IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 5, MAY 2002 1065

Multi-Input Multi-Output Fading Channel Tracking
and Equalization Using Kalman Estimation

Christos KomninakisStudent Member, IEEEChristina Fragouli, Ali H. Sayedellow, IEEE and
Richard D. WeselSenior Member, IEEE

Abstract—This paper addresses the problem of channel MIMO tracking, we use a Kalman filter aided by staggered

tracking and equalization for multi-input multi-output (MIMO)  decisions from a finite-length MMSE-DFE, which performs
time-varying frequency-selective channels. These channels modelthe task of equalization and separation of the sources.

the effects of inter-symbol interference (ISI), co-channel in- For th bl f adapti lizati f inale fadi
terference (CCIl), and noise. A low-order autoregressive model or the problem or adaplive equalization ot a singie tading

approximates the MIMO channel variation and facilitates tracking ~ dispersive channélny = nr = 1), a comprehensive review
via a Kalman filter. Hard decisions to aid Kalman tracking come of the extensive research is [4]. In [5], we present a special
from a MIMO finite-length minimum-mean-squared-error de-  case of the results herein, which is applicable to this scenario.
cision-feedback equalizer (MMSE-DFE), which performs the g, array measurements at the receifier = 1,ng > 1),

equalization task. Since the optimum DFE for a wide range of . . .
channels produces decisions with a delaA > 0, the Kalman an adaptive approach based on per-survivor-processing (PSP)

filter tracks the channel with a delay. A channel prediction module IS €xplored in [6], but when more transmitters are sharing the
bridges the time gap between the channel estimates produced bybandwidth, there are two broad classes of techniques to combat
the Kalman filter and those needed for the DFE adaptation. The ¢o-channel interference (CCl) at the receiver. One is to suppress
proposed algorithm offers good tracking behavior for multiuser —jiarference, possibly in an adaptive fashion, as in [7]. Another

fading ISI channels at the expense of higher complexity than . .
conventional adaptive algorithms. Applications include syn- strategy is to decode all; data sequences simultaneously (e.g.,

chronous multiuser detection of independent transmitters, as well [8]), possibly with a blind/adaptive approach [9]. The method
as coordinated transmission through many transmitter/receiver we demonstrate here embraces the second paradigm, with a few

antennas, for increased data rate. key differences from previous approaches. First, we adopt the
Index Terms—Equalization, MIMO systems, multichannel design of a finite-length MMSE-DFE from [10] for practical
tracking. implementation. Then, we consider the channel taps to have sig-

nificant time-variation from symbol to symbol but with largely
invariant specular mean and Doppler, which can be identified
during a training phase. After that, in tracking mode, the Kalman
HIS paper considers the problem of channel trackirfjter and this finite MIMO DFE cooperate to adapt to the rapid
and equalization of a multi-input multi-output (MIMO) channel variations.
(nT,ngr) wireless system, wherer > 1 is the number of It should be noted that, at least for the single-user channel,
transmitter antennas, antgk > 1 is the number of receiver Kalman-based estimation methods are quite common in the
antennas. In most of the paper, the discussion is general enolitghature (e.g., [11] uses the extended Kalman filter to track
to cover both the case af; independent users with one ana channel with unknown delays, and [12] discusses a special
tenna each (which can be thought of as the multi-user detectiguse of the problem herein for;, = ng = 1, first-order
problem, for instance, in wideband multiple access systemgtoregressive channel modeling and no decision d&lay 0
[1]) and the case of one user with coordinated transmissiansthe DFE). In addition, in [13], the Kalman approach is used
throughny antennas for higher data rate (which is akin to they formulate extended forms of the recursive least-squares
systems of [2], [3]). We assume that the time variation of th@®LS) algorithm, and the tracking superiority of those is
MIMO channel within a packet is significant; thus, channelemonstrated compared with the standard RLS and least
tracking is needed for the equalization to be effective. Fefiean-squares (LMS) algorithms. Here, we use a Kalman filter
to track the time variation of the MIMO channel taps. These
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the transmitted symbols from all users produced by the MIMO A clear way to represent the time variation of the MIMO

equalizer. channel taps is to rewrite the input-output relationship of (1)
Assuming perfect knowledge of the MIMO channel, the ofn vector form, collecting the outpugé’) from all receiver an-

timum receiver is a maximum likelihood sequence estimattgnnas at time into ann z-dimensional column vectagr;:

(MLSE), but its complexity is prohibitive, even for low-order

channels with a small number of inputs and outputs. Here, we i=Xp-cr+vy (4)

use the MIMO finite-length minimum-mean-squared-error de- ) ) ) )

cision-feedback equalizer (MMSE-DFE), which was developd1€re their x nrnz (1 + 1) data matrixX, is a “wide” matrix

in [10] and optimized for decision delay > 0. The choice of with the transmitted symbols repeated diagonally, according to

A > 0 improves performance for a wide range of channels, J Kronecker product

shown in [5] for the single-user channel. However, this delr':légr (1) (n7), (1) (nT) L) (nT)
poses the problem of channel prediction when combined witftt = [“’t B R e SRR S } @ Lng
the Kalman tracking procedure mentioned previously because (5)

there is atime gap ah between channel estimates produced by

the Kalman filter (aided by the delayed DFE decisions) and ti@&dc: is a long vector of length7n r(1 + 1) containing all the
channel estimates needed for the current DFE adaptation. Yf@nnel taps at timg ¢; = ¢ + h,

discuss simple methods to bridge this time gap and show simu- (1) (L) (1) (nzmm)

lation results to demonstrate that the joint tracking and equaliZa-= [Co ) ey () ey () ()

tion algorithm proposed in this paper offers good performance. (1) (Lr) (ne1) tnz )] L

In fact, it outperforms conventional adaptive equalization algo- ¢ (t) .. ¢ " ¥ (£) ... " (F) ... e T (t)} . (6)
rithms such as LMS or RLS. These algorithms do not have an ex- i ) )

plicit mechanism for incorporating the largely invariant channdith this setup, the channel is a complex Gaussian vector

statistics, such as the Doppler rate and the channel mean, in §96€SSc: With a constant mean vecter and a time-variant
they are known to the receiver from a previous training phas@ath:, all of dimensiongnyng(v + 1)) x 1.

The paper is organized as follows. Section Il presents ,
the channel model. Section Il introduces the receiver blo Bello’s Model
diagram and discusses the Kalman-based tracking, the channéiccording to the WSSUS model of Bello [14], all the channel
prediction, and the delay-optimized adaptive DFE design. Sdaps are independent; therefore, the time-varying @%ﬂ)(t)
tion IV presents simulation results of the proposed algorithraf each tap in (3) is a zero-mean, wide-sense-stationary complex
using the lower complexity LMS and RLS adaptive algorithmSaussian process, uncorrelated with any oikfér] )(t), and
for the MIMO DFE as a useful baseline for performanchas time-autocorrelation properties governed by the Doppler

comparison. Finally, Section V concludes the paper. rate fp 1" (T is the baud duration) as in [15]
Il. CHANNEL MODEL E {hﬁjﬂ)(tl) [hﬁf;”(tQ)} *}rvjo (wag’j’"’)T|t1—t2|) 7)

Each receiver antenna of ther-input, ng-output MIMO

channel observes a linear combination of all transmittdf"€ree( ) is the zero-order Bessel func_:tion of the first k_ind.
data sequences, each distorted by ISI, under white Gauss] h of thengna(v + 1) taps can change independently with a

noise. Specifically, the observabg,éj) from receiver; (with ffrerent Doppler.ra}te, although this will not be. esse_n_nal n our
development. This issue of tap independence is revisited in Sec-

J =1L oomg) atimetis tion IV-C. In the long channel vector setup of (6), all the entries
' ny o9 ‘ ' of the vector proceséh,} evolve independently, according to
u =373 D), + 0, (1) the autocorrelation model of (7)).
i=1 m=0 If we letindexk enumerate allthetags=1, ..., nrnr(v+

1) and denotgf,()k) = ,()i’j’"’) the Doppler of thenth tap of the

(i:9) i
W(T?)rebcm IS tr;emth tap %f) thed|n:]plﬂlie respong;a ?f r?rde[:hannel from input to outputy, then the normalized spectrum
v etween théth inputz'” and thejth outputy'?’ of the ﬁ%r each tap{hgk)} is

MIMO channel. The complex baseband constellation poi
x@m is transmitted by théh user at time —m, andvt(]) is the 1 1

k)
complex noise sample at thith receiver. In essence, there exist af®p 2’ < T
a total ofnn  interfering, time-varying 1SI channetg®-9) Si(f) = b — | &= (8)
TRR g, time-varying I1SI chann () 7
D

C(v‘,,j)(t) _ |:C(()i,j)(t) ng‘,j)(t) Cl(/z(;% (t)} ) 0, otherwise.

Each of the taps in (2) can be written as B. Autoregressive Model
D) =) L (), m=0,...,v () Exact modeling of the time evolution of the vector process

1) - {h.} with an autoregressive moving-average (ARMA) model
whereg,,;”’ is the tap mean, and we define= max; ; (Y)  is impossible because the autocorrelation functions are non-
and setﬁf,,’])(t) =0 form > v, rational. Accurate but large-order AR models for the fading
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channel are presented in [16]. However, the first few correla- !

tion terms of (7) for small lad¢; — ¢-| are more important for 0.8
the design of the receiver. Thus, even low-order autoregressive
models, or even a simple Gauss-Markov model, matching the
Bessel autocorrelation well for small lags, can capture most of
the channel tap dynamics and lead to effective tracking algo- —_o.2
rithms, as demonstrated later. To this end, we approximate theid/

0.6
0.4

L . . . 0
MIMO channel variatior{h; } with the following multichannel 2
AR process of ordep, as done in [12] fonyr = ng = 1: -0.2
-0.4
p E : : 5 : :
hy = Z A(l)htfl + Gowy 9) R N - True, Bessel autocorrelation R\ A
=1 -0.8}| =’ AR(Nyautocorrelation | . \.. /.. ]
’ - AR(2) autocorrelation
. i ' . . _1 H ~ 1 H H i
wherew, is a zero-mean i.i.d. circular complex Gaussian vector 0 20 20 50 80 100 120

process with correlation matric&b,,.,(7) for every lagj given
by Ryw(j) = E{wtwjﬂ} = L. nn(v+1)0(s). Due to the
WSSUS assumption, th? matrchzél), i=1,... ,p, andGo ,Of . Fig. 1. Autocorrelation functio(k) true (Bessel) and for the ARR) model
the model (9) must be diagonal. For the selection of their diagr , = 1,2 and Doppler ratef, T = 0.02. The second-order AR model
onal entries, various criteria of optimality can be adopted, sugttocorrelation matches the true expression fordag0, although only the
that the ARp) model of (9) would be a “best-fit” to the true st three terms are exactly equal.
channel autocorrelation of (7). One such criterion can be to re-
quire the process (9) to be such that 90% of the energy spectr@fgl the matrice¥ and G are as in (12) and (13), shown at
of each tap is contained in the frequency ranfle < f,(jk)T, the bottom of the page. After choosing the orgdor the AR
as indicated by (8). In this paper, we use the so-called “corre@odel, we fix the entries of matricds and G of (10), i.e.,
tion-matching” property of the AR) model [17] and equate the the diagonal entries of the matrice$s(!),! = 1,...,p and
autocorrelations of (9) and (7) for the first+ 1 lags, deeming Go of (9). Call those diagonal entries,(!) and gx, respec-
the matching of those to be more important than matching terfly, & = 1,....nrnr(v + 1) for each tap. When modeling
of larger time-lag. This method amounts to solving the lined€ Ricean channel, the objective is to capture the most essen-
system of they Yule—Walker equations [18] with respect to thdial parts of the channel variation, namely, how “fast” and how
coefficients of the ARp) model and provides good autocorrelamuch” the time-varying part®) of each channel tap varies
tion matching even for low ordegs Of course, for lags greater With respect to the known mean of that t&ly). The speed of
thanp, the autocorrelation of the AR) model extrapolated by a variation is determined by the Doppler or, equivalently, by the
recursive difference equation [18] differs from the true autocofelative velocity between they antennas of the transmitter and
relation. Fig. 1 shows that fgr = 2, the AR(2) autocorrelation then g antennas of the receiver. At least for the scenario of co-
matches the true Bessel autocorrelation well for lags less thflinated transmission, the assumption of equal Doppler rates
20, whereas fop = 1, the matching is satisfactory only forveryfp 1" = fpT, k = 1,...,nrnr(v + 1) makes intuitive sense;
few small lags. therefore, we adopt it in the simulations, although the algorithm
The multichannel ARp) model of (9) for the time varying derivation certainly does not rely on that. Different Doppler
part of the channdh, can be written in matrix state-space formatesf,()k)T for each tap can be accommodated. Larger Doppler
as rate fpI” implies faster channel variation, hence, more diversity
but a more difficult estimation task. In any case, the Doppler rate
z; = Fz,_1 + Gw, (10) uniquely specifies a Bessel autocorrelation, as in (7). Then, the
entriesai (1), k= 1,...,nrnr(r+1),1 = 1,...,p of matrix
where the long vectaz; of lengthp(r + 1)nrng contains the F are determined from the Yule—Walker system, as explained
realization of the time-varying part of the vector chanhgfor previously. For example, for an AR(1) system, = h,, and

autocorrelation lag, &

p consecutive times F = A(1) is diagonal with entries; (1) = 7,(2# fpT), which
makes the autocorrelation of the taps modeled by (9) equal the
zp=[hf hl, --- bl ., " (11) true autocorrelation at unit lag.
F= A1) A(2) - Alp—1) A(p) (12)
I(p—l)nTnR(z/—l—l) 0(p—1)n,TnR(z/—|—1)Xn,Tn,R(z/—l—l)

G

{ Go (13)

O(p—l)nTnR(z/-i—l) xnrngr(v+1) ’
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Having fixed therate of channel variation vid&', the mag- sion-aided tracking of the channel for relatively long time spans
nitude of variation of thesth tap is then controlled by the di- without retraining.
agonal entrieg;,. of Gy since the power of the time-variant
part of each tap i€|h*)|2, and it is proportional t@?, k =
1,...,npngr(r + 1). The amount of variation of each tap with

. . Ill. RECEIVER STRUCTURE
respect to the mean is expressed by the “specular-to-diffuse
power ratio” K as The receiver uses a Kalman filter to track the channel and an
MMSE-DFE to equalize it. The Kalman filter assumes that the
def |k |2 DFE hard decisions are correct and uses them to estimate the
K3 = 10log o | (14)  next channel value, whereas the DFE assumes correct Kalman
E{W )| } filter channel estimates and uses them in turn to equalize the

. o ) channel. In general, the optimum decision defay> 0 can

The ratio & indicates the ratio of power of theth mean pe determined analytically given a channel (see [10]). For a
channel tap to the mean-squared power of the randoffjde range of channels (including, but not limited to, nonmin-
time-variant part of that tap, which is analogous to the Rice@pym-phase channels), it turns out that a DFE producing deci-
factor defined in the wireless channel literature. Clearlgjons withA > 0 is optimal. Even for the few channels where
K = —oo dB corresponds to Rayleigh taps, whereas large — g js best, it does not degrade performance to use a DFE
positive values ofit in decibels represent almost no channglith A > 0, provided that there are enough taps in the feedfor-
variation at all. In the simulations, although, again, it i§ard and feedback filters. Thus, it makes sense, particularly for
arbitrary, we choose equal values fi, = K for all the {ime-varying channels like the ones treated here, to use decision
taps. By specifying the magnitude of change and the rate dglaysA > 0.
change of the time-varying part of the chanhelthrough the However, whenA > 0, a time gap is created. At time
parametersk” and fpT', respectively, one can immediatelyyhen the last received vectorys, the DFE produces the hard-
construct an ARp) model to approximate the true dynamics ofjeisionk, . The staggered decisions cause the Kalman filter
the channel, as described in (7). Taking AR(1)—similarly fofy gperate with delay, that is, operate at tite A since it only
any orderp—gs an example, the ratigi,, uniquely specifieg.  has available hard decisions from the DFE up to then. However,
becauseZ|hM)|* = g7/(1 — ax(1))?, andax(1) has already e ppg design still needs channel estimates up to tirfiaus,
been determined from the Doppler rate. For perspective, i receiver needs to use channel prediction to bridge the time
2.4-GHz transmission with baud rate of 40 kHz and Dopplef; hetween the Kalman channel estimation and the channel
frequencyf, = 2_00 Hz (corresponding to vehicular velocity of o ctimates needed for the current DFE adaptation.
90 Km/h or 56 mih) fpT" = 0.02. Hence, for an AR(1) model, The proposed system block diagram of Fig. 2 shows the time
ax(1) = 0.9961, and for an AR(2) modela,.(1) = 1.9901,  g,ccession of steps 1) through 4), which follow. The notation
and ax(2) = —0.9980. In addition, a value o’ = 6 dB 1, (5 ,m2) means the collection of vector-valued (or scalar)
implies that the average power of each tap variation is OleriableSrlm . Tn, (OF 7, ... 70,). In Fig. 2, the flow of new
fourth of trlek constant mean tap value. In the "?‘R(l) case, o mation is clockwise, starting from top left, with each of the
setsgy, = e y/(1 = aF(1))10"/20 = 0.0445|c™)], whereas )y corresponding to one of the following actions:
in the AR(2) caseg;, = 0.0018|&)|. L (A1 AL

The modeling inaccuracy of the AR) approximation can be 2) fli_A o _(Ptflf_—g’ yt—A—tl,xt_A_V_l).
made arbitrarily small by increasing the orggasp — ~, the ) tf(;prttl —Opt ( t—A—_p+1’Yt7AAt)'
autocorrelation of the AR) model will equal (7) for all lags].  3) [W;™, B;""] = design DFEh;_ ).
However, the complexity of the tracking algorithm described 4) %;_a = DFE(WP", B{™).
next increases, making this impractical, and actually unnecesThe iteration starts with the well-known Kalman filter re-
sary, because it turns out that first- or second-order approxineawsions denoted bi(( - ), which at timet yield the optimum
tions are enough to model the channel dynamics to the extéinear estimator [based on the AR model of (9) or (10)] of the
necessary for a receiver to operate. This is shown in the simuiiae-varying part of the channhl_ » asitwas attime—A. For
tion section. that, the Kalman filter relies on the (assumed reliable) DFE deci-

For the single-input single-ouput (SISO) case (itgr, = SiONSXt—A_1,...,Xt—a—_p_1,thereceived vector,__1,and
1,ng = 1), a useful method to obtain the sequence of ma{previously estimated channel vectors. In the second Btep),
trices A(l),I = 1,...,p during a training mode is provided denotes a predictor that may exploit the additional received vec-
in [12] via higher than second-order statistics (HOS). For thersy:, ... y:—a, along with the most recent Kalman estimates
single channel case, their method is effective and requires obly_A_p+1, - .., h;—A to compute the sequence Afpredicted
reasonable assumptions about the transmitted sequence andhhenelsflt,AH, .. ,flt.
noise. An analogous training method can be adopted for generarhoseA predicted channels, along with thé: — A most re-
MIMO channels. However, the way we formulated the (8R cent channel estimates from the Kalman filter, are used by the
model of (10) here, the information needed to construct ti¥-E design module (see Section 11I-B) to design the optimum
model is only the channel mean the Doppler rates, the ra-feedforward matrix fiIteerPt and the feedback matrix filter
tios Ky, and the noise variance. Hence, we assume that thé&;?a"t of an MMSE-DFE. Finally, the newly designed DFE de-
guantities are known from a training phase and focus on decedes one morer-dimensional symbak, . Thisis added to
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Yi-a and construct the Kalman recursion similarly. In this cdse,
Vst —al l_» i consists of the first entries af, as shown in (11). Regardless of
e — KFﬂjllman Bia :“af“'e' i-ad the orderp of the channel model, the Ia_st rellablle.deAC|S|on made
Kl-d-1 ilter »| Predictor by the DFE and used by the Kalma_n filter at tme Xt—A-1-
: - X For matricesF and G that are multiples of the identity (pro-
i [he-y; - Beeany -] duced, for instance, by an AR(1) model of uncorrelated fading
L with the same Doppler and rati;, for all taps), fast algorithms
L W, B¥ | Design for the above Kalman recursions can be pursued (see, e.g., [20]).
Decision |- ) . . . .
%a Equalizer [« For channels with nonindependent taps, either because of spatial
<_| correlation as in the uplink channel model of [21] or because of
Yion, time-correlation induced by the shaping filters at the transmitter
and receiver, the essence of the recursion does not change. An
Fig. 2. Receiver block diagram. additional “shaping” matriXS is introduced afteX (replaceX

with X - S) to model the correlation of the channel taps, but

the collection of past (assumed reliable) decisions, which wilt€ vector, containing the independent variations remains the
help the Kalman filter make a new channel estimiate,, ©Objective of the tracking. The correlation introduced because of

at the next iteration that takes place at time instantl. In the Shaping is discussed further in Section IV.
following subsections, we look at the implementation of the two Note that for the block-constant fading channel model

main receiver modules in greater detail. adopted in the space-time literature [3], nothing else changes
in the model of (15), except for settirl = I andG = 0,
A. Kalman Tracking and Channel Prediction which simplifies the Kalman recursions significantly. This

makes the Ricean facto®;, in (14) useless because if the

For notational convenience, we describe the Kalman trackin : e
. . annel remains unchanged for the whole block, the distinction
when the receiver uses an AR(1) channel model, where in (1 - . . . L
. . . petween the mead andh in (6) is arbitrary. However, in this
we havez; = h,. The extension to higher order AR models is

. : ase of block constant channel, adaptation of the MIMO DFE
straightforward. The channel at tinidas a constant (assume L . X .
- : . : at every time is not warranted. A few iterations of the algorithm
known) meanc and a zero-mean time-varying part, which

at the beginning of each block should be enough to adapt the
follows the AR(1) model matrix coefficients to the constant channel. Then, their values

h,.; — Fh, + Gw,. 15) Canremain fixed_for the rest of the block_. _
t+1 ' w (19) In channels with smaller coherence time (higher Doppler),
At time ¢, the (zero-mean) received vectoris given by adapting the MIMO DFE every time instant improves perfor-
mance. For designing the DFE at tiéstep 3), theV; most
ve =X;-(c+hy) + vy (16) recent channel estimates are needed, whérés the order of

the matrix feedforward filteW°P* of the DFE. Up totimeé— A,

Assuming the matriceE andG and the mean channel vector channel estimates are available from the Kalman filter, but the
are known from a preceding training phase and assuming tast A channel vectordy, ..., h,_,; have to be predicted.
matrix of the most recent available decisioRs_A_; to be The implementation of the prediction depends on the SNR of
equal to the trueX,_,—_; defined in (5), the receiver can useoperation and how fast the channel varies. For the block-con-
the Kalman filter to track the channel variatibn_ A, using as stant channel or a very slowly varying one, the simplest choice
observable the vectgr,_A_1 — X;_a_1€. The Kalman filter is to assume that the channel remains constantasampling
operating with a delayA is described at time by the series of periods, that is
equations [19] R R R

. . h;=h; 1 =-=hy s (20)

hy A =Fh_ a1 +Ki_a_1€0-a . ) i _
whereh;_ A is already provided by the Kalman filter.

A1 =Vieat = Xpoa1(hy_aq te Vioet o .
a1 =Ye-a-1 = Xiaa(h-a 40 More generally, the optimal linear predictions, given that the

o —1
Kiaci=FP a1 X A )R A channel follows the AR(1) model of (15) but ignoring the addi-
Rt a_1 =Ry, + Xyoa i Poaa X o tional received vectorg,, ...,y:—a, are
Pt_A = FPt_A_lF” + GG . flt = FAflt,A, ey fltfﬂ-f—l = Fflt,A (21)
—KiaiRe a1 KP4 (17)

where agairflt,A is the last Kalman channel estimate. Again,
The above Kalman recursions implement the optimum linefgr AR(p) models, the prediction formulas of (21) remain es-
estimator for the time-varying part of the chandglL A, as- sentially unchanged but withreplacingh.

suming the taps follow an AR(1) model. For a general(AR  The received vectorg,, . .., y:_, which are also available,
channel model, we rewrite (15) and (16) as can be used to improve the prediction for a fast-varying channel
at high SNR. For example, one could formulate and optimize

241 = Fz, + Gw, (18)  |east-squares cost functiodigh), forcing the predicted channel

Ve = [Xt Oppx(pinrnnGtn) - (€+h) +ve  (19) vectorshy,k =t,...,t — A+ 1to the vicinity of the values of
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(21), weighted by how well a certal, “ustifies” the received ~ *t-2-

vectorsy., . .., v:—a (see[5]). We do not pursue this prediction o o~ Tia 7 :ig_A
avenue in this paper, and all simulations are done using (21) fc yt(2)___. FFF . VQ =R @ j@a
channel prediction. o T | W #n7) (o7

| u @R
B. MMSE-DFE Design

The design of the optimum MMSE feedforward and feedback FBF [T

opt
matrix filtersWeP* andB°P* of lengthsNV y andV, matrix taps, L B L
respectively, as well as the optimum selection of the d&ldgr
any(nr,ng) system, is solved in [10] and will not be repeated Fig. 3. MIMO DFE block diagram.
here. Itisan MMSE design in the sense that it minimizes both the
trace and the determinant of the autocorrelation m&gixof the whereéﬁl, m=01, .. vk=tt—1_ . t—N;+1larethe

error vector; = x; — x;, wherex;_» isthe vectorwithther  estimates of the z x ny- channel matrice€,,, (k) in (22). Con-
equalized softvalues attimigas seenin Fig. 3. Forthe design, W&tructingH of (23) merely involves adding the constant it
assume that there is no error propagation, i.e., the hard decisﬂq@bng vector estimatefsk k=tt—1,...,t—Ns+1ofthe
vectorx;_» is the same as the transmitted veotor A . time-varying part of the channel (some of which are estimated
In [10], various design methodologies are given, dependifg, the Kalman filter and some are predicted) and then rear-
on whether there is a feedback filter or not (in which case the dgnging the resulting long vectors into the dimensions specified
sign is that of an MMSE linear MIMO equalizer). The choice o[)y (22). OnceH of (23) has been formed, the MIMO DFE de-
oversampling is also available without significant changes t0 tafyy procedure described in [10] is straightforward and provides
derivation. For the DFE, an important design choice is whethgfe correlation matriR.. of the error vector as a by-product.
currentdecisions of.stronger users, or only past decisions frogy ¢ Cholesky factorization improves the computational effi-
every user, are available. The former case would corresponq:fgncy of this finite-length MIMO DFE design, playing a role

a successive cancellation scheme and would provide better pg{ra|le| to that of spectral factorization for matrix filters of infi-
formance at the cost of added complexity to ordertheusers jte length.

according to their power.

Here, we avoid the extra complexity by designing a symbol-
spaced MIMO DFE, where only past decisions for all users are
available and go into the feedback matrix filBFPt. Clearly, Before the performance evaluation of the Kalman tracking
this choice of strictly causal feedback filtering has a consand MIMO DFE equalization algorithm outlined previously,
quence. Although it permits almost perfect cancellation of tiiBis section briefly presents conventional adaptive algorithms
ISl and cross-ISl, it does not completely suppress residual cro¥-the DFE, such as LMS and RLS for the caseugftrans-
coupling. In other words, théth entry 7\ of the equalized Mitters andng receivers.
vectorx, is almost devoid of the corrupting presence ofvéﬂk, _ )

k # 0,5 =1,...,nr, butthe presence of current other symbold- Baseline Adaptive Systems
29 j # iinitis nulled somewhat less effectively. Unlike the Kalman-aided DFE presented above, the LMS and

We do not replicate the equations for optimum desigRLS adaptation mechanisms do not estimate the channel ex-
of W°rt and B°P" here. Analogous to a SISO system witlplicitly. Instead, they adapt the DFE matrix taps based on ob-
nr = ng = 1, we can write the MIMO channel input-outputserved symbols from the time-varying channel and hard deci-
relationship in vector form as a matrix FIR filter by collectingsions from the equalizer. LMS and RLS will serve as baseline
the outputs;;t(] ) of (1) from all receiver antennas at timénto  systems, the performance of which will be compared with the

IV. SIMULATION RESULTS

ang-dimensional column vectagr, Kalman-aided DFE through simulations in Section IV-B. For
y both algorithms, consider the concatenation ofithex n gV
Vi = Z Co() Xt + Vi (22) matrix FF filter and theur- x ny IV, matrix FB filter of the DFE
0 into anny x (ngNy + npN,) equalizer filterQ = [W B.

At time ¢, this equalizer filterQ, operates on the column “re-

wherey; andv; are column vectors of lengthg, x;_,,, are gressor” vecto, of lengthng Ny + ngp Ny

column vectors of length7, andC,,,(t) areng x ny matrix
channel taps (instead of the scalar SISO taps). Each of the ma- - - o o T
tricesC,,,(t),m =0, ..., contains the tapﬁ,’;”(t) of (1) and u = [Yt o Yi-Np1 KA1 Xt—A—N;,:| - (24)
(3) inits (4, ¢)th position. The essential part of the DFE design at ) )
every time instantis the formulation of the. s Ny xn(N;+1) ~ The operation produces a vectar » of nr soft values, which

block prewindowed channel matrit are then fed tav slicers, as in Fig. 3, prodgcing hard decisions
R R X;_ . From [19], the following LMS recursions, which are sep-
ch oo '1 C, 0 e 0 arate for each transmitter= 1, . . ., ny, iteratively approximate
o Cgt o cit 0 e the least-mean-square solution

H=| . . (23)

0 ... o &Nt g qf,(t)=qi(t—1)+u[§:§?A—qi(t—1)-ut]u:f- (25)
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Thosens simultaneous LMS recursions for the rogsof Q 10
can be combined into one for the entire DEE

perfect CSI

AR(2) Kaiman/DFE

AR(2) perf. decisions

: AR(1) Kalman/DFE
-4~ AR(1) pert. decisions

—%—  LMS-OFE, u=0.01

Similarly, considering. parallel RLS adaptations for each row - RLS-DFE, A=0.95
and this time using instantaneous approximations for the neces- . g
sary correlation matrices in a Newton recursion (see [19]), we 1] 107 '

MIMO LMS: Q; = Qu—1 + pffi—a — Qes - wJuj. (26) ol

get w»
ai(t) = ailt = 1)+ [0y —ailt = 1) - w ] wi P ol
fori =1,...,np, with
)\71P_1111*P_ .. : . N8
Pt:)\il' Pt—l_ t—1He My L1 S SRR e EERNCE SRR EREREE e \V\A\
1+ )x‘lufPt,lut 107~ i H R ; H H H i
4 6 8 10 12 14 16 18 20 22 24
which, again, can be combined into one matrix recursio¥or .
B ] SNR, in dB
P=X"1. |:Pt71 - A1+f17TLu*4}11t P:;l}
pit—1te Fig. 4. Performance of (2, 2) system versus SNR. Blockledgth= 500,
MIMO RLS : Bello’s Ricean channel witf, 7 = 0.02, K = 10 dB. Both AR(2)-based
Q= Qi1+ [Ken — Qo1 - w]ui B and AR(1)-based approximations at the receiver outperform plain LMS/RLS
adaptations. Notice also the performance withrectdecisions fed back, both
with initial condition P_; = #,Tand0 < \ < 1 in the DFE and into the Kalman estimator (dashed curves).
1 = T, <1

Note that the recursive adaptation of (27) above is also the

exact solution of a weighted, regularized least-squares probleAannel energies and transmitter power allocation can be
involving a block of observations and a single equalizer matriplored, but in this paper, we performed all simulations based
Q. In fact, with the obvious changes to accommodate the din the above assumptions. Clearly, for the (2, 2) example, the
ferent dimensions o), the RLS recursion of (27) can easily beabove definition of SNR corresponds to 3 dB higher SNR (i.e.,
shown to be exactly equivalent to the more compact RLS recutylog n) than that commonly defined in the space-time litera-
sions given in [19, ch. 10] and [22, p. 569] with the update faure (see [2]) because we allocate unit power to each transmitter
P, after the equalizer update. antenna, thinking about individual uncoordinated users. For
coordinated transmission, to maintain a fair comparison with
conventional (1, 1) systems, input power must be split evenly
In all simulations presented in this section, we implement tt@nong thens transmitter antennas, which lowers the SNR by
Kalman-aided MIMO DFE algorithm outlined in Section lll101logns dB.
and compare the performance of the system, as measured biy Fig. 4, the mean ISI channels were the normalized ver-
its symbol error rate (SER) when transmitting 4-PSK constellaions of(1 + j)[1 0.8] and(1 + j)[1 0.3] for the direct paths,
tion points through (2, 2) and single-antenna (i.e., (1, 1)) Riceand(1 + j5)[1 — 0.8] and(1 + j)[1 — 0.5] for the interfering
fading channels. We assume the channel mean to be consgaiths; the Doppler rate of the variations wasl" = 0.02, and
and known at the beginning of each block &f symbols per the specular-to-diffuse power ratio was = 10 dB. The in-
user. For comparison purposes, the plots include the SER pdicated symbol-error rate (SER) performance represents unsu-
formance (dashed curves) with the receiver having accessptrvised channel tracking for blocks 8f = 500 symbols per
“genie-provided” perfect channel information, as well as thatser. The DFE had; = 3 andN, = 1 matrix taps and decision
of the LMS and RLS of Section IV-A. Note that LMS and RLSdelayA = 2. We observe that performance with receivers em-
are less computationally intensive than the tracking algorithpioying Kalman tracking is generally significantly better than
proposed in this paper. plain LMS/RLS adaptations when using either AR(1) or AR(2)
The SNR is set to be the same for both users. In additiapproximations of the channel, which is varying according to
all npynr mean interfering channels of (2) are normalizeBello’s model (7).
le®?||2 = 1, and all ratiosK}, are chosen equal to a single The superiority of our algorithm versus model-independent
K. Thus, witha2 being the noise variance at each receiver, thlaptive solutions such as LMS and RLS should come as no
SNR plotted is the SNR of each interfering channel, neglectisgrprise, first of all because of the difference in complexity. The

B. Performance Evaluation

co-channel interference LMS adaptation costsO(ny(ngrN; + nyNy)) complex
14 10%/10 operations, and RLS requir€¥(nr(nrN; + nyrNy))?). The
SNR= 10log ———— (28) Kalman estimation require®@((pL)?), wherep is the order

Ti of the AR(p) approximation used by the receiver, and the

since the input 4-PSK points are normalized to unit poweptal number of channel taps Is = nyng(r + 1). Another
Given that allnyng (direct and interfering) ISI channels areO((Ny + N,)?) operations are required for the DFE design
normalized to have equal energy+ 105719, clearly, the op- after Kalman estimation. Additionally, the memory required
timum allocation of power among the- transmitters—without for the Kalman/DFE adaptation is larger becangeestimated
special shaping—is equal power to all. Of course, differeand predicted channels need to be stored to form the matrix
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10 SER = 10~* more than 1 dB earlier in the AR(2) channel,
confirming that the AR channel is simply more benign and
presents an easier tracking task to the receiver, thus allowing

102t even the much simpler LMS/RLS algorithms to perform much
closer to our proposed Kalman/DFE solution than they do in
Bello’s channel.

Ex{j 10 The second main source of performance degradation rela-
17, tive to perfect CSl is error propagation of the MIMO DFE. The
4 ‘ exact effect of this can be shown by the difference between the
sy SR N solid performance curves and their dashed counterparts, which
107, 23_ ﬁ%?gf‘éﬂanlopg : present simulations with ideal “error-free” feedback to both the
] -2~ AR(1) Kalman/DFE : Kalman filter and the feedback section of the MIMO DFE (see
| =%~ LMS-DFE,p=0.003 |- : o
RLS-DFE, A=0.996 |- - RV e Figs. 4, 6, and 7 for a (1, 1) channel). Error propagation is also
- : T z Q i solely responsible for the apparent “floor” in error probability
4 & 8 L noticeable both in Figs. 4 and 7 and less so in the slower channel
SNR, in dB of Fig. 6. Notice that when correct decisions are fed back into the

receiver, no error floor appears [dashed curves marked with “
Fri]g- 5. | _Pe:grr;ancr? C;: _(2,d2)lsysdt?m ve$us SONE- ??melasciig Fig. 4, butfig AR(1) and 7" for AR(2) receivers]. In our simulations, the
fn(?dnenliiglsmisnga)t’c\;]v f:)Cr AISR(Ze)erIm;?TI]DDFE. Sup.)térfo?ity vergus LIIVIeS/gI?S i;?rror'ﬂoor" effect aPPearS when the SNR IS. high enough that. a
retained, and the AR(2) receiver follows the perfect CSI (dashed) curve véiingle incorrect decision changes the tracking and DFE design
closely. enough in the wrong direction to compromise the rest of the
block. The remedy for this “runaway” effect (recognized also

H of (23) and the matrices of the Kalman recursion, where#[12]) is to periodically insert known symbols—pilots—in the
LMS/RLS require only the current regressor vector (24) to ksata stream, sacrificing part of the transmission rate to make the
stored. The fundamental reason for the improved performargitiation more similar to the ideal “error-free feedback” curves
with respect to LMS/RLS is that these algorithms do not néhown here.
have an explicit mechanism of incorporating known channel Although error propagation is responsible for the error floor,
statistics and only rely on careful selection of the parametdrigher order channel modeling helps lower it significantly. From
u and ), respectively, to perform the best tracking they caithe solid curves (true decisions fed back) in Figs. 4, 6, and 7, we
Therefore, exploiting the knowledge of largely invarianconclude that increased order channel parameterization offers
channel parameters (i.e., the mean and Doppler) to formhigher quality tracking, which makes the probability of a block
low-order autoregressive AR(1) or AR(2) channel model offedf data being lost due to error propagation smaller. Therefore,
a significant performance improvement. increasing in the AR(p) receiver model renders a more robust,

The reason behind the significant distance between the SEIReit more complex receiver. In fact, this is a major advantage
curve of AR(2) and AR(1) Kalman tracking and the SERf the Kalman/DFE algorithm with respect to LMS and RLS,
curve when the receiver has perfect channel-state informatishich make a small number of erroneous decisions (about 1%)
(CSl—dashed curve) is twofold. First, there is the modeling almost every block even with correct decisions fed back (not
mismatch between the true Bessel time correlation of tisbown in the plots). In contrast, the Kalman/DFE algorithm at
channel taps and the AR models used by the Kalman/DRigh SNR decodes almost all blocks correctly, with the excep-
receiver. This is further evidenced by Fig. 5, where we actuallipn of a few blocks, which are lost to catastrophic error propa-
generated the channel using the AR(2) model correspondigfion, causing the SER error floor.
to the fpT = 0.02 and K = 10 dB, which was discussed Fig. 6 shows the performance again in a Ricean channel
previously. In other words, in Fig. 5, the AR(2) channel modejenerated by Bello’s model, with perfect CSI at the receiver
at the receiver has no mismatch to the actual simulated chanfgashed), with the receiver using the “best-fit” AR(2) and
We observe that when the channel follows the AR(2) modAR(1) models analyzed in Section 1I-B. Everything is the
used by the receiver, the distance from perfect CSl is less treame as in Fig. 4, only with a smaller Doppler, which is now
1 dB. However, when modeling mismatch exists, i.e., whefp,Z' = 0.007. As a result, the time-correlation of the taps
the receiver uses an AR(1) model to track while the simulatésl now approximately three times stronger than before, thus
channel is AR(2), then the distance from perfect CSl increasesaking the tracking task easier. This is demonstrated by the

Comparing Figs. 4 and 5, one notices generally bettict that the AR(2) receiver is not significantly better than the
performance on the AR(2) channel with parameters derivegceiver employing AR(1) channel modeling, especially in the
from Bello’s channel (in Fig. 5) than on the more realisti¢dashed) error-free decision feedback simulation, which re-
Bello channel itself (Fig. 4). In addition, the gap between thmoves the error propagation effect. In addition, the gap between
Kalman receivers and RLS is more pronounced in Fig. 4. Bottoth the AR(2) and AR(1) receivers from the perfect CSl is
of these observations show that Bello’'s channel is a mdess. In this case, with the lower Doppler (stronger correlation),
difficult channel in which to perform well because the nonraeven the first-order receiver model performs hardly worse
tional autocorrelation makes tracking a harder problem. Evéran the more complicated receiver using the AR(2) model to
the perfect CSI curve (no estimation complications) reachestch the true channel statistics. In addition, observe that error
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S S o L . .
4 6 8 10 12 14 18 15 20 Ricean factor K, in dB
SNR. in dB Fig.8. SNRrequired forthe (2, 2) systemin an AR(1) channel to reachSER
2

102 for different channel conditions, i.e., Ricean facférand Doppler rate
Fig. 6. Performance of (2, 2) system versus SNR. Same as in Fig. 4, exd@ptex(1)]. The channel is time-varying according to the Gauss—-Markov (GM)
now, the Doppler is lowef, 7" = 0.007, yielding an easier channel to track. model of (15).

1072). Therefore, the better matching of the true channel statis-
tics provided by the AR(2) model manifests itself mainly in the
true decision-aided tracking, where the AR(1) receiver is signif-
icantly more prone to suffering from error propagation.

The simulation results in Fig. 8 provide some insight on the

e 10 issue of how the magnitude and speed of the channel variation
5)-] il affect the system performance. At each simulation point, the
perfect CSI channel is a pure Gauss—Markov channel, i.e., first-order
107 :: ﬁggg g:#ﬁ%%ffns a;]utolgegrelssive tap Ivart;ati(;]n. WT cqntrol ]:[hre] ra:i2 E)I)variation by
—&—  AR(1)Kalman/DFE | the Doppler, namely, by the selection of the parameter

:*4-_ 63(31_)8;2» :tgiséiggg P ar(1) = J,(2n fpT) in the model of (15), and the magnitude
RLS-DFE, A=0.999 | 7N of variation with respect to the channel mean by the Ricean

W0 e ) factor K of (14). Fig. 8 shows the SNR required for the system
2 4 6 8 10 12 14 16 18 20 22 24 to reach an SER dfo—2 for given pairs of the abscisd& and
SNR, in dB the Doppler. We observe the intuitively expected fact thatas

) N dﬁcreases and the Doppler rdigl increases (less correlated
Fig. 7. Performance of (1, 1) system versus SNR in Ricean channel wit . .
foT = 0.02 andK = 10 dB. The DFE hasV, = 3, N, = 1 and decision channel), the problem becomes harder, and higher SNR is
delayA = 2. required for10—2 error performance. In addition, for a given
Doppler, sufficiently reducing’ causes an error floor, and
propagation tends to generate a small anomaly in SER at3BR = 10~2 is never achieved, no matter how high the SNR.
dB, but eventually, with increasing SNR, the curves continugecause the AR(1) coefficient, (1) is the same for all channel
to approach their “error-free” (dashed) feedback counterpatéps, this simulation pertains to the scenario of colocated
without exhibiting an error floor. This indicates that highetransmission through afnr,ng) system, rather than that of
quality channel tracking in general (either from increased ordef separate users, each with different Doppler. However, even
AR channel modeling or because the channel is slower aithe latter case, the conclusion that increasing Dopplgfi])
easier to track) drastically diminishes the probability of lostignificantly less than 1 for AR(1) model] worsens tracking
blocks and, thus, prevents an error floor. performance still holds.

Fig. 7 shows simulation results for a (1, 1) Ricean channel in Furthermore, we observe for this AR(1) channel that similar
the same fashion as above. The mean chanriglHs;)[2.5 1] conclusions are true when the Kalman filter is simulated with
normalized to unit energy, the blocklengthAé = 500, the correctdecisions fed back (dashed curves), rather than actual
Dopplerisfp7 = 0.02,andK = 10dB. The superiority versus decisions from the MIMO DFE (solid curves). This suggests
LMS and RLS is maintained, as it was previously. An intethat the problematic performance in channels with small mean,
esting observation in this case is that although the dashed cunves almost Rayleigh channel taps, relatively snidjlcoupled
(error-free decisions fed back) with AR(2) and AR(1) approxwith rapid variation [highf» 7, small coefficients:;(1)] is only
imations for Kalman tracking are not very different, when thpartially due to failure of the DFE because of error propaga-
real decisions are fed back (solid curves), the better quality tidn; moreover, pilot insertion can mitigate error propagation
the AR(2) tracking shows, leading to much better performane@ad increase robustness. The fact that error-free decision feed-
than the AR(1) tracking (the difference is about 6 dB at SER bfck also fails at high enough Doppler and low enoigin-
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dicates that accurate channel estimation and tracking is a flilre objective of the tracking is still the independent Ricean
damental issue at high Doppler. In fact, idealized simulatiotsps, although the observatiogs are produced by the corre-
in which the DFE is provided with perfect channel knowledgkated baud-spaced channel after the receiver shaping filter.
show good equalization performance, regardless of the spee&pecifically, consider a Ricean chaniglwith » + 1 inde-
(large fpT) and magnitude (lowx) of the channel variation. pendent impulses,, .. ., h, that are arbitrarily spaced in time
The MIMO DFE is an efficient equalization mechanism, as lonat instantsr, . . ., 7,,. If the total shaping filter has impulse re-
as correct channel estimates are available, but at high enosgbnseg(7) (say, a raised cosine), then the effective channel
Doppler, correct channel estimates may not be possible.  seen by the receiver has impulse response

Even with error-free decisions fed back, the Kalman tracking .
fails under th_e hars_h conditions_ of IoWlhigh-Doppler. This B (r) = Z hag (T — 12) (29)
Kalman tracking failure for rapid channel variation does not P
mean that channel estimates diverge. The Kalman filter still fol-
lows the true tap trajectories, only with a higher mean-squaratd the T-spaced samples/g{r) are now correlated in time.
error. Thus, the channel estimates it produces are not accurlés correlation can be represented by a shaping matso
enough for the MIMO DFE to effectively equalize. It shouldhat the effective T-spaced channel seen by the receivey, is
be noted, however, that it takes quite violent tap fluctuatictPnsisting of samples of’(7) of (29) every baud period’.
(low-K/high-fpT) to cause the Kalman filter to ineffectively Henceh; = Sh,. The form of the shaping matri is best ex-
track the taps, whereas the baseline LMS/RLS adaptive algdained through a specific example, which we also used for the
rithms exhibit high error floor for much milder channel condi{1, 1) simulation of Fig. 9. The extension tar,nr) systems
tions and never outperformed the Kalman filter tracking in ari§ straightforward. Consider two Ricean taps h», at times
of our simulations. An additional observation for perspective is = 2.81"andr, = 5.37". Then, using a raised cosine pulse
that in the limit of very lowK and very highfpT’, the channel shapeg(r) with 50% rolloff and retaining six bauds of it (be-
tap values become effectively i.i.d., which makes any attemgause it decays quickly in time), the shaping matrix becomes
for channel estimation futile. Increasing the orgesf the AR  (the effective channdi; now has nine taps)
model used by the Kalman filter has a positive effect on estima-

tion fidelity at a significant cost in complexity. 9(—2.8T) 0

Finally, it should be noted that the separation of the perfor- 9(=1.8T) 0
mance curves (solid with actual decisions, dashed with correct 9(-0.8T) 0
decisions) for the Kalman/DFE solution from the simulation re- 9(0.2T)  g(—2.3T)

i in Fi i S=| g(1.2T) ¢(-1.3T) (30)

sults with perfect CSI (dashed curves) in Figs. 4, 6, and 7 is not (2,27 (03T
solely due to model mismatch, i.e., not large enough opdsr g 0 g 0 %T
the receiver ARp) model. In other words, the entire distance 0 951-7T§
to perfect CSI will not be covered if we arbitrarily incregse 0 §(2'7T)

The estimation quality is also partly limited because of the fil-
tering essence of the decision-aided Kalman mechanism, whigidl the only thing that changes in the Kalman recursion of (17)
does not allow for a smoothing estimation solution. The Kalmag that the matrixX is replaced byXS since the observation
filter is an optimal lineafiltering estimator and can never be ag16) now becomes

good as a smoothing estimator taking into account the future,

even with matching channel and receiver AR models. However, yt =Xt 8- (€+hy) + ve. (31)

data in the future are unknown, and therefore, the alternatives

are either blind or block-oriented iterative solutions, which afgd- 9 Presents the simulation results for this scenario. Observe
beyond the scope of this paper. However, much of the chani¥t the results remain consistent with previous simulations, but
estimation degradation is due to the model mismatch, as sifi complexity is slightly higher due to the additional matrix

gested by Fig. 5, where exact channel modeling brings the fperation and the increased effective channel length. The mean

tering estimation and perfect CSI performance to within 1 dgannel used il + j)[2 1] normalized to unit energy, the

of each other. Doppler for the taps varying according to Bello’s model is
fpT = 0.02, the Ricean factor i& = 10 dB, the blocklength
C. Tap Independence Revisited is N = 500, and the DFE has/y = 6, N, = 4,A = 5. Note

Here, we explore further the issue of tap independence, Whltc}:}?t knowledge of the times,. ..., 7,, of the ch_annel impulses
IS assumed. In a real-world system, those times are unknown

is a simplifying assumption made in Section Il. In reality, be: . . . .
cause tf?e?apg of the Igicean channel are not baud-spgcede,b{ﬁecan be estimated via the algorithm in [11].
combination of the shaping filters at the transmitter and receiver
(usually root-raised-cosine with a rolloff factor@®—1) causes
correlation between the effective channel taps, as observed by his paper proposed a receiver structure to track and equalize
the receiver. However, this does not change the essence ofahdIMO frequency-selective fading channel. A Kalman filter
proposed Kalman tracking algorithm because the induced comes used for tracking the channel, employing a low-order au-
lation is known, and its effect can be taken into account. The fapregressive model to best fit the true statistics of the channel
mulation and the simulation results do not change significantlariation. An MMSE DFE optimized for decision delady > 0

V. CONCLUSION
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Fig. 9.

N; = 6, N, = 4, and decision delaA = 5.

was used to equalize the channel and suppress CCI. The t

Performance of (1, 1) system versus SNR in the Ricean channel with
fpT = 0.02 andK = 10 dB and correlated taps due to shaping. The DFE has
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