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Abstract—This paper addresses the problem of channel
tracking and equalization for multi-input multi-output (MIMO)
time-varying frequency-selective channels. These channels model
the effects of inter-symbol interference (ISI), co-channel in-
terference (CCI), and noise. A low-order autoregressive model
approximates the MIMO channel variation and facilitates tracking
via a Kalman filter. Hard decisions to aid Kalman tracking come
from a MIMO finite-length minimum-mean-squared-error de-
cision-feedback equalizer (MMSE-DFE), which performs the
equalization task. Since the optimum DFE for a wide range of
channels produces decisions with a delay� 0, the Kalman
filter tracks the channel with a delay. A channel prediction module
bridges the time gap between the channel estimates produced by
the Kalman filter and those needed for the DFE adaptation. The
proposed algorithm offers good tracking behavior for multiuser
fading ISI channels at the expense of higher complexity than
conventional adaptive algorithms. Applications include syn-
chronous multiuser detection of independent transmitters, as well
as coordinated transmission through many transmitter/receiver
antennas, for increased data rate.

Index Terms—Equalization, MIMO systems, multichannel
tracking.

I. INTRODUCTION

T HIS paper considers the problem of channel tracking
and equalization of a multi-input multi-output (MIMO)

wireless system, where is the number of
transmitter antennas, and is the number of receiver
antennas. In most of the paper, the discussion is general enough
to cover both the case of independent users with one an-
tenna each (which can be thought of as the multi-user detection
problem, for instance, in wideband multiple access systems
[1]) and the case of one user with coordinated transmissions
through antennas for higher data rate (which is akin to the
systems of [2], [3]). We assume that the time variation of the
MIMO channel within a packet is significant; thus, channel
tracking is needed for the equalization to be effective. For
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MIMO tracking, we use a Kalman filter aided by staggered
decisions from a finite-length MMSE-DFE, which performs
the task of equalization and separation of the sources.

For the problem of adaptive equalization of a single fading
dispersive channel , a comprehensive review
of the extensive research is [4]. In [5], we present a special
case of the results herein, which is applicable to this scenario.
For array measurements at the receiver ,
an adaptive approach based on per-survivor-processing (PSP)
is explored in [6], but when more transmitters are sharing the
bandwidth, there are two broad classes of techniques to combat
co-channel interference (CCI) at the receiver. One is to suppress
interference, possibly in an adaptive fashion, as in [7]. Another
strategy is to decode all data sequences simultaneously (e.g.,
[8]), possibly with a blind/adaptive approach [9]. The method
we demonstrate here embraces the second paradigm, with a few
key differences from previous approaches. First, we adopt the
design of a finite-length MMSE-DFE from [10] for practical
implementation. Then, we consider the channel taps to have sig-
nificant time-variation from symbol to symbol but with largely
invariant specular mean and Doppler, which can be identified
during a training phase. After that, in tracking mode, the Kalman
filter and this finite MIMO DFE cooperate to adapt to the rapid
channel variations.

It should be noted that, at least for the single-user channel,
Kalman-based estimation methods are quite common in the
literature (e.g., [11] uses the extended Kalman filter to track
a channel with unknown delays, and [12] discusses a special
case of the problem herein for , first-order
autoregressive channel modeling and no decision delay
in the DFE). In addition, in [13], the Kalman approach is used
to formulate extended forms of the recursive least-squares
(RLS) algorithm, and the tracking superiority of those is
demonstrated compared with the standard RLS and least
mean-squares (LMS) algorithms. Here, we use a Kalman filter
to track the time variation of the MIMO channel taps. These
taps are typically modeled as mutually uncorrelated circular
complex Gaussian random processes, having locally constant
means, due to large scale path loss, reflections, and shadowing
effects. We assume the tap means are known from a preceding
training phase and concentrate on tracking their time-variant
part, which has autocorrelation properties corresponding to the
wide-sense stationary and uncorrelated scattering “WSSUS”
model of Bello [14]. If the tap means are zero, the channel
is said to introduce Rayleigh fading (worst case), whereas a
nonzero mean tap corresponds to Ricean fading. The Kalman
channel estimator is aided by previous hard decisions about
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the transmitted symbols from all users produced by the MIMO
equalizer.

Assuming perfect knowledge of the MIMO channel, the op-
timum receiver is a maximum likelihood sequence estimator
(MLSE), but its complexity is prohibitive, even for low-order
channels with a small number of inputs and outputs. Here, we
use the MIMO finite-length minimum-mean-squared-error de-
cision-feedback equalizer (MMSE-DFE), which was developed
in [10] and optimized for decision delay . The choice of

improves performance for a wide range of channels, as
shown in [5] for the single-user channel. However, this delay
poses the problem of channel prediction when combined with
the Kalman tracking procedure mentioned previously because
there is a time gap of between channel estimates produced by
the Kalman filter (aided by the delayed DFE decisions) and the
channel estimates needed for the current DFE adaptation. We
discuss simple methods to bridge this time gap and show simu-
lation results to demonstrate that the joint tracking and equaliza-
tion algorithm proposed in this paper offers good performance.
In fact, it outperforms conventional adaptive equalization algo-
rithms such as LMS or RLS. These algorithms do not have an ex-
plicit mechanism for incorporating the largely invariant channel
statistics, such as the Doppler rate and the channel mean, in case
they are known to the receiver from a previous training phase.

The paper is organized as follows. Section II presents
the channel model. Section III introduces the receiver block
diagram and discusses the Kalman-based tracking, the channel
prediction, and the delay-optimized adaptive DFE design. Sec-
tion IV presents simulation results of the proposed algorithm,
using the lower complexity LMS and RLS adaptive algorithms
for the MIMO DFE as a useful baseline for performance
comparison. Finally, Section V concludes the paper.

II. CHANNEL MODEL

Each receiver antenna of the -input, -output MIMO
channel observes a linear combination of all transmitted
data sequences, each distorted by ISI, under white Gaussian
noise. Specifically, the observable from receiver (with

) at time is

(1)

where is the th tap of the impulse response of order
between theth input and the th output of the

MIMO channel. The complex baseband constellation point
is transmitted by theth user at time , and is the

complex noise sample at theth receiver. In essence, there exist
a total of interfering, time-varying ISI channels

(2)

Each of the taps in (2) can be written as

(3)

where is the tap mean, and we define
and set for .

A clear way to represent the time variation of the MIMO
channel taps is to rewrite the input–output relationship of (1)
in vector form, collecting the outputs from all receiver an-
tennas at time into an -dimensional column vector

(4)

where the data matrix is a “wide” matrix
with the transmitted symbols repeated diagonally, according to
the Kronecker product

(5)

and is a long vector of length containing all the
channel taps at time

(6)

With this setup, the channel is a complex Gaussian vector
process with a constant mean vector and a time-variant
part , all of dimensions .

A. Bello’s Model

According to the WSSUS model of Bello [14], all the channel
taps are independent; therefore, the time-varying part
of each tap in (3) is a zero-mean, wide-sense-stationary complex
Gaussian process, uncorrelated with any other , and
has time-autocorrelation properties governed by the Doppler
rate ( is the baud duration) as in [15]

(7)

where is the zero-order Bessel function of the first kind.
Each of the taps can change independently with a
different Doppler rate, although this will not be essential in our
development. This issue of tap independence is revisited in Sec-
tion IV-C. In the long channel vector setup of (6), all the entries
of the vector process evolve independently, according to
the autocorrelation model of (7)).

If we let index enumerate all the taps
and denote the Doppler of the th tap of the

channel from input to output , then the normalized spectrum
for each tap is

otherwise.

(8)

B. Autoregressive Model

Exact modeling of the time evolution of the vector process
with an autoregressive moving-average (ARMA) model

is impossible because the autocorrelation functions are non-
rational. Accurate but large-order AR models for the fading
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channel are presented in [16]. However, the first few correla-
tion terms of (7) for small lag are more important for
the design of the receiver. Thus, even low-order autoregressive
models, or even a simple Gauss-Markov model, matching the
Bessel autocorrelation well for small lags, can capture most of
the channel tap dynamics and lead to effective tracking algo-
rithms, as demonstrated later. To this end, we approximate the
MIMO channel variation with the following multichannel
AR process of order, as done in [12] for

(9)

where is a zero-mean i.i.d. circular complex Gaussian vector
process with correlation matrices for every lag given
by . Due to the
WSSUS assumption, the matrices and of
the model (9) must be diagonal. For the selection of their diag-
onal entries, various criteria of optimality can be adopted, such
that the AR model of (9) would be a “best-fit” to the true
channel autocorrelation of (7). One such criterion can be to re-
quire the process (9) to be such that 90% of the energy spectrum
of each tap is contained in the frequency range ,
as indicated by (8). In this paper, we use the so-called “correla-
tion-matching” property of the AR model [17] and equate the
autocorrelations of (9) and (7) for the first lags, deeming
the matching of those to be more important than matching terms
of larger time-lag. This method amounts to solving the linear
system of the Yule–Walker equations [18] with respect to the
coefficients of the AR model and provides good autocorrela-
tion matching even for low orders. Of course, for lags greater
than , the autocorrelation of the AR model extrapolated by a
recursive difference equation [18] differs from the true autocor-
relation. Fig. 1 shows that for , the AR(2) autocorrelation
matches the true Bessel autocorrelation well for lags less than
20, whereas for , the matching is satisfactory only for very
few small lags.

The multichannel AR model of (9) for the time varying
part of the channel can be written in matrix state-space form
as

(10)

where the long vector of length contains the
realization of the time-varying part of the vector channelfor

consecutive times

(11)

Fig. 1. Autocorrelation functionR(k) true (Bessel) and for the AR(p) model
for p = 1; 2 and Doppler ratef T = 0:02. The second-order AR model
autocorrelation matches the true expression for lag< 20, although only the
first three terms are exactly equal.

and the matrices and are as in (12) and (13), shown at
the bottom of the page. After choosing the orderfor the AR
model, we fix the entries of matrices and of (10), i.e.,
the diagonal entries of the matrices and

of (9). Call those diagonal entries and , respec-
tively, for each tap. When modeling
the Ricean channel, the objective is to capture the most essen-
tial parts of the channel variation, namely, how “fast” and how
“much” the time-varying part of each channel tap varies
with respect to the known mean of that tap . The speed of
variation is determined by the Doppler or, equivalently, by the
relative velocity between the antennas of the transmitter and
the antennas of the receiver. At least for the scenario of co-
ordinated transmission, the assumption of equal Doppler rates

makes intuitive sense;
therefore, we adopt it in the simulations, although the algorithm
derivation certainly does not rely on that. Different Doppler
rates for each tap can be accommodated. Larger Doppler
rate implies faster channel variation, hence, more diversity
but a more difficult estimation task. In any case, the Doppler rate
uniquely specifies a Bessel autocorrelation, as in (7). Then, the
entries of matrix

are determined from the Yule–Walker system, as explained
previously. For example, for an AR(1) system, , and

is diagonal with entries , which
makes the autocorrelation of the taps modeled by (9) equal the
true autocorrelation at unit lag.

(12)

(13)
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Having fixed therate of channel variation via , the mag-
nitude of variation of the th tap is then controlled by the di-
agonal entries of since the power of the time-variant
part of each tap is , and it is proportional to

. The amount of variation of each tap with
respect to the mean is expressed by the “specular-to-diffuse
power ratio” as

(14)

The ratio indicates the ratio of power of theth mean
channel tap to the mean-squared power of the random,
time-variant part of that tap, which is analogous to the Ricean
factor defined in the wireless channel literature. Clearly,

dB corresponds to Rayleigh taps, whereas large
positive values of in decibels represent almost no channel
variation at all. In the simulations, although, again, it is
arbitrary, we choose equal values of for all the
taps. By specifying the magnitude of change and the rate of
change of the time-varying part of the channelthrough the
parameters and , respectively, one can immediately
construct an AR model to approximate the true dynamics of
the channel, as described in (7). Taking AR(1)—similarly for
any order —as an example, the ratio uniquely specifies
because , and has already
been determined from the Doppler rate. For perspective, in a
2.4-GHz transmission with baud rate of 40 kHz and Doppler
frequency Hz (corresponding to vehicular velocity of
90 Km/h or 56 mi/h), . Hence, for an AR(1) model,

, and for an AR(2) model, ,
and . In addition, a value of dB
implies that the average power of each tap variation is one
fourth of the constant mean tap value. In the AR(1) case, this
sets , whereas
in the AR(2) case, .

The modeling inaccuracy of the AR approximation can be
made arbitrarily small by increasing the order[as , the
autocorrelation of the AR model will equal (7) for all lags].
However, the complexity of the tracking algorithm described
next increases, making this impractical, and actually unneces-
sary, because it turns out that first- or second-order approxima-
tions are enough to model the channel dynamics to the extent
necessary for a receiver to operate. This is shown in the simula-
tion section.

For the single-input single-ouput (SISO) case (i.e.,
), a useful method to obtain the sequence of ma-

trices during a training mode is provided
in [12] via higher than second-order statistics (HOS). For the
single channel case, their method is effective and requires only
reasonable assumptions about the transmitted sequence and the
noise. An analogous training method can be adopted for general
MIMO channels. However, the way we formulated the AR
model of (10) here, the information needed to construct the
model is only the channel mean, the Doppler rates, the ra-
tios , and the noise variance. Hence, we assume that these
quantities are known from a training phase and focus on deci-

sion-aided tracking of the channel for relatively long time spans
without retraining.

III. RECEIVER STRUCTURE

The receiver uses a Kalman filter to track the channel and an
MMSE-DFE to equalize it. The Kalman filter assumes that the
DFE hard decisions are correct and uses them to estimate the
next channel value, whereas the DFE assumes correct Kalman
filter channel estimates and uses them in turn to equalize the
channel. In general, the optimum decision delay can
be determined analytically given a channel (see [10]). For a
wide range of channels (including, but not limited to, nonmin-
imum-phase channels), it turns out that a DFE producing deci-
sions with is optimal. Even for the few channels where

is best, it does not degrade performance to use a DFE
with , provided that there are enough taps in the feedfor-
ward and feedback filters. Thus, it makes sense, particularly for
time-varying channels like the ones treated here, to use decision
delays .

However, when , a time gap is created. At time,
when the last received vector is, the DFE produces the hard-
decision . The staggered decisions cause the Kalman filter
to operate with delay, that is, operate at time since it only
has available hard decisions from the DFE up to then. However,
the DFE design still needs channel estimates up to time. Thus,
the receiver needs to use channel prediction to bridge the time
gap between the Kalman channel estimation and the channel
estimates needed for the current DFE adaptation.

The proposed system block diagram of Fig. 2 shows the time
succession of steps 1) through 4), which follow. The notation

(or ) means the collection of vector-valued (or scalar)
variables (or ). In Fig. 2, the flow of new
information is clockwise, starting from top left, with each of the
blocks corresponding to one of the following actions:

1) .
2) .
3) design DFE .
4) DFE .
The iteration starts with the well-known Kalman filter re-

cursions denoted by , which at time yield the optimum
linear estimator [based on the AR model of (9) or (10)] of the
time-varying part of the channel as it was at time . For
that, the Kalman filter relies on the (assumed reliable) DFE deci-
sions , the received vector , and

previously estimated channel vectors. In the second step,
denotes a predictor that may exploit the additional received vec-
tors , along with the most recent Kalman estimates

to compute the sequence ofpredicted
channels .

Those predicted channels, along with the most re-
cent channel estimates from the Kalman filter, are used by the
DFE design module (see Section III-B) to design the optimum
feedforward matrix filter and the feedback matrix filter

of an MMSE-DFE. Finally, the newly designed DFE de-
codes one more -dimensional symbol . This is added to
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Fig. 2. Receiver block diagram.

the collection of past (assumed reliable) decisions, which will
help the Kalman filter make a new channel estimate
at the next iteration that takes place at time instant . In the
following subsections, we look at the implementation of the two
main receiver modules in greater detail.

A. Kalman Tracking and Channel Prediction

For notational convenience, we describe the Kalman tracking
when the receiver uses an AR(1) channel model, where in (10),
we have . The extension to higher order AR models is
straightforward. The channel at timehas a constant (assumed
known) mean and a zero-mean time-varying part, which
follows the AR(1) model

(15)

At time , the (zero-mean) received vector is given by

(16)

Assuming the matrices and and the mean channel vector
are known from a preceding training phase and assuming the
matrix of the most recent available decisions to be
equal to the true defined in (5), the receiver can use
the Kalman filter to track the channel variation , using as
observable the vector . The Kalman filter
operating with a delay is described at timeby the series of
equations [19]

(17)

The above Kalman recursions implement the optimum linear
estimator for the time-varying part of the channel , as-
suming the taps follow an AR(1) model. For a general AR
channel model, we rewrite (15) and (16) as

(18)

(19)

and construct the Kalman recursion similarly. In this case,
consists of the first entries of , as shown in (11). Regardless of
the order of the channel model, the last reliable decision made
by the DFE and used by the Kalman filter at timeis .
For matrices and that are multiples of the identity (pro-
duced, for instance, by an AR(1) model of uncorrelated fading
with the same Doppler and ratio for all taps), fast algorithms
for the above Kalman recursions can be pursued (see, e.g., [20]).
For channels with nonindependent taps, either because of spatial
correlation as in the uplink channel model of [21] or because of
time-correlation induced by the shaping filters at the transmitter
and receiver, the essence of the recursion does not change. An
additional “shaping” matrix is introduced after (replace
with ) to model the correlation of the channel taps, but
the vector containing the independent variations remains the
objective of the tracking. The correlation introduced because of
shaping is discussed further in Section IV.

Note that for the block-constant fading channel model
adopted in the space-time literature [3], nothing else changes
in the model of (15), except for setting and ,
which simplifies the Kalman recursions significantly. This
makes the Ricean factors in (14) useless because if the
channel remains unchanged for the whole block, the distinction
between the mean and in (6) is arbitrary. However, in this
case of block constant channel, adaptation of the MIMO DFE
at every time is not warranted. A few iterations of the algorithm
at the beginning of each block should be enough to adapt the
matrix coefficients to the constant channel. Then, their values
can remain fixed for the rest of the block.

In channels with smaller coherence time (higher Doppler),
adapting the MIMO DFE every time instant improves perfor-
mance. For designing the DFE at time(step 3), the most
recent channel estimates are needed, whereis the order of
the matrix feedforward filter of the DFE. Up to time ,
channel estimates are available from the Kalman filter, but the
last channel vectors have to be predicted.
The implementation of the prediction depends on the SNR of
operation and how fast the channel varies. For the block-con-
stant channel or a very slowly varying one, the simplest choice
is to assume that the channel remains constant oversampling
periods, that is

(20)

where is already provided by the Kalman filter.
More generally, the optimal linear predictions, given that the

channel follows the AR(1) model of (15) but ignoring the addi-
tional received vectors , are

(21)

where again is the last Kalman channel estimate. Again,
for AR models, the prediction formulas of (21) remain es-
sentially unchanged but withreplacing .

The received vectors , which are also available,
can be used to improve the prediction for a fast-varying channel
at high SNR. For example, one could formulate and optimize
least-squares cost functions , forcing the predicted channel
vectors to the vicinity of the values of
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(21), weighted by how well a certain “justifies” the received
vectors (see [5]). We do not pursue this prediction
avenue in this paper, and all simulations are done using (21) for
channel prediction.

B. MMSE-DFE Design

The design of the optimum MMSE feedforward and feedback
matrix filters and of lengths and matrix taps,
respectively, as well as the optimum selection of the delayfor
any system, is solved in [10] and will not be repeated
here. It is an MMSE design in the sense that it minimizes both the
trace and the determinantof the autocorrelationmatrixof the
error vector , where is the vector with the
equalizedsoft valuesat time,asseen inFig.3.For thedesign,we
assume that there is no error propagation, i.e., the hard decision
vector is the same as the transmitted vector .

In [10], various design methodologies are given, depending
on whether there is a feedback filter or not (in which case the de-
sign is that of an MMSE linear MIMO equalizer). The choice of
oversampling is also available without significant changes to the
derivation. For the DFE, an important design choice is whether
currentdecisions of stronger users, or only past decisions from
every user, are available. The former case would correspond to
a successive cancellation scheme and would provide better per-
formance at the cost of added complexity to order theusers
according to their power.

Here, we avoid the extra complexity by designing a symbol-
spaced MIMO DFE, where only past decisions for all users are
available and go into the feedback matrix filter . Clearly,
this choice of strictly causal feedback filtering has a conse-
quence. Although it permits almost perfect cancellation of the
ISI and cross-ISI, it does not completely suppress residual cross-
coupling. In other words, theth entry of the equalized
vector is almost devoid of the corrupting presence of all

, but the presence of current other symbols
in it is nulled somewhat less effectively.

We do not replicate the equations for optimum design
of and here. Analogous to a SISO system with

, we can write the MIMO channel input–output
relationship in vector form as a matrix FIR filter by collecting
the outputs of (1) from all receiver antennas at timeinto
a -dimensional column vector

(22)

where and are column vectors of length are
column vectors of length , and are matrix
channel taps (instead of the scalar SISO taps). Each of the ma-
trices contains the tap of (1) and
(3) in its th position. The essential part of the DFE design at
every time instantis the formulation of the
block prewindowed channel matrix

...
...

(23)

Fig. 3. MIMO DFE block diagram.

where are the
estimates of the channel matrices in (22). Con-
structing of (23) merely involves adding the constant partto
the long vector estimates of the
time-varying part of the channel (some of which are estimated
via the Kalman filter and some are predicted) and then rear-
ranging the resulting long vectors into the dimensions specified
by (22). Once of (23) has been formed, the MIMO DFE de-
sign procedure described in [10] is straightforward and provides
the correlation matrix of the error vector as a by-product.
Fast Cholesky factorization improves the computational effi-
ciency of this finite-length MIMO DFE design, playing a role
parallel to that of spectral factorization for matrix filters of infi-
nite length.

IV. SIMULATION RESULTS

Before the performance evaluation of the Kalman tracking
and MIMO DFE equalization algorithm outlined previously,
this section briefly presents conventional adaptive algorithms
for the DFE, such as LMS and RLS for the case of trans-
mitters and receivers.

A. Baseline Adaptive Systems

Unlike the Kalman-aided DFE presented above, the LMS and
RLS adaptation mechanisms do not estimate the channel ex-
plicitly. Instead, they adapt the DFE matrix taps based on ob-
served symbols from the time-varying channel and hard deci-
sions from the equalizer. LMS and RLS will serve as baseline
systems, the performance of which will be compared with the
Kalman-aided DFE through simulations in Section IV-B. For
both algorithms, consider the concatenation of the
matrix FF filter and the matrix FB filter of the DFE
into an equalizer filter .
At time , this equalizer filter operates on the column “re-
gressor” vector of length

(24)

The operation produces a vector of soft values, which
are then fed to slicers, as in Fig. 3, producing hard decisions

. From [19], the following LMS recursions, which are sep-
arate for each transmitter , iteratively approximate
the least-mean-square solution

(25)
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Those simultaneous LMS recursions for the rowsof
can be combined into one for the entire DFE

MIMO LMS (26)

Similarly, considering parallel RLS adaptations for each row
and this time using instantaneous approximations for the neces-
sary correlation matrices in a Newton recursion (see [19]), we
get

for with

which, again, can be combined into one matrix recursion for

MIMO RLS

(27)
with initial condition and .

Note that the recursive adaptation of (27) above is also the
exact solution of a weighted, regularized least-squares problem
involving a block of observations and a single equalizer matrix

. In fact, with the obvious changes to accommodate the dif-
ferent dimensions of , the RLS recursion of (27) can easily be
shown to be exactly equivalent to the more compact RLS recur-
sions given in [19, ch. 10] and [22, p. 569] with the update for

after the equalizer update.

B. Performance Evaluation

In all simulations presented in this section, we implement the
Kalman-aided MIMO DFE algorithm outlined in Section III
and compare the performance of the system, as measured by
its symbol error rate (SER) when transmitting 4-PSK constella-
tion points through (2, 2) and single-antenna (i.e., (1, 1)) Ricean
fading channels. We assume the channel mean to be constant
and known at the beginning of each block of symbols per
user. For comparison purposes, the plots include the SER per-
formance (dashed curves) with the receiver having access to
“genie-provided” perfect channel information, as well as that
of the LMS and RLS of Section IV-A. Note that LMS and RLS
are less computationally intensive than the tracking algorithm
proposed in this paper.

The SNR is set to be the same for both users. In addition,
all mean interfering channels of (2) are normalized

, and all ratios are chosen equal to a single
. Thus, with being the noise variance at each receiver, the

SNR plotted is the SNR of each interfering channel, neglecting
co-channel interference

SNR (28)

since the input 4-PSK points are normalized to unit power.
Given that all (direct and interfering) ISI channels are
normalized to have equal energy , clearly, the op-
timum allocation of power among the transmitters—without
special shaping—is equal power to all. Of course, different

Fig. 4. Performance of (2, 2) system versus SNR. BlocklengthN = 500,
Bello’s Ricean channel withf T = 0:02;K = 10 dB. Both AR(2)-based
and AR(1)-based approximations at the receiver outperform plain LMS/RLS
adaptations. Notice also the performance withcorrectdecisions fed back, both
in the DFE and into the Kalman estimator (dashed curves).

channel energies and transmitter power allocation can be
explored, but in this paper, we performed all simulations based
on the above assumptions. Clearly, for the (2, 2) example, the
above definition of SNR corresponds to 3 dB higher SNR (i.e.,

) than that commonly defined in the space-time litera-
ture (see [2]) because we allocate unit power to each transmitter
antenna, thinking about individual uncoordinated users. For
coordinated transmission, to maintain a fair comparison with
conventional (1, 1) systems, input power must be split evenly
among the transmitter antennas, which lowers the SNR by

dB.
In Fig. 4, the mean ISI channels were the normalized ver-

sions of and for the direct paths,
and and for the interfering
paths; the Doppler rate of the variations was , and
the specular-to-diffuse power ratio was dB. The in-
dicated symbol-error rate (SER) performance represents unsu-
pervised channel tracking for blocks of symbols per
user. The DFE has and matrix taps and decision
delay . We observe that performance with receivers em-
ploying Kalman tracking is generally significantly better than
plain LMS/RLS adaptations when using either AR(1) or AR(2)
approximations of the channel, which is varying according to
Bello’s model (7).

The superiority of our algorithm versus model-independent
adaptive solutions such as LMS and RLS should come as no
surprise, first of all because of the difference in complexity.The
LMS adaptation costs complex
operations, and RLS requires . The
Kalman estimation requires , where is the order
of the AR approximation used by the receiver, and the
total number of channel taps is . Another

operations are required for the DFE design
after Kalman estimation. Additionally, the memory required
for the Kalman/DFE adaptation is larger becauseestimated
and predicted channels need to be stored to form the matrix
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Fig. 5. Performance of (2, 2) system versus SNR. Same as in Fig. 4, but the
channel is AR(2), which is derived fromf T = 0:02;K = 10 dB, i.e., no
modeling mismatch for AR(2) Kalman/DFE. Superiority versus LMS/RLS is
retained, and the AR(2) receiver follows the perfect CSI (dashed) curve very
closely.

of (23) and the matrices of the Kalman recursion, whereas
LMS/RLS require only the current regressor vector (24) to be
stored. The fundamental reason for the improved performance
with respect to LMS/RLS is that these algorithms do not not
have an explicit mechanism of incorporating known channel
statistics and only rely on careful selection of the parameters

and , respectively, to perform the best tracking they can.
Therefore, exploiting the knowledge of largely invariant
channel parameters (i.e., the mean and Doppler) to form a
low-order autoregressive AR(1) or AR(2) channel model offers
a significant performance improvement.

The reason behind the significant distance between the SER
curve of AR(2) and AR(1) Kalman tracking and the SER
curve when the receiver has perfect channel-state information
(CSI—dashed curve) is twofold. First, there is the modeling
mismatch between the true Bessel time correlation of the
channel taps and the AR models used by the Kalman/DFE
receiver. This is further evidenced by Fig. 5, where we actually
generated the channel using the AR(2) model corresponding
to the and dB, which was discussed
previously. In other words, in Fig. 5, the AR(2) channel model
at the receiver has no mismatch to the actual simulated channel.
We observe that when the channel follows the AR(2) model
used by the receiver, the distance from perfect CSI is less than
1 dB. However, when modeling mismatch exists, i.e., when
the receiver uses an AR(1) model to track while the simulated
channel is AR(2), then the distance from perfect CSI increases.

Comparing Figs. 4 and 5, one notices generally better
performance on the AR(2) channel with parameters derived
from Bello’s channel (in Fig. 5) than on the more realistic
Bello channel itself (Fig. 4). In addition, the gap between the
Kalman receivers and RLS is more pronounced in Fig. 4. Both
of these observations show that Bello’s channel is a more
difficult channel in which to perform well because the nonra-
tional autocorrelation makes tracking a harder problem. Even
the perfect CSI curve (no estimation complications) reaches

SER more than 1 dB earlier in the AR(2) channel,
confirming that the AR channel is simply more benign and
presents an easier tracking task to the receiver, thus allowing
even the much simpler LMS/RLS algorithms to perform much
closer to our proposed Kalman/DFE solution than they do in
Bello’s channel.

The second main source of performance degradation rela-
tive to perfect CSI is error propagation of the MIMO DFE. The
exact effect of this can be shown by the difference between the
solid performance curves and their dashed counterparts, which
present simulations with ideal “error-free” feedback to both the
Kalman filter and the feedback section of the MIMO DFE (see
Figs. 4, 6, and 7 for a (1, 1) channel). Error propagation is also
solely responsible for the apparent “floor” in error probability
noticeable both in Figs. 4 and 7 and less so in the slower channel
of Fig. 6. Notice that when correct decisions are fed back into the
receiver, no error floor appears [dashed curves marked with “”
for AR(1) and “ ” for AR(2) receivers]. In our simulations, the
“error-floor” effect appears when the SNR is high enough that a
single incorrect decision changes the tracking and DFE design
enough in the wrong direction to compromise the rest of the
block. The remedy for this “runaway” effect (recognized also
in [12]) is to periodically insert known symbols—pilots—in the
data stream, sacrificing part of the transmission rate to make the
situation more similar to the ideal “error-free feedback” curves
shown here.

Although error propagation is responsible for the error floor,
higher order channel modeling helps lower it significantly. From
the solid curves (true decisions fed back) in Figs. 4, 6, and 7, we
conclude that increased order channel parameterization offers
higher quality tracking, which makes the probability of a block
of data being lost due to error propagation smaller. Therefore,
increasing in the AR receiver model renders a more robust,
albeit more complex receiver. In fact, this is a major advantage
of the Kalman/DFE algorithm with respect to LMS and RLS,
which make a small number of erroneous decisions (about 1%)
in almost every block even with correct decisions fed back (not
shown in the plots). In contrast, the Kalman/DFE algorithm at
high SNR decodes almost all blocks correctly, with the excep-
tion of a few blocks, which are lost to catastrophic error propa-
gation, causing the SER error floor.

Fig. 6 shows the performance again in a Ricean channel
generated by Bello’s model, with perfect CSI at the receiver
(dashed), with the receiver using the “best-fit” AR(2) and
AR(1) models analyzed in Section II-B. Everything is the
same as in Fig. 4, only with a smaller Doppler, which is now

. As a result, the time-correlation of the taps
is now approximately three times stronger than before, thus
making the tracking task easier. This is demonstrated by the
fact that the AR(2) receiver is not significantly better than the
receiver employing AR(1) channel modeling, especially in the
(dashed) error-free decision feedback simulation, which re-
moves the error propagation effect. In addition, the gap between
both the AR(2) and AR(1) receivers from the perfect CSI is
less. In this case, with the lower Doppler (stronger correlation),
even the first-order receiver model performs hardly worse
than the more complicated receiver using the AR(2) model to
match the true channel statistics. In addition, observe that error
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Fig. 6. Performance of (2, 2) system versus SNR. Same as in Fig. 4, except
now, the Doppler is lowerf T = 0:007, yielding an easier channel to track.

Fig. 7. Performance of (1, 1) system versus SNR in Ricean channel with
f T = 0:02 andK = 10 dB. The DFE hasN = 3; N = 1 and decision
delay� = 2.

propagation tends to generate a small anomaly in SER at 18
dB, but eventually, with increasing SNR, the curves continue
to approach their “error-free” (dashed) feedback counterparts
without exhibiting an error floor. This indicates that higher
quality channel tracking in general (either from increased order
AR channel modeling or because the channel is slower and
easier to track) drastically diminishes the probability of lost
blocks and, thus, prevents an error floor.

Fig. 7 shows simulation results for a (1, 1) Ricean channel in
the same fashion as above. The mean channel is
normalized to unit energy, the blocklength is , the
Doppler is , and dB. The superiority versus
LMS and RLS is maintained, as it was previously. An inter-
esting observation in this case is that although the dashed curves
(error-free decisions fed back) with AR(2) and AR(1) approx-
imations for Kalman tracking are not very different, when the
real decisions are fed back (solid curves), the better quality of
the AR(2) tracking shows, leading to much better performance
than the AR(1) tracking (the difference is about 6 dB at SER of

Fig. 8. SNR required for the (2, 2) system in an AR(1) channel to reach SER=
10 for different channel conditions, i.e., Ricean factorK and Doppler rate
[or a (1)]. The channel is time-varying according to the Gauss–Markov (GM)
model of (15).

). Therefore, the better matching of the true channel statis-
tics provided by the AR(2) model manifests itself mainly in the
true decision-aided tracking, where the AR(1) receiver is signif-
icantly more prone to suffering from error propagation.

The simulation results in Fig. 8 provide some insight on the
issue of how the magnitude and speed of the channel variation
affect the system performance. At each simulation point, the
channel is a pure Gauss–Markov channel, i.e., first-order
autoregressive tap variation. We control the rate of variation by
the Doppler, namely, by the selection of the AR(1) parameter

in the model of (15), and the magnitude
of variation with respect to the channel mean by the Ricean
factor of (14). Fig. 8 shows the SNR required for the system
to reach an SER of for given pairs of the abscissa and
the Doppler. We observe the intuitively expected fact that as
decreases and the Doppler rate increases (less correlated
channel), the problem becomes harder, and higher SNR is
required for error performance. In addition, for a given
Doppler, sufficiently reducing causes an error floor, and
SER is never achieved, no matter how high the SNR.
Because the AR(1) coefficient is the same for all channel
taps, this simulation pertains to the scenario of colocated
transmission through an system, rather than that of

separate users, each with different Doppler. However, even
in the latter case, the conclusion that increasing Doppler [
significantly less than 1 for AR(1) model] worsens tracking
performance still holds.

Furthermore, we observe for this AR(1) channel that similar
conclusions are true when the Kalman filter is simulated with
correct decisions fed back (dashed curves), rather than actual
decisions from the MIMO DFE (solid curves). This suggests
that the problematic performance in channels with small mean,
i.e., almost Rayleigh channel taps, relatively small, coupled
with rapid variation [high , small coefficients ] is only
partially due to failure of the DFE because of error propaga-
tion; moreover, pilot insertion can mitigate error propagation
and increase robustness. The fact that error-free decision feed-
back also fails at high enough Doppler and low enoughin-
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dicates that accurate channel estimation and tracking is a fun-
damental issue at high Doppler. In fact, idealized simulations
in which the DFE is provided with perfect channel knowledge
show good equalization performance, regardless of the speed
(large ) and magnitude (low ) of the channel variation.
The MIMO DFE is an efficient equalization mechanism, as long
as correct channel estimates are available, but at high enough
Doppler, correct channel estimates may not be possible.

Even with error-free decisions fed back, the Kalman tracking
fails under the harsh conditions of low-/high-Doppler. This
Kalman tracking failure for rapid channel variation does not
mean that channel estimates diverge. The Kalman filter still fol-
lows the true tap trajectories, only with a higher mean-squared
error. Thus, the channel estimates it produces are not accurate
enough for the MIMO DFE to effectively equalize. It should
be noted, however, that it takes quite violent tap fluctuation
(low- /high- ) to cause the Kalman filter to ineffectively
track the taps, whereas the baseline LMS/RLS adaptive algo-
rithms exhibit high error floor for much milder channel condi-
tions and never outperformed the Kalman filter tracking in any
of our simulations. An additional observation for perspective is
that in the limit of very low and very high , the channel
tap values become effectively i.i.d., which makes any attempt
for channel estimation futile. Increasing the orderof the AR
model used by the Kalman filter has a positive effect on estima-
tion fidelity at a significant cost in complexity.

Finally, it should be noted that the separation of the perfor-
mance curves (solid with actual decisions, dashed with correct
decisions) for the Kalman/DFE solution from the simulation re-
sults with perfect CSI (dashed curves) in Figs. 4, 6, and 7 is not
solely due to model mismatch, i.e., not large enough orderof
the receiver AR model. In other words, the entire distance
to perfect CSI will not be covered if we arbitrarily increase.
The estimation quality is also partly limited because of the fil-
tering essence of the decision-aided Kalman mechanism, which
does not allow for a smoothing estimation solution. The Kalman
filter is an optimal linearfiltering estimator and can never be as
good as a smoothing estimator taking into account the future,
even with matching channel and receiver AR models. However,
data in the future are unknown, and therefore, the alternatives
are either blind or block-oriented iterative solutions, which are
beyond the scope of this paper. However, much of the channel
estimation degradation is due to the model mismatch, as sug-
gested by Fig. 5, where exact channel modeling brings the fil-
tering estimation and perfect CSI performance to within 1 dB
of each other.

C. Tap Independence Revisited

Here, we explore further the issue of tap independence, which
is a simplifying assumption made in Section II. In reality, be-
cause the taps of the Ricean channel are not baud-spaced, the
combination of the shaping filters at the transmitter and receiver
(usually root-raised-cosine with a rolloff factor of ) causes
correlation between the effective channel taps, as observed by
the receiver. However, this does not change the essence of the
proposed Kalman tracking algorithm because the induced corre-
lation is known, and its effect can be taken into account. The for-
mulation and the simulation results do not change significantly.

The objective of the tracking is still the independent Ricean
taps, although the observations are produced by the corre-
lated baud-spaced channel after the receiver shaping filter.

Specifically, consider a Ricean channelwith inde-
pendent impulses that are arbitrarily spaced in time
at instants . If the total shaping filter has impulse re-
sponse (say, a raised cosine), then the effective channel
seen by the receiver has impulse response

(29)

and the T-spaced samples of are now correlated in time.
This correlation can be represented by a shaping matrixso
that the effective T-spaced channel seen by the receiver is,
consisting of samples of of (29) every baud period .
Hence, . The form of the shaping matrix is best ex-
plained through a specific example, which we also used for the
(1, 1) simulation of Fig. 9. The extension to systems
is straightforward. Consider two Ricean taps , at times

and . Then, using a raised cosine pulse
shape with 50% rolloff and retaining six bauds of it (be-
cause it decays quickly in time), the shaping matrix becomes
(the effective channel now has nine taps)

(30)

and the only thing that changes in the Kalman recursion of (17)
is that the matrix is replaced by since the observation
(16) now becomes

(31)

Fig. 9 presents the simulation results for this scenario. Observe
that the results remain consistent with previous simulations, but
the complexity is slightly higher due to the additional matrix
operation and the increased effective channel length. The mean
channel used is normalized to unit energy, the
Doppler for the taps varying according to Bello’s model is

, the Ricean factor is dB, the blocklength
is , and the DFE has . Note
that knowledge of the times of the channel impulses
is assumed. In a real-world system, those times are unknown
but can be estimated via the algorithm in [11].

V. CONCLUSION

This paper proposed a receiver structure to track and equalize
a MIMO frequency-selective fading channel. A Kalman filter
was used for tracking the channel, employing a low-order au-
toregressive model to best fit the true statistics of the channel
variation. An MMSE DFE optimized for decision delay
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Fig. 9. Performance of (1, 1) system versus SNR in the Ricean channel with
f T = 0:02 andK = 10 dB and correlated taps due to shaping. The DFE has
N = 6; N = 4; and decision delay� = 5.

was used to equalize the channel and suppress CCI. The time
gap between channel estimates produced by the Kalman filter
and those needed for the MIMO DFE adaptation was bridged by
using a simple prediction module. This algorithm, in exchange
for larger complexity when compared with simple LMS/RLS
updates of the DFE, offers improved performance and good
tracking behavior for long unsupervised blocks. This is achieved
mainly because of the autoregressive modeling of the channel
statistics at the receiver.
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