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Abstract—We study the problem of distributed estimation over
adaptive networks where a collection of nodes are required to
estimate in a collaborative manner some parameter of interest
from their measurements. The centralized solution to the problem
uses a fusion center, thus, requiring a large amount of energy
for communication. Incremental strategies that obtain the global
solution have been proposed, but they require the definition of
a cycle through the network. We propose a diffusion recursive
least-squares algorithm where nodes need to communicate only
with their closest neighbors. The algorithm has no topology con-
straints, and requires no transmission or inversion of matrices,
therefore saving in communications and complexity. We show that
the algorithm is stable and analyze its performance comparing it
to the centralized global solution. We also show how to select the
combination weights optimally.

Index Terms—Adaptive networks, consensus, cooperation, dif-
fusion, distributed estimation, distributed processing.

I. INTRODUCTION

A. Distributed Estimation

WE study the problem of distributed estimation where a
collection of nodes are required to estimate in a collab-

orative manner some parameter of interest from their measure-
ments. In the centralized solution to the problem, measurements
are transmitted to a central fusion center for processing, and the
resulting estimate is communicated back to the nodes. This ap-
proach enables the calculation of the global solution, but has the
disadvantage of requiring a large amount of energy and commu-
nication [2]. An alternative approach is the distributed solution,
in which the nodes communicate only with their closest neigh-
bors and processing is done locally at every node, thereby saving
communications and network resources.

A distributed estimation approach should have the following
desirable features.

• Estimation performance: The nodes in the network should
obtain estimates that are close to the global solution.
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• Energy awareness and complexity: The solution should
minimize communications and local processing at the
nodes.

• Ad-hoc deployment: The system should be able to cope
with different, possibly dynamic, configurations of the
network.

Distributed estimation algorithms have been proposed to ad-
dress these issues to some extent. Depending on the manner by
which the nodes communicate with each other, they may be
referred to as incremental algorithms or diffusion algorithms.
In the former, a cyclic path through the network is required,
and nodes communicate with neighbors within this path. In the
latter, nodes communicate with all of their neighbors, and no
cyclic path is required.

In [3] and [4], a distributed incremental RLS solution was
proposed for obtaining the exact global least-squares estimate.
The algorithm requires the definition of a path through the net-
work, which may not be practical for large networks or dy-
namic configurations. In [3]–[6], both incremental and diffusion
LMS algorithms were proposed to perform distributed estima-
tion. Distributed estimation algorithms of the consensus type
were also proposed in [7]–[9]. The consensus implementations
generally require two time scales: a slower time scale for the
measurements and a faster time scale for processing iterations
between measurements. This structure limits adaptation and the
ability to track in real-time variations in the statistical proper-
ties of the data. One form of adaptivity was introduced in [10],
where an isotropic diffusion algorithm based on least-squares
was proposed. Nevertheless, the algorithm requires every node
to transmit and invert a matrix at every iteration, which is gener-
ally prohibitive for large matrices or for low complexity sensor
nodes.

We propose a distributed diffusion algorithm based on RLS
that has performance close to the global solution and outper-
forms earlier solutions in terms of performance and complexity.
The solution does not require transmission or inversion of ma-
trices, therefore, saving in communications and computational
complexity. The algorithm has no topological constraints, and
functions as a fully adaptive, recursive and distributed solution
that is asymptotically unbiased and stable under the modeling
assumptions of Section IV.

A key contribution of this work is not only to propose and
derive a diffusion least-squares solution, but to also study its
mean-square performance in some detail. This latter task is chal-
lenging due to the fact that nodes in every neighborhood interact
with each other and, therefore, a successful analysis must take
into account both the temporal and spatial interconnectedness
of the data.
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Fig. 1. Network showing a neighborhood � of node �. At time �, node �

collects a measurement � ���.

B. Adaptive Networks

We adopt the term adaptive networks from [3], [4] to refer to a
collection of nodes that interact with each other, and function as
a single adaptive entity that is able to respond to data in real-time
and also track variations in their statistical properties. A set of
nodes that collaborate to estimate a parameter of interest using
the diffusion RLS algorithm derived in this paper is an example
of such an adaptive network.

The estimation problem is formally defined in Section II, fol-
lowed by the specification of the diffusion RLS algorithm in
Section III. We analyze the performance of the algorithm in
terms of its mean and mean-square behavior in Section IV. In
Section V we discuss some common choices of combiner co-
efficients, including an optimal choice. Simulation results are
presented in Section VI.

II. THE ESTIMATION PROBLEM

A. Global Least-Squares Problem

To begin with, consider a set of nodes spatially distributed
over some region as in Fig. 1. Let denote the closed neigh-
borhood of node (i.e., the set of all neighbors of node in-
cluding itself). The objective of the network of nodes is to col-
lectively estimate an unknown deterministic column vector of
length , denoted by , using least-squares estimation. At
every time instant , node collects a measurement that
is assumed to be related to the unknown vector by

(1)

where is a row vector of length (the regressor of node
at time ), and is a zero-mean, spatially uncorrelated

Gaussian white noise process with variance and indepen-
dent of . Linear models of the form (1) are able to capture
or approximate well many input–output relations for estimation
purposes [11 p. 90].

At time , we collect the measurements and noise samples of
all nodes into vectors and of length , and the regressors
into an by matrix , as follows:

Let denote the complex conjugate transpose of vector . The
covariance matrix of the noise vector is

We further collect the regressors, measurements and covariance
matrices from time 0 up to time as follows:

and let .
The objective is to estimate by solving the following

weighted, regularized, least-squares problem

(2)

The solution is given by [11]

(3)

where is a regularization matrix and is a
weighting matrix. Both and are Hermitian.

An exponentially weighted version of (2) can be formulated
by choosing

with and

Usually, where is large. Often, in
least-squares estimation, when the noise variances
are unknown, the weighting matrix is simply replaced
by . The subsequent arguments and derivations in
Sections III and IV still hold with replaced by unity [for
example, in the statement of the diffusion RLS algorithm (12)].
The may also be interpreted as some scalar weights.

For the choice , the estimation problem (2) becomes

(4)

We refer to this problem as the global least-squares problem,
since at time , the solution takes into account all measurements
from all nodes up to time . This solution may be computed by
using a centralized approach, or the distributed incremental RLS
algorithm of [3], [4].

B. Clustered Least-Squares Problem

We now proceed to propose distributed estimation schemes
where nodes have access to limited data, namely, the data from
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the neighboring nodes. Thus, when node can only share mea-
surements and regressors with its neighbors, it can locally solve
the following least-squares problem:

(5)

for some choice of positive weighting coefficients such that

Let denote an matrix such that its element is
. For reasons that will become clearer later in this paper, we

also choose the coefficients such that

where represents an vector whose entries are all unity.
Node weights the data obtained by node using the coefficient

. A zero indicates that nodes and are not connected
(i.e., do not interact). A nonzero allows node to give some
reliability/relevance measure to the data obtained from node .

Note that the nodes in the network will generally have access
to different data, so their estimates of will be solutions to
different least-squares problems. Naturally, we want these esti-
mates to be close to the global least-squares solution of (4).

The coefficients can be incorporated into the weighting
matrix of (2) by replacing with

(6)

where of size , and is the
vector with a unity entry in position and zeros elsewhere.

Now, for every node , we express its local estimate re-
sulting from (5) as a perturbation of , say for some error vec-
tors

...
...

...
(7)

Note that this model holds exactly for any least-squares problem
of the form (7) when there is no regularization , since
in this case the solution from (3) is

Using

we find that (7) holds with

Note that is zero-mean and Gaussian as well. By the same
token, model (7) is a good approximation when
and is large enough.

Given the local estimates and (7) we now investigate the
following least-squares problem:

...
...

(8)

with a weighting matrix . If we assume that the individual
solutions are good approximations for the optimal solution

, then we would expect the solution for problem (8) to be
closer to the optimal than the individual for a proper choice
of . For instance, for the choice of weighting matrix (assumed
positive-definite, which holds for full-rank data matrices )

. . . (9)

we have that the solution of (8) is

(10)

For the choice of coefficients from before, which satisfy
, it follows that:

Thus (10) becomes

which is precisely the solution of (4) (i.e., the global solution)
when there is no regularization.

This observation suggests an estimation process in two steps.
First, every node solves a local least-squares problem using
local data as in (5), and second, the nodes communicate to solve
problem (8). The inconvenience of this approach is that the
second step requires knowledge of the local estimate of every
other node, and also knowledge of all regressors in the net-
work. That is, the second step requires global communication
and sharing of data. We are instead interested in a distributed so-
lution that relies solely on local interactions. Motivated by this
discussion we now propose a modification whereby nodes will
only need to share data within their neighborhood.

To do so, consider the case where we replace the weighting
matrix in (8) and (9) by a node-dependent diagonal matrix of
the form

where and if . Let denote
the matrix whose entry is . We choose the
coefficients such that

Again, just like the coefficients , a zero indicates that
nodes and are not connected. A nonzero allows node
to give some reliability/relevance measure to the local estimate
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Fig. 2. Diffusion RLS algorithm at node 1. Incremental update: all neighboring
nodes exchange measurements and regressors and compute � . Spatial up-
date: neighboring nodes exchange � and perform a weighted average to ob-
tain � .

obtained by node . We, thus, employ two sets of weights:
for local processing of data and for local processing of
weight estimates.

Then, the solution to the least-squares problem (8) at node
takes the form

(11)

This means that the second step of the aforementioned method
is replaced by a weighted average of the local estimates in the
neighborhood of node . Convex combinations of the estimates
of adaptive filters as in (11) have been studied in [12]–[14].

This sequence of two least-squares problems represents an
attempt to solve the global least-squares problem (4) in a dis-
tributed manner. However, the method is still not adaptive, since
we first need to calculate local estimates, and then average the
results as in (11). We can make the method adaptive if we per-
form both steps simultaneously for every measurement in real
time. That is, first aggregate the new data into the local estimate,
and then combine estimates with neighbors. This procedure, re-
ferred to as diffusion RLS, is described in the following section,
and has good convergence properties as shown in Section IV.

III. THE DIFFUSION RLS ALGORITHM

We, therefore, propose a diffusion RLS algorithm to collec-
tively estimate from individual measurements in two steps
as follows.

1) At time , the nodes communicate their measurements
and regressors with their neighbors, and use

this data to update their local estimates using RLS itera-
tions (via a so-called incremental update). The resulting
preestimates are named as in (5).

2) The nodes communicate their local preestimates with their
neighbors and perform a weighted average as in (11) to
obtain the estimate (via a so-called spatial update).

The algorithm, shown schematically in Fig. 2, is described
by (12). A derivation of (12) can be found in Appendix A. It
starts by selecting matrices and with
nonnegative entries such that if

and .

Diffusion RLS Algorithm

Start with and for each node
For every time instant , repeat

Incremental update: for every node , repeat

for all

end
Spatial update: for every node , repeat

(12)

Note that the algorithm requires no matrix inversion, and
nodes only need to know the estimates , measurements

and regressors of their neighbors. Thus, for every
new measurement, every node needs to communicate a total of

scalars to neighboring nodes. For comparison purposes,
the incremental RLS algorithm of [3], [4] and the diffusion
algorithm of [10] require that, for every measurement, every
node transmit a vector of size and a Hermitian matrix of size

, requiring a total communication of
scalars. In Section VI we compare these algorithms in terms of
their mean-square performance as a function of communicated
scalars.

IV. ANALYSIS

In this section, we analyze the performance of algorithm (12)
and show that it is asymptotically unbiased in the mean and con-
verges in the mean-square error sense under some simplifying
assumptions. We also provide an expression for its steady-state
excess mean-squared-error (EMSE) and mean-square deviation
(MSD) and compare its performance to the global least-squares
solution (4). The main results are the detailed expressions
(21)–(23) and (29)–(30) for the MSD and EMSE performance
of the adaptive network.

A. Data Model

As is well known, it is rather challenging to study the mean-
square performance of single stand-alone adaptive filters [11],
[15]–[18]. Several simplifying assumptions have been tradition-
ally adopted in the literature to gain insight into the performance
of such adaptive algorithms. The challenges are compounded in
the adaptive network case because we now face a dynamic and
interconnected collection of nodes that influence each other’s
behavior. To proceed with the analysis we shall therefore in-
troduce similar assumptions to what has been used before in
the adaptive literature, and use them to derive useful perfor-
mance measures. Simulations show that the results obtained in
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this manner match well with real performance for forgetting fac-
tors sufficiently close to unity and for data whose statistical
properties do not vary fast with time.

We start with the following assumption on the regressors.
Assumption 1: The regressors are zero-mean and tem-

porally independent. Moreover, the covariance matrix
is invariant over time.

From (12) we can observe that after the incremental update is
complete, is obtained from a series of rank-one updates to

. Specifically, it holds that

(13)

We are interested in the steady-state behavior of the matrix .
As , and for , the steady-state mean value of

is given by

(14)

In order to make the performance analysis tractable, we in-
troduce the following ergodicity assumption.

Assumption 2: such that for all can be re-
placed by .

Assumption 2: states that the expected value of a random
process can be replaced by its time average. This is a common
assumption in the analysis of the performance of RLS-type al-
gorithms (see, for example, [11, pp. 318–319]), and yields good
results in practice as is illustrated by simulation in Section VI.
Furthermore, as is also common in the analysis of the perfor-
mance of RLS-type algorithms, to study mean-square conver-
gence we will replace the random matrix by for large
enough.

B. Mean Performance

Combining the data model (1) with (12), we have the fol-
lowing relation for the local estimate after the incremental up-
date is complete:

By using (13) in the previous expression we arrive at

where . It then follows that the error vector
satisfies:

(15)

Taking expectations of both sides yields the following result:

We group the vectors into a matrix

(16)

We also define the matrix . Using assumption
2 and noting that becomes independent of for , we
have for large enough

Assuming that all elements of are bounded in absolute
value by some finite constant , and since all elements of are
between zero and one, we have that every element of is
bounded in absolute value by . Thus, for ,
every element of converges to zero as , and the
estimator is asymptotically unbiased.

C. Mean-Square Performance

We now show that the algorithm converges in the mean-
square sense, i.e., as , and derive expres-
sions for the steady-state excess mean-square error (EMSE) and
steady-state mean-square deviation (MSD). These are defined,
at every node , as [11]

The mean-square error is given by

We begin with the general case, where we only use assump-
tions 1 and 2. Subsequently, we specialize the general result to
some interesting special cases, namely the case where the noise
variances and regressor covariance matrices are the same for
every node (spatial invariance).
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1) General Case: Starting from (15) and assumption 2 we
have for large enough

where was defined in (16) and, as before, we are using the
notation . We can represent using a more
compact notation as follows:

where we introduced the matrices of size and
of size

. . .

. . .

and denotes the Kronecker product of two matrices. It follows
that

for large . That is

and the th column of is

(17)

We now consider the mean-square deviation, or
as . When we form the product

, the cross terms in (17) vanish under expectation,
since . The euclidean norm of the first term is given by

Noting that has nonnegative entries and satisfies
, we can see that the above expression vanishes

for large . We are, therefore, left with the outer product of
the second term of (17) with its conjugate. We first define the
matrix

(18)

Then we have

Using the property , we arrive at

where denotes the Kronecker delta. For simplicity of no-
tation, we will denote the matrix by , and will
denote the element of . We now define the matrix

Note that is a block matrix consisting of blocks by
blocks of size each, and the block is given by

Now, after taking expectations

(19)

We, thus, have

From the definition of , and noting that is Hermitian for
, we get

(20)

By inserting (19) and (18) into (20) we obtain
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Finally, the mean-square deviation at node for the diffusion
RLS algorithm (12) is given by

(21)

where

(22)

We now find an expression for the EMSE of the diffusion RLS
algorithm (12). This can be done by noting that under assump-
tion 1, is independent of . Then we have

and we obtain

(23)

We summarize our results in the following lemma.
Lemma 1: Under assumptions 1 and 2, the diffusion RLS al-

gorithm (12) is asymptotically unbiased; its mean-square devi-
ation is given by (21), and its excess mean-square error is given
by (23).

2) Invariant Spatial Profile: We now specialize (21) and (23)
for the case where both the noise variances and the regressor
covariance matrices are the same for every node [1]. That is, we
assume

In this case, we see that in (22) becomes independent of
and we get

(24)

Then we have that

and (21) becomes

(25)

where

and is also the element of the matrix

(26)

This is the same expression we derived in [1], albeit in a different
manner. The EMSE in this case is

(27)

The result can be further simplified for the case .
Again using the fact that powers of have positive elements
between 0 and 1, we conclude that the steady state MSD is given
by

(28)

3) Global Solution: We now show how to specialize (21)
and (23) to find the MSD and EMSE of the global least-squares
solution (4). This can be accomplished by choosing weighting
matrices with constant entries: . In this
case, we have

Using the fact that the matrix , we arrive at

(29)

(30)

If we also assume equal noise variances and regressor covari-
ances among nodes, we obtain

which was also presented in [1]. For the EMSE, we get

These are known results for the MSD and EMSE of regular RLS
with close to 1 [11]. In Section VI we show simulation results
for expressions (21), (23), (29), and (30).

4) Limited Cooperation: We now compare the performance
of the diffusion RLS algorithm to other cases where cooperation
is limited. For simplicity, we assume an invariant spatial profile
as before. If we choose in (21), we obtain a network
where all the nodes are isolated. In this case, the MSD at node

is given by

Another network configuration is obtained by choosing only
. In this case, nodes only use their own data to update
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the estimates, but share the estimates in the neighborhood to
perform averaging. The MSD becomes

where is the element of from (26), using .
Note that in this case, the expression for the MSD is similar to
the one of diffusion RLS (12), though simulations show that this
method has slower convergence, and in general a much higher
MSD than diffusion RLS (12) when the invariant spatial profile
assumption is dropped.

Finally, we may think of a case where nodes exchange data
with their neighbors, but do not perform the spatial averaging
step. In this case, we obtain the RLS solution using local data,
and the MSD is obtained by using in (21) as follows:

Note that this MSD is always lower than the one obtained in the
isolated case.

V. COMBINER COEFFICIENTS

We now consider possible choices for the coefficient matrices
and with individual elements and respectively.

Recall that and satisfy

(31)

One possible choice of weights if symmetry is not required,
is

(32)

where denotes the degree of node , i.e., the cardinality of
its closed neighborhood. A possible choice of weights is the
Metropolis weights, defined by

(33)

Note that the Metropolis weights yield a symmetric matrix, and,
thus, are appropriate for . The choices for and as in (32)
and (33) have been observed to yield good results for the diffu-
sion RLS algorithm (12) in general.

A. Optimization of Matrix A

We can improve the steady state performance of the adap-
tive network by choosing matrices and such that the mean-
square deviation is minimized. We therefore consider the fol-
lowing problem:

(31) (34)

This problem is in general not convex. Nevertheless, for the
special case of invariant spatial profile, if we fix the matrix
(for example, by using the Metropolis weights (33)), and add
the constraint , (34) becomes a convex optimization
problem, and can therefore be solved using standard solvers. We
will show that this is the case when we use expression (25). In
this case, the problem can be formulated as

(31) (35)

where

(36)

Now note that

and also

Combining these two results, and taking the trace, we arrive at

Since and are symmetric, and using the result Tr
, the first term of the above equation is zero. Taking the

limit when goes to infinity, we obtain

Using the identity

we arrive at

This expression is convex in the elements of , since for positive
definite is convex in the elements of [19] and
so is for any constant matrix . Also, is related
linearly to , and linear transformations preserve convexity.
Thus, since the constraints (31) are linear, problem (35) is a
convex problem, and can be solved using a convex optimization
solver.

Unfortunately, the restriction that be a symmetric matrix
for the problem to be convex does not always produce good
results. For instance, a choice of as in (32) may give a lower
MSD than the optimal symmetric matrix . This observation
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Fig. 3. Steady-state MSD values for diffusion RLS (12) and the global solution
(4), using � � ���.

is highly dependent on the configuration of the network. For
example, when the configuration is such that a choice like (32)
produces a symmetric matrix, then the optimized weights will
show improvement.

B. Optimization of Matrix C

We can also fix matrix , and solve problem (34) by mini-
mizing with respect to . This is also a convex problem in the
elements of , as follows. Let . From (36) we
have

The previous expression is a sum of convex functions of the
elements of . Since the elements of are related linearly
to the elements of , and since linear transformations preserve
convexity, we have that problem (34) is convex in the elements
of .

VI. SIMULATIONS

We now show simulation results for the diffusion RLS algo-
rithm (12), and compare its performance to the theoretical re-
sults of Section IV and also to other distributed algorithms.

The measurements were generated according to model (1),
and the regressors were chosen Gaussian iid. The network
had a total of nodes and the size of the unknown
vector was . The results were averaged over 200
experiments. For diffusion RLS, unless otherwise indicated,
Metropolis weights were used for , and was chosen as in
(32).

Fig. 3 shows the MSD results obtained from simulations and
from expression (21) for diffusion RLS (12) and (29) for the
global solution (4), for a value of . The noise variances
were chosen different for every node, and the regressor covari-
ance matrices were generated at random. Fig. 4 shows the re-
spective plots for the EMSE. We see that the theoretical results
agree well with the simulations.

Fig. 5 compares the proposed diffusion RLS algorithm (12)
with the distributed RLS (dRLS) of [3], [4] and the space-time
diffusion (STD) algorithm of [10]. To simulate STD, Metropolis

Fig. 4. Steady-state EMSE values for diffusion RLS (12) and the global solu-
tion (4), using � � ���.

Fig. 5. MSD curves of different algorithms, using � � �.

weights were used as proposed in [10]. Since STD does not ac-
count for the forgetting factor , we set for diffusion
RLS in the simulations in order to ensure a fair comparison.
We observe that diffusion RLS (12) has better convergence per-
formance than STD, even though the latter requires transmis-
sion of more information and inversion of matrices for every
measurement (see Appendix B for a discussion on this observa-
tion). Also, as indicated in [3], [4], the dRLS solution achieves
the global LS performance at the cost of requiring a cyclic path.
Also shown are the special cases discussed in Section IV-C-4)
where cooperation is limited. The curve labeled “Isolated” rep-
resents the case where the nodes are isolated, the
curve labeled “Share” corresponds to the case , and the
curve labeled “Local” corresponds to the case . As ex-
pected, all these latter cases with limited cooperation are infe-
rior in performance to diffusion RLS (12).

Fig. 6 shows the MSD of different algorithms as a function
of the number of scalars communicated per node. We observe
that diffusion RLS exhibits significant improvement over STD.
That is, in order to obtain a fixed MSD, diffusion RLS requires
less communications (measured in terms of scalars transmitted)
than STD, and the performance in this case is close to that of
dRLS.

The algorithms were also compared using different data
models, where the time independence and identically distributed
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Fig. 6. MSD curves of different algorithms as a function of number of scalars
communicated per node, using � � �.

Fig. 7. MSD curves of different algorithms, using � � � and relaxed data
models.

assumptions were dropped. Fig. 7 shows the performance of the
algorithms when the noise variances were different for every
node (between 0.1 and 0.2), and the regressors were chosen to
have shift structure with the elements of forming a Markov
process with different coefficients for every node. Again a
value of was used. We did not observe a significant
degradation in performance by using different data models.

Finally, we illustrate the effect of the coefficient optimization
procedure of Section V on performance. In Fig. 8, we show
the MSD curves for the diffusion RLS algorithm (12), using
four different sets of coefficients and . The choices
and represent the matrices from (32) and (33), respectively.
The choices and represent the matrices obtained by
solving the convex optimization problems of Section V such
as 35. We clearly observe that when we use instead of

, performance is degraded. The reason is that offers the
best performance over all symmetric matrices, but has better
performance. We can also observe that the optimization of for
a fixed always improves the results.

In Fig. 9 we present the same curves, but for a different net-
work where in (32) happens to be symmetric. Now the op-
timization of is clearly improving performance, as expected,
and so is the optimization of . The best performance is ob-
tained when both matrices are optimized.

Fig. 8. MSD curves for different choices of weighting matrices � and � .

Fig. 9. MSD curves for different choices of weighting matrices � and � .

VII. CONCLUSIONS AND FUTURE WORK

We have addressed the problem of distributed estimation
over adaptive networks. We have proposed a diffusion RLS
algorithm that obtains good performance compared to the
global solution, and outperforms previous methods. Further-
more, it does not require transmission or inversion of matrices,
and has no topology constraints. We have shown mean and
mean-squared convergence under ergodicity assumptions and
derived expressions for the mean-square deviation and excess
mean-square error, which agree well with the simulation
results. The algorithm was simulated under some general con-
ditions and exhibited good performance. Finally, we described
how to choose the weighting matrices by solving appropriate
convex optimization problems.

A useful question to pursue is the study and development
of diffusion variants that involve coarse quantization in order
to minimize the number of bits communicated between nodes.
Interesting work in this regard using 1-bit communications has
been proposed in the works [20], [21] in the context of other
distributed procedures. Also of importance is the issue of relia-
bility of the measurements obtained by the nodes. These topics
will be addressed in future work.



CATTIVELLI et al.: DIFFUSION RECURSIVE LEAST-SQUARES 1875

APPENDIX A
DERIVATION OF THE DIFFUSION RLS ALGORITHM (12)

The solution of (5) can be obtained from (3) by replacing
with as in (6), and . It is given by

(37)

where

We are interested in a recursion that allows us to compute
from . We note that

We can obtain from using a series of rank-one up-
dates as follows:

where we have introduced the matrices to denote the inter-
mediate results after every rank-one update. Using the matrix
inversion lemma, and noting that we need only consider values
of where , the above recursions become

(38)

We now need a recursion for the update of the estimate .
Define the matrices and that collect all measurements and
regressors, respectively, from all nodes up to time , and from
nodes 1 to at time . The matrices are given by

...
...

Also define the diagonal weight matrix as

. . .

Consider the intermediate estimates

where

It holds that . Thus, we can calcu-
late recursively from by instead calculating re-
cursively from . Let denote the smallest index such that

. We calculate from as follows:

(39)

In a similar fashion, we can derive recursions to obtain from
, for . We now have

(40)

We can combine (38), (39) and (40) into a single recursion as
follows:
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To simplify notation, we drop the super-indexes in the above
recursions, and note that we only need to consider values of for
which . Considering all time instants up to , problem
(5) can be solved recursively via the following algorithm:

(41)

We have referred to this recursions in Section VI as the “Local”
solution, since nodes only take into account data from their
neighborhoods to compute the estimates.

The diffusion RLS algorithm takes further advantage of the
interconnection between nodes to improve the estimation by
also exchanging estimates. As argued in Section II, we replace
the last step in (41) by a weighted average of the estimates of
the nodes as in (11). This immediately leads to (12).

APPENDIX B
RELATION BETWEEN DIFFUSION RLS (12) AND STD [10]

The space-time diffusion (STD) algorithm of [10] obtains an
estimate of for node at time through the following
relations:

Consider now the following approximations:

(42)

and

(43)

The above approximations are reasonable for large , under as-
sumption 2 and when we have an invariant spatial profile. Then
we get

(44)

(45)

(46)

where . Equations (44)–(46) produce
the same result as the one we would obtain after the incremental
update of diffusion RLS (12), provided and . Thus,
one expects STD and the diffusion RLS algorithm (12) to give
similar results when approximations (42)–(43) hold. Neverthe-
less, our experience shows that diffusion RLS outperforms STD
in general since it does not require , and also allows for
the use of a forgetting factor .
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