earlier result
on the update of to in Section III-D.

Thus, consider again a generic data matrix of the form
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and introduce the weighted inner product for some
positive-definite diagonal matrix. Here, denotes the residual
vector from a regularized projection ofonto , namely,

, where is obtained by solving

(41)

where, as before, diag . Note that now,
however, the definition of involves a center matrix that is
distinct from . Now, consider the extended matrix

and introduce the corresponding factor , where
is related to via , for some . We again

would like to relate and (i.e., we would like to determine
an order-update relation for ).

As above, let denote the solution of a problem
similar to (41) with replaced by

. Likewise, let denote the
solution of a problem similar to (41) with
replaced by . In addition, define
thea posteriorierror

Then, an argument similar to that in Section III-D will show that

(42)

where is defined by

Returning to the update of , we can now make the fol-
lowing identifications:

that is, corresponds to the top entries of. In this case, the
term would correspond to the (regularized) estimate
of that is based on the prior data in. Then, the difference

becomes equal to thea priori error in estimating
, which can be transformed to thea posteriorierror by

means of the conversion factor . This leads to the desired
update equation

TABLE II
O (M) RLS-LAGUERRELATTICE FILTER

Using similar arguments and the fact that
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TABLE III
COMPARISON OF THECOMPUTATIONAL COST OF AN RLS-LAGUERRE

LATTICE FILTER OF ORDERM WITH THAT OF AN RLS-FIR LATTICE

FILTER OF ORDERM (USUALLY M � M )

we can also obtain the following time-update recursion for
:

Fig. 4 illustrates the structure of theRLS-Laguerre Lattice
algorithm, which is listed in Table II. Here again, we redefined
the minimum cost variables in order to save addition operations,
namely

Table III compares the computational cost of a Laguerre lattice
filter of order with a shift-structured (FIR) lattice filter of
order with (recall that, in general, ).

Comparing Fig. 4 with the conventional lattice structure of
Fig. 2, we see that the new lattice filter is still fundamentally
simple; the major modification is in the substitution of the delay
blocks of Fig. 2 by a second lattice filter that runs in parallel.
This, in effect, corresponds to replacing the delay blocks by
simple time-variant lattice sections. We may also mention that
the algorithm of Table II is based on propagating thea posteriori
estimation errors. Alternative implementations that are based
on a priori errors, or even on normalized errors, can be derived
and will be pursued elsewhere [22]. This is in addition to array
forms. Note also that in the listing of Table II, we employed
time-updates for the variables ;
order-update relations are also possible and can be used.

V. SIMULATIONS

In order to illustrate the advantages of using a Laguerre-based
adaptive lattice structure, we compare the performance of a
sixth-order Laguerre lattice filter with a shift-structured RLS
lattice implementation of order 500. For this purpose, we
consider the same IIR system used in [18],viz

The input signal is a first-order AR process, and the SNR at the
output is 50 dB. The Laguerre pole is located at , as in
[18]. Fig. 5 shows the resulting learning curves that are obtained
by averaging over 20 experiments. It is clear that the mean-
square error of the Laguerre structure is considerably better
during the training phase. As expected, the Laguerre network is

Fig. 5. Comparison of the learning curves of a 500–section RLS-FIR lattice
with a six-sectionRLS-Laguerre lattice in an IIR modeling experiment.

Fig. 6. Comparison of the learning curves of RLS-Laguerre lattice and
gradient-Laguerre lattice.

better suited to modeling the IIR system, which is accomplished
at significantly less computational burden.

We also compare the performance of theRLS-Laguerre al-
gorithm with the corresponding gradient-Laguerre lattice algo-
rithm proposed in [18]. We consider a system identification sce-
nario where the unknown system to be identified is itself a La-
guerre network of the same order as the Laguerre adap-
tive filters. The input signal is simply white noise, and the La-
guerre pole is fixed at . Fig. 6 shows the learning curves
of both algorithms averaged over 1000 experiments. We see that
the RLS-Laguerre lattice offers significant improvement in both
convergence performance and misadjustment, as is expected for
least-squares designs.

VI. CONCLUSIONS

We developed a framework for efficient order-recursive RLS
adaptive filtering for input data that do not necessarily arise from
tapped-delay lines. A special important case occurs in Laguerre-
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based networks, where successive columns in the data matrix,
while not shifted versions of each other, can still be related by a
more general operation.

The approach of this paper can be extended to other filter net-
works, other than the Laguerre structure, especially when differ-
ences of the form have low rank. In addition, we
can also develop normalized versions, array versions, and lat-
tice schemes with feedback. These extensions will be published
elsewhere [22].
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