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Adaptive Tracking of Linear Time-Variant
Systems by Extended RLS Algorithms
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Abstract—In this paper, we exploit the one-to-one correspon-
dences between the recursive least-squares (RLS) and Kalman
variables to formulate extended forms of the RLS algorithm. Two
particular forms of the extended RLS algorithm are considered:
one pertaining to a system identification problem and the other
pertaining to the tracking of a chirped sinusoid in additive
noise. For both of these applications, experiments are presented
that demonstrate the tracking superiority of the extended RLS
algorithms compared with the standard RLS and least-mean-
squares (LMS) algorithms.

Index Terms—Extended RLS algorithms, the Kalman filter,
LMS algorithm, RLS algorithm, tracking performance.

I. INTRODUCTION

T HE LEAST-MEAN-SQUARE (LMS) algorithm [1], [2]
and the recursive least-squares (RLS) algorithm [2] have

established themselves as the principal tools for linear adap-
tive filtering. The convergence behaviors of both of these
algorithms are now well understood [2], [3]. Typically, the
RLS algorithm has a faster rate of convergence than the
LMS algorithm and is not sensitive to variations in the
eigenvalue spread of the correlation matrix of the input vector.
However, when operating in a nonstationary environment, the
adaptive filter has the additional task of tracking the statistical
variations in environmental conditions. In this context, it is
well recognized that the convergence behavior of an adaptive
filter is a transient phenomenon, whereas its tracking behavior
is a steady-state phenomenon. This means that, in general, a
good convergence behavior does not necessarily translate into
a good tracking behavior.

In recent years, much has been written on a comparative
evaluation of the tracking behaviors of the LMS and RLS
algorithms [4]–[7]. The general conclusion drawn from the
studies reported in the literature to date is that typically,
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the LMS algorithm exhibits a better tracking behavior than
the RLS algorithm. This conclusion should not be surprising
since the LMS algorithm is model independent, whereas the
RLS algorithm is model dependent. Unless the multiparameter
regression model assumed in the derivation of the standard
RLS algorithm closely matches the underlying model of the
environment in which it operates, we would expect a degra-
dation in the tracking performance of the RLS algorithm due
to a model mismatch.

In a recent paper, Sayed and Kailath [8] delineated the
relationship between the RLS algorithm and the Kalman filter
in precise terms. Although work on this relationship may
be traced back to the seminal paper by Godard [9] and
subsequently elaborated on by many other investigators, the
exact nature of the relationship was put on a firm footing for
the first time in [8]. Thus, recognizing that the RLS algorithm
is a special case of the Kalman filter and recognizing that the
Kalman filter is the optimum linear tracking device on the basis
of second-order statistics, how then is it that the exponentially
weighted RLS algorithm hasnot inherited the good tracking
behavior of the Kalman filter? The answer to this fundamental
question lies in the fact that in formulating the standard form of
the RLS algorithm by incorporating an exponential weighting
function into the cost function, the transition matrix of the
RLS algorithm (using the language of Kalman filter theory)
is, in reality, a constant, which is clearly not the way to solve
the tracking problem for a nonstationary environment.

The purpose of this paper is twofold. First, we describe two
different methods for the design of an RLS-type algorithm to
cope with corresponding forms of nonstationary environmental
conditions. Second, we present computer experiments: one on
system identification assuming a first-order Markov model and
the other on tracking a chirped sinusoid in additive noise.
The experiments demonstrate the tracking superiority of the
extended RLS algorithm(s) over the LMS algorithm when
the right model for the RLS algorithm is chosen to suit the
particular problem of interest.

II. THE STANDARD RLS ALGORITHM AND EXTENSIONS

According to Sayed and Kailath [8], a state-space model for
the exponentially weighted RLS algorithm may be described
as follows:

(1)
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where

state vector of the model at time (iteration)
observation (reference) signal,
input signal vector,
white-noise measurement noise with unit variance,
forgetting factor.

The superscript denotes Hermitian conjugation (complex
conjugation for scalars).

Two observations from the state equation, i.e., the first line
of (1), are immediately apparent:

• The transition matrix of the standard RLS algorithm is a
constant multiple of the identity matrix equal to

• The process (state) noise vector is zero.

Now, both of these conditions are synonymous with a
stationary environment. Thus, although it is widely believed
in the literature that by introducing the forgetting factorinto
the design of the RLS algorithm, the algorithm is enabled to
track statistical variations of the environment, in reality, this
is not so. It is therefore not surprising that the RLS algorithm,
in its standard form, does not always measure up to the LMS
algorithm when it comes to tracking considerations.

Kalman filter theory tells us that a more general form of the
state-space model of the RLS algorithm should be as follows:

(2)

The measurement equation, i.e., second line of (2), is the same
as before. However, the state equation, i.e., first line of (2),
differs from that of (1) in two aspects:

• The transition matrix is time variant.
• The process (state) noise vector is nonzero.

This, therefore, points to two special ways in which the RLS
algorithm may be modified in order to cope with different
nonstationary environments, as explained in the next two
sections; in one case, we assume is known and
present the proper extension of the RLS solution (referred to
here as ERLS-1). We then apply the algorithm to a system
identification problem assuming a Markov model. In the other
case, we assume is not knownand proceed to
suggest a second extension of the RLS solution by invoking
connections with extended Kalman filtering (the extension
is referred to as ERLS-2). The algorithm is then applied to
tracking a chirped sinusoid in additive noise.

The fundamental point to stress here is that in both cases,
prior knowledge about the original dynamical system model is
explicitly built into the formulation of the extended forms of
the RLS algorithm, thus improving the tracking performance
of the resulting adaptive filters.

III. A SYSTEM IDENTIFICATION PROBLEM

Consider a linear time-variant system described by a first-
order Markov model. Specifically, we have the following pair
of equations as the system description:

(3)

where

known transition matrix,
optimum tap-weight vector of the model at
time
process noise,
desired response,
input vector,
measurement noise.

A special case of interest in the simulation examples of Section
VI-A is when , which is a constant multiple of
the identity matrix, where is further assumed to be less than
unit magnitude in order to assure the stability of the model.

In the system identification problem described herein, we
are given the input vectors , the desired response

, positive-definite matrices , positive num-
bers , and an initial guess The requirement is to
estimate the unknown weight vector and to track its
variation with time

This problem can be related to Kalman filter theory by
posing the following optimization criterion:

(4)

subject to the state-equation constraint

where the cost function is quadratic in its arguments and
is given by

The unknown quantities in the above quadratic cost function
are the initial weight-vector and the process noise
sequence

The solution of (4) can be shown (e.g., [8], [10], [11]) to
lead to an iterative procedure that provides recursive estimates
of the successive weight vectors , which are denoted
by , and it can be regarded as the Kalman filter
corresponding to model (3) with the following (statistical)
assumptions on the noise sequences:

• is assumed a zero-mean white noise sequence with
covariance matrix

• is assumed a zero-mean white noise sequence with
variance
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• The initial state-vector is assumed random with
mean and covariance matrix

• The random variables are
assumed uncorrelated.

We may rewrite these conditions, more compactly, as fol-
lows:

where is the Kronecker delta function, which is equal
to unity when and zero otherwise.

Building on the classical Kalman filter theory and exploiting
the one-to-one correspondences that exist between Kalman
variables and RLS variables [8], the RLS algorithm appropriate
for the task (4) is the following so-called ERLS-1 solution:

Algorithm 1 (Extended RLS Solution—Version I)
The estimates of the weight-vector in (3), computed

in the process of solving the optimization criterion given
by (4), can be recursively evaluated as follows: Start with

and repeat for :

where

gain vector,
a priori estimation error,
estimate of the unknown given the
input data up to time

In the Kalman filtering context, the matrix is
the covariance matrix of the predicted weight-error vector

In a stationary environment, the covariance matrix is
zero for all , in which case, , and the

modified RLS algorithm reduces to its standard form (without
exponential weighting). Under this condition, equals the
inverse of the deterministic correlation matrix of the
input vector:

In the special case with ,
and , the above recursions take the following form:

This algorithm has a single variable parameter, namely,
Note also that this algorithm is the same as that described in
[12], except that in that paper, was taken as , and the
unity term in the conversion factor

was replaced by the minimum mean-squared error. This
difference is attributed to a formulation of the correspondences
between the Kalman variables and RLS variables that is
different from the one derived in [8] and on which the extended
version of the RLS algorithm (Version I above) is based. We
may finally add that the computational complexity of the above
algorithm (for ) is the same as the standard
RLS recursion, viz., operations per iteration for a
weight vector of length

IV. TRACKING OF A CHIRPED SINUSOID IN NOISE

We now study a second example of a nonstationary environ-
ment, which arises while tracking chirped sinusoids in additive
noise. Such an approach is frequently used to model Doppler
shifts. The state-space model of interest in this case takes the
following form (see Section VI-B for more details):

(5)

where

optimum tap-weight vector that we wish to esti-
mate,
measurement noise,
noisy measurements,
input tap vectors,
unknowndiagonal matrix that is fully parameter-
ized in terms of a singleunknownparameter

This parameter is related to the linear shift of the center
frequency in the chirped signal and the dependence ofon
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it is as follows:

...

Here, is the size of the tap-weight vector. If the parameter
is known, then will be a known transition matrix, and

a standard least-squares (RLS) problem results, the solution of
which can be written down as a special case of the standard
Kalman filter recursions, as we have explained in the previous
section.

We may note that we can as well include a process (state)
noise vector into the first line of (5) with obvious
changes to the discussion that follows. Here, however, we
shall proceed with (5) for illustrative purposes. We also note
that the argument given below is general and applies to other
forms of transition matrices and not necessarily with a
diagonal structure as above. All we require is that the matrix

be parameterized by a collection of parameters and that
the dependence of on these parameters is known.

In any case, returning to (5), we see that both and
are unknowns that we wish to estimate. Ideally, we may want
to determine these estimates to meet the optimality criterion

subject to , where the cost function
is given by

Here, the denote weighting coefficients that we are
free to choose. For example, in the exponentially weighted
recursive least-squares problem, the are taken as expo-
nentials of a forgetting factor They may also designate the
noise variance. The quantities are also given and
positive, and the and are initial guesses for and

, respectively. The values of indicate how confident
we are about the initial guesses

The above cost function is not quadratic in the unknowns
since the matrix is a nonlinear function of the

We may proceed here in two ways. We may first collect
enough data in order to estimate the unknownand then
solve a standard RLS (or Kalman filtering) problem using the
estimate in the defining relation for This would lead to
a batch solution, i.e., an off-line solution for the determination
of the Alternatively, we may devise a recursive solution
that would estimate both and the tap-weight vector on-
line. We follow this second alternative here and borrow on
connections with an approximation technique that is often used
in the context of extended Kalman filtering [2], [11], [13].

For this purpose, we collect the unknowns into an extended
(state) vector, say

and note that it satisfies the followingnonlinear (state-space)
model:

(6)

where is clearly a nonlinear functional of the state vector.
Note also that the last entry of the state vector does not change
with time and is equal to

If we denote the individual entries of the state vector
by then the nonlinear state-equation shows that the
entries of the -dimensional vector are time
updated as follows (here, we invoke the fact that

:

...

...

Let denote the estimate of the vector that is
based on the data available up to time Its individual
entries are partitioned as follows:

...

where we have written instead of since the last
entry of is We have also written to refer to
the leading entries of since the leading entries of

correspond to the tap-weight vector
The extended RLS solution linearizes the state equation (6)

around as follows: Differentiating with respect to
and evaluating at defines a state transition matrix

which can be easily seen, in view of the diagonal structure of
, to be of the following form:
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Here, corresponds to evaluating at ,
whereas corresponds to evaluating the derivative of

, with respect to , at Note that

...

This leads to the followinglinearizedmodel at time

and we are now in a position to write down the correspond-
ing RLS solution by invoking the correspondence between
the RLS and Kalman variables [8]. The resulting equations
have the same fundamental structure as the expressions of
Algorithm 1 and will be referred to as the ERLS-2 version.

Algorithm 2 (Extended RLS Solution—Version II)
The estimates of the weight vector in (5) can be recursively

evaluated as follows: Start with

and repeat for :

The computational complexity of the above algorithm is again
of the same order as the standard RLS recursion, viz.,
operations per iteration.

V. STABILITY CONSIDERATIONS

Unlike the LMS and standard RLS algorithms, it is not
possible to formulate conditions of a generic nature for which
the stability of an extended RLS algorithm (say ERLS-1) is
assured. Nevertheless, there are some useful results in the
literature on Kalman filters that we may consider. In particular,
we may invoke the following theorem [14]–[16].

Theorem 1: If the linear dynamical model, on which an
extended RLS algorithm is based [say, model (3)], is stochas-
tically observable and stochastically controllable, then the

extended RLS algorithm is uniformly asymptotically globally
stable.

In other words, as the number of iterationsincreases
without bound, the expected value of the squared Euclidean
norm of the tap-weight error vector

approaches zero, no matter what the initial conditions are. That
is, the so-calledmean-square deviation

tends to zero. The theorem assumes that the vector
in the model (3) is also stochastic. The statement therefore
reflects a desired tracking capability.

It is important, however, to note that the sufficient condi-
tions for stability of the extended RLS algorithm do not require
stability of the original dynamical system [16]. We may thus
identify four possible scenarios that can arise in practice:

1) The original dynamical system model and the extended
RLS algorithm are both stable.

2) The original dynamical system model is unstable, but
the extended RLS algorithm is stable.

3) The original dynamical system model is stable, but the
extended RLS algorithm is unstable.

4) The original dynamical system model and the extended
RLS algorithm are both unstable.

Clearly, only scenarios 1 and 2 correspond to a good
tracking behavior. Scenario 2 is of noteworthy interest in
that the extended RLS algorithm has the potential ability of
tracking a linear dynamical system, even though the system is
unstable (i.e., its state vector grows without bound). A similar
remark applies to the standard RLS and LMS algorithms.

VI. COMPUTER EXPERIMENTS

We include here the results of several computer simulations
that confirm the tracking superiority of the extended versions
of the RLS algorithm.

A. System Identification

In this experiment, we consider the system identification of
a simplified version of the first-order Markov model described
in (3), viz.

(7)

where, for all and
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TABLE I
ABSOLUTE THEORETICAL PERFORMANCE OFRLS AND LMS ALGORITHMS

TABLE II
RELATIVE THEORETICAL PERFORMANCE OFRLS AND LMS ALGORITHMS

and all vectors are -dimensional. We shall restrict our
attention to the case for the following general form
of :

for the following two specific cases:

1)
2) both for

Letting represent themean-square deviationand the
relative mean-square misadjustment, it can be shown [2], [6]
that for each case, the results of Tables I and II hold.

Cases 1) and 2) are chosen because they represent a gener-
alization of the example cases discussed in [2] that is sufficient
to make their theoretical results hold. Our choices of the
basic parameters for the experiments that follow are given
in Table III. Note that although is constant throughout the
experiments, differs between experiments for cases 1) and
2). For a detailed discussion of these choices, refer to the
Appendix.

As in [6], each result in Tables IV and V is obtained
under the assumption of ergodicity of the instantaneous weight
deviation by time-averaging over one
run of iterations in the steady state, i.e., after
all transients have essentially dissipated; in the simulations,
this is taken to occur at the iteration index The
values of and so chosen can be justified by noting that
plots of the simulated quantities as a function ofshow no
significant variation by that point.

The simulation results of Tables IV and V clearly show
reasonable agreement between the experimentally and the-
oretically evaluated quantities of interest in both absolute

TABLE III
BASIC PARAMETERS FOR EXPERIMENTS

and relative terms. Furthermore, the results demonstrate the
superiority of the RLS algorithm over the LMS algorithm in
case 1) and vice versa in case 2). This condition depends, of
course, on the particular choice of experimental parameters,
but what is constant is the reciprocal symmetry between cases
1) and 2) for the ratios and
as given in Table II. In fact, following the analysis given
in [2, ch. 16], it can be easily shown that this reciprocal
symmetry holds generally in cases 1) and 2) for any positive
definite covariance matrix If we had therefore chosen
a set of parameters for which the RLS algorithm performs
better than the LMS algorithm in terms of in case 1),
then it must be true that the LMS algorithm performs better
than the RLS algorithm in terms of in case 2), and vice
versa.

It is also interesting to note that the ERLS1 algorithm
performs only marginally better than the optimal RLS/LMS
algorithm in each case. Most likely, this situation is an artifact
of the choice of experimental parameters; it makes both the
relative mean-square weight deviationand relative mean-
square misadjustment sufficiently small so that differences
between the performances of the algorithms are not easily
discernible over what passes as normal simulation variance
and numerical noise.

As a matter of interest, we have also repeated the exper-
iments reported in [6], using the aforementioned algorithms.
Here again, we have confirmed that the ERLS1 algorithm is
the optimum linear tracker, irrespective of whether the LMS
or the standard RLS is the better one of the two. We should
add, however, that our experiments are designed from the
outset to demonstrate the validity of the tracking theory under
the meaningful tracking conditions described in Appendix A.
For comparison, our simulations show a relative mean-square
weight deviation of approximately 3% (cf. 2% theoretically),
whereas those in [6] show approximately 35%. As a concrete
example of the optimal tracking ability of the algorithms under
this condition, we refer to Fig. 1, where we have plotted the
first component of over a range

to . Again, we see that both of the optimally
set algorithms track the actual optimal weight fairly well with
little difference between them.

B. Tracking of Chirped Sinusoid

In this experiment, we consider the tracking of a chirped
sinusoid. The deterministic shifts caused by the chirp represent
the other extreme of the Markov model described in (2). The
chirped input signal is given by

(8)
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TABLE IV
ABSOLUTE EXPERIMENTAL PERFORMANCE OFRLS AND LMS ALGORITHMS (ERLS1 ALGORITHM RESULTS INSERTED FORCOMPARISON ONLY)

TABLE V
RELATIVE EXPERIMENTAL PERFORMANCE OF RLS AND LMS ALGORITHMS

where denotes the signal amplitude. Noisy measurements
of are available, say

where denotes a white-noise sequence with power
The signal-to-noise ratio (SNR) is denoted by
A prediction problem is formulated with the objective of
estimating from the noisy data More specifically,
the “prediction error” is defined as ,
where

and

The prediction weight-vector is chosen to minimize
Because of the nonstationarity of the chirped signal

, the optimal weight vector needs to be time variant and
is shown in [17] to be given by

where

Consequently, the state-space model of interest in this case
takes the form

(9)

TABLE VI
THEORETICAL RESULTS OF THERLS AND LMS ALGORITHMS

FOR A CHIRPED TONE WHERE �0 = Ejy � uHw0j2 IS THE

MINIMUM PREDICTION ERROR, AND � = 1=M � 3(M + 1)=(�M2)

which is in agreement with the model studied in Section IV.
The sequence is taken as a white-noise process with
variance [17]. With this model, the LMS and
RLS algorithms are used in an adaptive line enhancer (ALE)
configuration, predicting by using the vector of past
inputs

The relative performance of the RLS and LMS algorithms
for tracking a chirped sinusoid in noise is given by Macchiet
al. [17]–[19]. Table VI summarizes the theoretical misadjust-
ment errors of the LMS and RLS algorithms for a chirped tone
and the optimum adaptation constants denotes the LMS
step-size, and The ratio of the excess errors is

(10)

The factor is small for large and It can be seen
that when the input chirped SNR is less than , the
performance of the LMS algorithm is superior to that of the
RLS algorithm; for , the reverse is true.
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Fig. 1. Tracking ability of RLS and LMS algorithms in case 1) for optimalD (‘- - -’ is actual, ‘—’ is optimal RLS algorithm, ‘� � �’ is optimal LMS algorithm).

TABLE VII
MISADJUSTMENT OF LMS, RLS, AND ERLS2 FOR THE CHIRPED SINUSOID PROBLEM

In the chirped-tone case, normal operation is in the region
where the weight difference between the filter weights and the
optimal weights is dominated by a nonzero mean-lag weight.
In this case, the weight fluctuations caused by the adaptation
can be neglected. This explains why a similar result for ,
which measures the total weight noise from the mean lag and
the mean lag fluctuation component due to the nonstationarity
and the adaptation process respectively, is not available.

To compare the performance of the RLS and LMS algo-
rithms with the ERLS2 algorithm, we simulate two different
cases indicated by (10): , and The
parameters are chosen to complement those in [17] and [19]
and are given by the following:

1) :
2) :

An approximate value for the optimal adaptation constant
is defined in [17] and [19] and summarized in Table VI. This
value was used as a first approximation to the optimal value,
and a more exact value was determined experimentally by
minimizing the output prediction error with respect to the
adaptation parameter. It is known that in the chirped case,
the adaptive-algorithm-update behaves as a feedback path,
which not only updates the filter weights (FIR filter) but also

fluctuates the weights to create poles (IIR) in the filter transfer
function [20], [21]. Therefore, the filters generally perform
better than the linear theory predicts. (Note the discrepancy
between the theoretical optimum and the measured value in
Fig 6(b) of [18].)

The same chirped signal was used for all three algorithms:
LMS, standard RLS, and ERLS2. The estimates of the misad-
justment were measured as the mean of

over 1500 iterations in steady state. This was repeated 10
times to find a mean value for the misadjustment. In order to
illustrate that the ERLS2 algorithm can estimate an unknown
chirp rate, the initial value of was set to the identity matrix,
and the initial guess for the chirp was set to 0. The fact that

was incorrect was compensated by using a larger value for
in the algorithm. We found that the error decreased as

is increased for this case. The simulations results shown here
are for that is 200 times larger than the actual.

The results are summarized in Table VII. It can be seen that
neither the LMS nor the RLS is superior in all cases; in this
chirped-tone example, however, the LMS might be favored
since the region of interest is usually low SNR. Note also that
the misadjustments for the LMS and RLS actually increase as
the SNR is increased since neither algorithm is estimating
the chirp rate. The ERLS2 algorithm uses the additional SNR
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TABLE VIII
CONSTRAINT VERIFICATION TABLE FOR BASIC EXPERIMENTAL PARAMETERS OF

TABLE III (N OTE NUMBERS REFER TO CORRESPONDINGRELATIONS)

to improve its estimate of the chirp rate, thereby decreasing
the misadjustment. It was observed that on a run-by-run basis,
the ERLS2 always performed better.

The discrepancy between the theoretical LMS and RLS
results are due to non-Wiener effects explained earlier. The
weight update behaves as a feedback path, which produces
poles in the transfer function. As in [18], we observed that both
the LMS and RLS performed better than the theory predicted
at low chirp rates. The difference, however, is greater for the
LMS.

VII. CONCLUSIONS

The Kalman filter is known to be the linear optimum tracker
on the basis of second-order statistics. Building on this fact
and exploiting the one-to-one correspondences between the
RLS and Kalman variables, we may derive extended forms
of the RLS algorithm that inherit the good tracking behavior
of the Kalman filter. In this paper, we have considered two
particular forms of this extension:

• ERLS-1, pertaining to a system identification problem,
and

• ERLS-2, pertaining to the tracking of a chirped sinusoid
in noise.

In each case, prior knowledge about the original dynamical
system model is built into the formulation of the extended form
of the RLS algorithm, making it the optimum linear tracking
device for the particular application of interest. We should add,
though, that if sufficient prior knowledge is not available, say,
if some of the parameters needed in the formulations of ERLS-
1 and ERLS-2 are not available, then the extended algorithms
would have to be expanded to include provisions for estimating
these quantities.

Finally, we can go one step further and say that, by
exploiting the time-shift structure of the input data in the
manner described in [2] and [8], we may develop order-
recursive realizations of extended RLS algorithms that are
linear in their order of computational complexity; this is an
issue that we will leave for future considerations.

APPENDIX

BACKGROUND THEORY FOR TRACKING EXPERIMENT

For cases 1) and 2) described in Section VI-A, the free
parameters and must be chosen such that we
have the following:

1) The optimal RLS parameters and the
optimal LMS parameters achieving the
minima specified in Table II satisfy

(A.1)

(A.2)

where

2) The Markov model in (7) satisfies the condition ofslow
statistical variation, i.e.,

tr (A.3)

The rationale for these conditions can be found in [2] and
[6]. In addition, we like to select a set of conditions that not
only verifies the theoretical predictions of Tables I and II but
also does so under meaningful tracking conditions, i.e.,

tr
(A.4)

Under these constraints, we simplify the problem of assign-
ing good values to the free parameters of the experiment by
considering the case where and have been seta
priori . We call this set of parameters theprimary parameters
of the experiment, as opposed to the others, which we call the
secondary parameters. Assume that is then selected
to satisfy condition (A.4). Since [2]

tr

tr
(A.5)

conditions (A.3) and (A.1) imply that

tr

tr
tr (A.6)

where can be considered an “overdrive” factor that mea-
sures the degree to which the condition of slow statistical
variation holds. Specializing to case (1)

for

On the other hand, from the relation for in Table I, we
must choose and such that

Similarly, for case (2)

and
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It is important to note that had been assumed to be unity
for both cases 1) and 2), not all the required conditions for
the validity of even just can be met for any choices
of the primary and secondary parameters; in this sense, the
generalization provided by the factoris crucial. As long as
[hence, by condition (A.1)] and are selected according to
these relations for each case, conditions (A.1), (A.3), and (A.4)
will be satisfied for In other words, the optimum
mean-square deviations of the RLS algorithm for cases 1)
and 2) with the primary parameters are realizable, albeit
with different secondary parameters. The obvious question
follows: Is this true with the other optima in Table I? Without
going into the details, it is straightforward to verify that
the answer is indeed yes for the numerical choices of the
primary and secondary parameters given in Table III. Table
VIII summarizes the results of the verification. In all cases, the
formulae for the optimal parameters
and can be found in [2] and [6]. Where possible, the
constraint values are determined from the theoretical formulae
(A.1) to (A.3); the exception is the constraint value for ,
which can only be easily computed after the actual experiment
is complete since we have no prior knowledge of the predicted
weight sequence
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