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Abstract—In this paper, we exploit the one-to-one correspon- the LMS algorithm exhibits a better tracking behavior than
dences between the recursive least-squares (RLS) and Kalmanthe RLS algorithm. This conclusion should not be surprising
variables to formulate extended forms of the RLS algorithm. Two since the LMS algorithm is model independent, whereas the
particular forms of the extended RLS algorithm are considered: . . S
one pertaining to a system identification problem and the other RLS aIg_onthm is model depe_ndent. Unl_ess.the multiparameter
pertaining to the tracking of a chirped sinusoid in additive regression model assumed in the derivation of the standard
noise. For both of these applications, experiments are presented RLS algorithm closely matches the underlying model of the
that demonstrate the tracking superiority of the extended RLS environment in which it operates, we would expect a degra-

algorithms compared with the standard RLS and least-mean- gaiion in the tracking performance of the RLS algorithm due
squares (LMS) algorithms. .
to a model mismatch.

Index Te_rms—Extended_ RLS algo_rithms, the Kalman filter, In a recent paper, Sayed and Kailath [8] delineated the
LMS algorithm, RLS algorithm, tracking performance. relationship between the RLS algorithm and the Kalman filter
in precise terms. Although work on this relationship may

|. INTRODUCTION be traced back to the seminal paper by Godard [9] and

HE LEAST-MEAN-SQUARE (LMS) algorithm [1], [2] subsequently elaborated on by many other investigators, the
and the recursive least-squares (RLS)gaI orithm EZ] haeé(aCt nature of the relationship was put on a firm footing for
; quares. 9 . Yie first time in [8]. Thus, recognizing that the RLS algorithm
FTStab.“Sh?d themselves as the p””c'p?' tools for linear adalxg-a special case of the Kalman filter and recognizing that the
g\lleorfil'::n?rrwlggér;—hn%vsovc\éﬁr%igce?stt;%rgja\[/lzc])rs[s?f _It_) otir::acl)lf trtlﬁe alman filter is the optimum linear tracking device on the basis
RES aloorithm has a faster rate of C(;nve.r e%ﬁ:e t%/:,in tersecond-order statistics, how then is it that the exponentially
gon . . ger . weighted RLS algorithm hasot inherited the good tracking
LMS algorithm and is not sensitive to variations in th

. . . . $ehavior of the Kalman filter? The answer to this fundamental
eigenvalue spread of the correlation matrix of the input vector.

T ; . uestion lies in the fact that in formulating the standard form of
However, when operating in a nonstationary environment, tﬂ\

ee RLS algorithm by incorporating an exponential weightin
adaptive filter has the additional task of tracking the statisticf'i\J 9 y P 9 P gnhting
variations in environmental conditions. In this context, it i]s:2

nction into the cost function, the transition matrix of the
well recognized that the convergence behavior of an adaptlvle‘.S algqnthm (using the Ignggage of Kalman filter theory)
IS, in reality, a constant, which is clearly not the way to solve

filter is a transient phenomenon, whereas its tracking behaV{ﬁ’(ra tracking problem for a nonstationary environment

Is a steady-state phenomenon. This means that, in general, fhe purpose of this paper is twofold. First, we describe two

good convergence behgwor does not necessarily translate '(Elﬁ‘?erent methods for the design of an RLS-type algorithm to
a good tracking behavior.

. cape with corresponding forms of nonstationary environmental
In recent years, much has been written on a comparative .. X )
X : . onditions. Second, we present computer experiments: one on
evaluation of the tracking behaviors of the LMS and RL . o . X
. . System identification assuming a first-order Markov model and
algorithms [4]-[7]. The general conclusion drawn from th

. : ; : . e other on tracking a chirped sinusoid in additive noise.
studies reported in the literature to date is that typlcallyr : : o
he experiments demonstrate the tracking superiority of the
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where where
z(n) state vector of the model at time (iteratiom,) F(n +1,n) known transition matrix,
y(n) observation (reference) signal, w,(n) optimum tap-weight vector of the model at
u(n) input signal vector, time n,
v(n) white-noise measurement noise with unit variance, r(n) process noise,
A forgetting factor. y(n) desired response,
The superscriptd denotes Hermitian conjugation (complex u(n) input vector,
conjugation for scalars). v(n) measurement noise.
Two observations from the state equation, i.e., the first limespecial case of interest in the simulation examples of Section
of (1), are immediately apparent: VI-Ais when F(n+1,n) = aI, which is a constant multiple of

« The transition matrix of the standard RLS algorithm is &he identity matrix, where is further assumed to be less than
constant multiple of the identity matrix equal }°*/21.  unit magnitude in order to assure the stability of the model.
» The process (state) noise vector is zero. In the system identification problem described herein, we

Now, both of these conditions are synonymous with &€ given the input vectorgu(n)}, the desired response
stationary environment. Thus, although it is widely believet(n)}, positive-definite matrice¢ll, Q(n)}, positive num-
in the literature that by introducing the forgetting factomto  Pers{s(n)}, and an initial guess,. The requirement is to
the design of the RLS algorithm, the algorithm is enabled &stimate the unknown weight vectar,(n) and to track its
track statistical variations of the environment, in reality, thi%ariation with timen.
is not so. It is therefore not surprising that the RLS algorithm, This problem can be related to Kalman filter theory by
in its standard form, does not always measure up to the LMPSsing the following optimization criterion:
algorithm when it comes to tracking considerations.

Kalman filter theory tells us that a more general form of the min J[w,(0),r(0),r(1),-- -, r(n)] 4)
state-space model of the RLS algorithm should be as follows; ~ {We(O.T(}!

n=0

z(n+1) =F(n +1,n)x(n) +r(n), subject to the state-equation constraint
y(n) =’ (n)z(n) +v(n). @)

The measurement equation, i.e., second line of (2), is the same
as before. However, the state equation, i.e., first line of (2),

wo(n+1) = F(n+1,n)w,(n) +r(n)

differs from that of (1) in two aspects: where the cost functioy is quadratic in its arguments and
+ The transition matrixt”(n + 1,7) is time variant. is given by
» The process (state) noise vecigr) is nonzero.
This, therefore, points to two special ways in which the RLS J = (wo(0) — w,) T TI5 * (w,(0) — w,)

algorithm may be modified in order to cope with different N

nonstationary environments, as explained in the next two +ZTH(71)Q_1(7’L)T(7’L)

sections; in one case, we assufign + 1,n) is knownand o

present the proper extension of the RLS solution (referred to N H 9
here as ERLS-1). We then apply the algorithm to a system + Z [y(n) _u2 (nJuro(n)] .
identification problem assuming a Markov model. In the other —0 o?(n)

case, we assumé&’(n + 1,n) is not knownand proceed to

suggest a second extension of the RLS solution by invokifge unknown quantities in the above quadratic cost function

connections with extended Kalman filtering (the extensiofye the initial weight-vectorw,(0) and the process noise
is referred to as ERLS-2). The algorithm is then applied Qquence{r(i)} ¥

tracking a chirped sinusoid in additive noise. =0

The fundamental point to stress here is that in both cases,
prior knowledge about the original dynamical system model is {wo(0),7(0),7(1),-- -, 7(N)}.
explicitly built into the formulation of the extended forms of

the RLS algorithm, thus improving the tracking performance The solution of (4) can be shown (e.g., [8], [10], [11]) to

of the resulting adaptive filters. lead to an iterative procedure that provides recursive estimates
of the successive weight vectots,(n), which are denoted
[ll. A SYSTEM IDENTIFICATION PROBLEM by w(n|n — 1), and it can be regarded as the Kalman filter

Consider a linear time-variant system described by a fir§erresponding to model (3) with the following (statistical)
order Markov model. Specifically, we have the following paifSSumptions on the noise sequences:

of equations as the system description: » {r(n)} is assumed a zero-mean white noise sequence with
covariance matrd@Q(n), Er(n)rt (n) = Q(n).
w,o(n + 1) = F(n +1,n)jwo(n) +r(n), » {v(n)} is assumed a zero-mean white noise sequence with

y(n) = 'u,H(n)wo (n) +v(n) 3 varianceo?(n), Ev(n)vt(n) = o%(n).
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* The initial state-vectorw,(0) is assumed random with modified RLS algorithm reduces to its standard form (without

meanw, and covariance matrixly exponential weighting). Under this conditioR(n) equals the
inverse of the deterministic correlation matrix(n) of the
E(wo(O) _ Eo)(wo(O) _ EO)H _ HO- |nput vector:
N
* The random variablegr(n), v(n), (w,(0) — w,)} are O(n) = Z'U,H(n)'u,(n)
assumed uncorrelated. =0

We may rewrite these conditions, more compactly, as fol- _ )
In the special casé(n + 1,n) = al, with Q(n) = ¢*I,

lows: ands? = 1, the above recursions take the following form:
s rim) 17 () =aP(n.n - Du(n)r (n),
w,(0) — W, wo(()()m— @, re(n) =u (n)P(n,n — Du(n) + 1,
1Q( ot m) . . £(n) =y(n) —u' (n)ip(nln 1),
_ : ’ 02(71)%(71,771) 0 w(n + Pl(lzi :;u(]inlln__ll)) +(n)é(n),
0 0 O0 _P(n,n— Du(n)u (n)P(n,n — 1)

re(n) ’
whereé(n, m) is the Kronecker delta function, which is equal  P(n + 1,n) =|a|>P(n) + ¢*I.
to unity whenn = m and zero otherwise.

Building on the classical Kalman filter theory and exploitingrhis algorithm has a single variable parameter, namgly,
the one-to-one correspondences that exist between Kalm@he also that this algorithm is the same as that described in
variables and RLS variables [8], the RLS algorithm appropria[ggz], except that in that papes, was taken ag ~ 1, and the
for the task (4) is the f0||0Wing so-called ERLS-1 solution: unity term in the conversion faCt(@’uH(TL)P(TL, n— 1)’(1,(71) +
Algorithm 1 (Extended RLS Solution—Version I) 1] was replaceq by the minimum .mean-squared error. This
The estimates of the weight-vectar,(n) in (3), computed difference is attributed to a_formulatlon of the cor_respondencgs
in the process of solving the optimization criterion giveR€fween the Kalman variables and RLS variables that is
by (4), can be recursively evaluated as follows: Start witfifferentfrom the one derived in [8] and on which the extended
(0| — 1) = w,, P(0,—1) = II,, and repeat fon > 0: version of the RLS algorithm (Vgrsmn I above) is based. We
may finally add that the computational complexity of the above
algorithm (for Fi(n + 1,n) = al) is the same as the standard

_ —1
k(n) =F(n +1,n)P(n,n — Du(n)re™ (n), RLS recursion, viz.,O(M?) operations per iteration for a
re(n) =ul (n)P(n,n — Du(n) + o*(n), weight vector of lengthM.
£(n) =y(n) — ' (n)iv(nln - 1),
w(n + 1n) =F(n+ 1,n)w(n|n — 1) + k(n)¢(n), IV. TRACKING OF A CHIRPED SINUSOID IN NOISE
P(n) =P(n,n—1) We now study a second example of a nonstationary environ-
P(n,n — Du(n)u! (n)P(n,n — 1) ment, which arises while tracking chirped sinusoids in additive
- re(n) ’ noise. Such an approach is frequently used to model Doppler
Pin+1,n) =F(n+1,0)Pn)F (n+1,n) + shifts. The state-space model of interest in this case takes the
(n n) (n nJP)E" (n n)+ Q) following form (see Section VI-B for more details):
the(re) gain vector woln 1) = F(W)wo(n),
n L] _ H
£(n) a priori estimation error, y(n) =w(n)wo(n) +v(n) )
w(n|n — 1) estimate of the unknownw,(n) given the

input data up to timen — 1). where | . | |
In the Kalman filtering context, the matriR(n,n — 1) is w,(n) optimum tap-weight vector that we wish to esti-

the covariance matrix of the predicted weight-error vector mate, )
v(n)  measurement noise,

. . n)} noisy measurements,
w(n,n — 1) =wo(n) —w(nn — 1), Eﬁn;]]: inpu¥ tap vectors,
P(n,n— 1) =Ew(n,n — L)@" (n,n — 1). F(y))  unknowndiagonal matrix that is fully parameter-
ized in terms of a singlenknownparameten).
In a stationary environment, the covariance mat») is This parameter is related to the linear shift of the center
zero for alln, in which case,P(n + 1,n) = P(n), and the frequency in the chirped signal and the dependencg’ ain
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it is as follows: For this purpose, we collect the unknowns into an extended
it (state) vector, say
/ GjQw /
F(y) 2 . . a(n) 2 2ol
eI M

and note that it satisfies the followingnlinear (state-space)

Here, M is the size of the tap-weight vector. If the parametgnodel:
% is known, thenF'(¢) will be a known transition matrix, and F())w,(n) F@) 0
a standard least-squares (RLS) problem results, the solution of z(n+1) = { " } = { }5(”)
which can be written down as a special case of the standard
Kalman filter recursions, as we have explained in the previous
section. y(n) = (n) 0lz(n) +v(n) (6)

We may note that we can as well include a process (state) ) _ _
noise vectorr(n) into the first line of (5) with obvious where f(-) is clearly a nonlinear functional of the state vector.
changes to the discussion that follows. Here, however, \})L._pte z_;\Iso that t_he last entry of the state vector does not change
shall proceed with (5) for illustrative purposes. We also notith time and is equal ta). _
that the argument given below is general and applies to othedf We denote the individual entries of the state vecton)
forms of transition matriced”(-) and not necessarily with aby {n.:} then the nonlinear state-equation shows that the
diagonal structure as above. All we require is that the matotries of the(M 4 1)-dimensional vectow(n + 1) are time
F(-) be parameterized by a collection of parameters and titdated as follows (here, we invoke the fact thaf 41 =
the dependence df(-) on these parameters is known. P = D1, M)

In any case, returning to (5), we see that batf{n) and

. . Tn+1,1
are unknowns that we wish to estimate. Ideally, we may want x; Lo
to determine these estimates to meet the optimality criterion z(n+1)= L

: Tntl,M
min  J[w,(0),9] Ll L
{w,(0),%} o L Zna1, M41

ejl‘n,MJrlxn 1
subject tow,(n + 1) = F(¢)w,(n), where the cost function ’

J[w,(0),%] is given by

6]2W71,I\/I+1$n72

= = f(a(n).
Jw (0), 9] My
= [w,(0) —w, v — |7 L ZTp,Mt1
Iyt 0 7w, (0) -, Let z(n|n) denote the estimate of the vectefn) that is
' { 0 wgl} { =1 } based on the datgy(-)} available up to time. Its individual
N 5 entries are partitioned as follows:
430 o) = wmw (P, .
oy 0'2(71) -/Ijn,l|n
Tn,2|n ~
I - . A | w(n|n)
Here, the{s?(n)} denote weighting coefficients that we are #(n|n) = : = l > ]
free to choose. For example, in the exponentially weighted Zp Min Vi
recursive least-squares problem, thg:) are taken as expo- Ty Mi1ln

nentials of a forgetting factok. They may also designate the R
noise variance. The quantitiedly, =} are also given and Where we have written,, instead 0fz,, a141),, Since the last
positive, and thap, and¢ are initial guesses fow,(n) and entry of z(n) is 1. We have also writteris(n|n) to refer to
1, respectively. The values ¢fl,, 7} indicate how confident the leading} entries ofZ(n|n) since the leading entries of
we are about the initial guessé®,, }. z(n) correspond to the tap-weight vectar,(n).

The above cost function is not quadratic in the unknowns The extended RLS solution linearizes the state equation (6)
{w,(0), %} since the matrix”(-) is a nonlinear function of the aroundz(n|n) as follows: Differentiating/(-) with respect to
r(/}' We may proceed here in two ways. We may first C0||e@t(7l) and evaluating ai'(TL|7’L) defines a state transition matrix
enough data in order to estimate the unknowrand then F(n +1,n),
solve a standard RLS (or Kalman filtering) problem using the A Of
estimatey in the defining relation fo#'(-). This would lead to F(n+1,n) 9z
a batch solution, i.e., an off-line solution for the determination
of the +. Alternatively, we may devise a recursive solutiofhich can be easily seen, in view of the diagonal structure of
that would estimate both) and the tap-weight vector on- F(s), to be of the following form:
line. We follow this second alternative here and borrow on N L.
connections with an approximation technique that is often used F(n+1,n) = {F(T/Jln) F(¢|n)w(n|ﬂ)} ]
in the context of extended Kalman filtering [2], [11], [13]. 0 1

12

Z(nln)
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Here, F(z/)|n) corresponds to evaluatind”(-) at z/3|n, extended RLS algorithm is uniformly asymptotically globally
whereasF(z/;m) corresponds to evaluating the derivative ogtable.
F(-), with respect toy, a“/jln Note that In other words, as the number of iterationsincreases
without bound, the expected value of the squared Euclidean

i norm of the tap-weight error vector

. j2e9%¥
(y) = g : d(n,n — 1) = [wo(n) = do(nfn - 1)]
GMeIM i .
approaches zero, no matter what the initial conditions are. That

This leads to the followindinearizedmodel at timen is, the so-callednean-square deviation

z(n+ 1) =F(n+1,n)x(n), D(n) = Elllw,(n) — i (n|n — 1)||’]

_ TaH
y(n) = [u" (n)0)z(n) + v(n) tends to zero. The theorem assumes that the vacktdn)

. . . in the model (3) is also stochastic. The statement therefore
and we are now in a position to write down the corresponff

eflects a desired tracking capability.
ing RLS solution by invoking the correspondence between .~ .
the RLS and Kalman variables [8]. The resulting equations Mitis important, however, to note that the sufficient condi

have the same fundamental structure as the express onst|o s for stability of the extended RLS algorithm do not require
Al Vor ithm 1 and u" be referred tl:) aus the ERLS- ;(p ors é)n 33 ility of the original dynamical system [16]. We may thus
gon Wi verst identify four possible scenarios that can arise in practice:

Algorithm 2 (Extended RLS Solution—Version II) 1) The original dynamical system model and the extended
The estimates of the weight vector in (5) can be recursively  RLS algorithm are both stable.
evaluated as follows: Start with(0| — 1) = w,,|_1 = ¢ 2) The original dynamical system model is unstable, but
the extended RLS algorithm is stable.
II, 0 3) The original dynamical system model is stable, but the
P0,-1) = {0 WO} extended RLS algorithm is unstable.

4) The original dynamical system model and the extended
and repeat fom > 0: RLS algorithm are both unstable.
Clearly, only scenarios 1 and 2 correspond to a good

k(n) = P(n,n — 1)['(1,(71)}7)_1(71) tracking behavior. Scenario 2 is of noteworthy interest in
o ’ 0 € ’ that the extended RLS algorithm has the potential ability of
) . u(n) tracking a linear dynamical system, even though the system is
re(n) =o7(n) +[u" (n) O]P(n,n— 1)[ 0 } unstable (i.e., its state vector grows without bound). A similar
Hoonn remark applies to the standard RLS and LMS algorithms.
§(n) =y(n) —w’ (n)w(n|n - 1),
{wg/znlln) = {w(:;;'l:_l 1)} + k(n)é(n), VI. COMPUTER EXPERIMENTS
. We include here the results of several computer simulations
w(n +1ln) = FW}'") w(n|n), that confirm the tracking superiority of the extended versions
P(n,n) = (I — k(n)[u"(n) O))P(n,n—1), of the RLS algorithm.
P(n+1,n) =F(n+ 1,n)P(n,n)F*(n + 1,n).

A. System ldentification

The computational complexity of the above algorithm is again In this experiment, we consider the system identification of

. )
of the same ordgr as_the standard RLS recursion, &%) a simplified version of the first-order Markov model described
operations per iteration. in (3), viz

V. STABILITY CONSIDERATIONS wo(n + 1) = aw,(n) +r(n),

Unlike the LMS and standard RLS algorithms, it is not y(n) = (n)w,(n) +v(n), n=0 @)
possible to formulate conditions of a generic nature for which
the stability of an extended RLS algorithm (say ERLS-1) where, for allm and
assured. Nevertheless, there are some useful results in the

literature on Kalman filters that we may consider. In particular, w,(0) =0, wu(n)~ N(0,R),

we may invoke the following theorem [14]-[16]. E[u(m)'rH(n)] =0, E[u(m)v*(n)] =0,
Theorem 1:If the linear dynamical model, on which an 2

extended RLS algorithm is based [say, model (3)], is stochas- *T(n) N(0,Q), v(n) ~ N(0,0%,

tically observable and stochastically controllable, then the Elr(m)v*(n)] =0
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TABLE | TABLE 1l
ABSOLUTE THEORETICAL PERFORMANCE OFRLS AND LMS ALGORITHMS BAsIC PARAMETERS FOR EXPERIMENTS
Case 1: R =cQ Case 2: R =cQ 7Q I & l“] U] ¢ lcincasel Icincase2

001 075 [ 1 | 0.2 | 0.9998 | 6.250 x 10¢ | 3.657 x 10°

DS | oodvEte) o—tas

DIMS | 562 /2c(1 + 2 20/\/c

== Q (L+20 + &) . e and relative terms. Furthermore, the results demonstrate the

MELS 2/ (o/©) 2.\ /2c(1+2¢} +¢3) superiority of the RLS algorithm over the LMS algorithm in
2 case 1) and vice versa in case 2). This condition depends, of
MLIMS 727’—, 22 /c(1+qe) course, on the particular choice of experimental parameters,
7y/e(ea=i) but what is constant is the reciprocal symmetry between cases

1) and 2) for the ratiosDRLS/DEMS and p7RLS /pfLMS
TABLE Il as given in Table Il. In fact, following the analysis given

in [2, ch. 16], it can be easily shown that this reciprocal
symmetry holds generally in cases 1) and 2) for any positive

RELATIVE THEORETICAL PERFORMANCE OFRLS AND LMS ALGORITHMS

Case 1: R™! = ¢Q | Case 2: R = cQ definite covariance matri>Q.. If we had therefore chosen
a set of parameters for which the RLS algorithm performs
DRLS 1+g; 1 better than the LMS algorithm in terms dP in case 1),
Drin ;72(1+2q§+q§) 2/as—a then it must be true that the LMS algorithm performs better
MRLS 2/ea—a} V2(1+2¢3+43) than the RLS algorithm in terms a¥/ in case 2), and vice
M, 1te 1tga versa.

It is also interesting to note that the ERLS1 algorithm
performs only marginally better than the optimal RLS/LMS
and all vectors areM-dimensional. We shall restrict ouralgorithm in each case. Most likely, this situation is an artifact
attention to the casé/ = 2 for the following general form of the choice of experimental parameters; it makes both the
of Q: relative mean-square weight deviationand relative mean-
square misadjustment! sufficiently small so that differences

> [1 @ 5 between the performances of the algorithms are not easily
Q=05 [ql qu [l <1ig2>qi discernible over what passes as normal simulation variance

and numerical noise.
for the following two specific cases: As a matter of interest, we have also repeated the exper-
)R = Q iments reported in [6], usipg the aforementioned algorithmg.
2) R = ¢Q, both for ¢>0. Here again, we have confirmed that the ERLS1 algorithm is

the optimum linear tracker, irrespective of whether the LMS
or the standard RLS is the better one of the two. We should
that for each case, the results of Tables | and Il hold. add, however, that our experiments are designed from the

Cases 1) and 2) are chosen because they represent a g outset to demonstrate the validity of the tracking theory under

er- : . " . . :
Y X . . ' 960E " meaningful trackin ndition ri in Appendix A.
alization of the example cases discussed in [2] that is sufncu;EJ_n? caningiu trac g co Qto s desc bed' ppend

: . : or comparison, our simulations show a relative mean-square
to make their theoretical results hold. Our choices of the

; ; .~ Weight deviations of approximately 3% (cf. 2% theoretically),
basic parameters for the experiments that follow are given “reas those in [6] show approximately 35%. As a concrete
in Table IIl. Note that althougl@ is constant throughout the bp y )

experiments,: differs between experiments for cases 1) a example of the optimal tracking ability of the algorithms under

2). For a detailed discussion of these choices, refer to the> condition, we refer o F'g'fll where we have plotted the
Appendix. irst componenti; (n|n — 1) of w(njn — 1) over a range

As in [6], each result in Tables IV and V is obtained’ = 36 001 to 36 500. Again, we see that both of the optimally

under the assumption of ergodicity of the instantaneous Weigﬁteagggizwsetrsggv?;aﬁg;I optimal weight fairly well with

deviation [w,(n) — @w(n|n — 1)] by time-averaging over one
run of N = 50000 iterations in the steady state, i.e., after
all transients have essentially dissipated; in the simulatiors, Tracking of Chirped Sinusoid

this is taken to occur at the iteration ,'nd@_(: 30 000..The In this experiment, we consider the tracking of a chirped
values ofn ar_1dN SO choser_1_can be Justn‘lgd by noting thaginusoid. The deterministic shifts caused by the chirp represent
plots of the simulated quantities as a function/6fshow N0 e yiher extreme of the Markov model described in (2). The
significant variation by that point. chirped input signal is given by

The simulation results of Tables IV and V clearly show
reasonable agreement between the experimentally and the-

oretically evaluated quantities of interest in both absolute s(k) = /Pyl wtok/2k (8)

Letting D represent thanean-square deviatioand A4 the
relative mean-square misadjustmeittcan be shown [2], [6]
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ABSOLUTE EXPERIMENTAL PERFORMANCE OFRLS AND LMS ALZﬁElI;EMISV(ERL81 ALGORITHM RESULTS INSERTED FORCOMPARISON ONLY)
Case 1: R™! = cQ Case 2: R=¢Q
Exp. value | Theor. value A% Exp. value | Theor. value A%
DELS 0.0103 0.01 +3.0% 0.0105 0.01 +5.0%
DEMS 0.0135 0.0125 +8.0% 0.0071 0.0066 +7.6%
DFERLSL 0.0102 - - 0.0069 - -
MELS 0.0423 0.04 +5.8% 0.0842 0.0756 +11.4%
MLMS 0.0666 0.0605 +10.1% 0.0698 0.0605 +15.4%
MERLS1 0.0419 - - 0.0673 - -
TABLE V
RELATIVE EXPERIMENTAL PERFORMANCE OF RLS AND LMS ALGORITHMS
Case 1: R™! =¢Q Case 2: R=¢cQ
Exp. value | Theor. value | A% | Exp. value | Theor. value | A%
BBy | 0.7578 0.8 ~5.3% | 1.4806 15119 | ~2.1%
Bl | 0.6347 0.6614 | —4.0% | 1.2064 1.25 ~3.5%
where+/P, denotes the signal amplitude. Noisy measurements TABLE VI

THEORETICAL RESULTS OF THERLS AND LMS ALGORITHMS
FOR A CHIRPED TONE WHERE {y = E|y — uno|2 Is THE
MINIMUM PREDICTION ERROR, AND ) = 1/M — 3(M + 1)/ (pM?)

of s(k) are available, say

y(k) = s(k) +n(k)

wheren(k) denotes a white-noise sequence with podsr Mumin K Hopt
The signal-to-noise ratio (SNR) is denoted py= P;/FP,. (1=n)(1+p)%w? ) /3
A prediction problem is formulated with the objective of LMS | % optopt | #Pa(1+ ) ( 3 )
estimatings(k) from the noisy datdy(k)}. More specifically, M 211/3
the “prediction error’v(k) is defined asi(k) = y(k) — 5(k), RLS | *4 fobont A (M + 1)py7]
where
(k) = 'U'H(k)wo S . .. .
which is in agreement with the model studied in Section IV.
and The sequences(-) is taken as a white-noise process with
" variance o2 ~ P, [17]. With this model, the LMS and
u’ (k) =[y(k-1) y(k-2) y(k — M)]. RLS algorithms are used in an adaptive line enhancer (ALE)

configuration, predictingy(k) by using the vector of past
The prediction weight-vectorw, is chosen to minimizei tg I P (k) by g P
ar?pu su(k).

Elv(k)|*. Because of the nonstationarity of the chirped signal'rj o jative performance of the RLS and LMS algorithms
s(n), the optimal weight vector needs to be time variant angd, yacking a chirped sinusoid in noise is given by Macehi
is shown in [17] to be given by al. [17]-[19]. Table VI summarizes the theoretical misadjust-

. n P ment errors of the LMS and RLS algorithms for a chirped tone
wo(n) = KF(y)"D, K = 14+ pM and the optimum adaptation constarits denotes the LMS
where step-size, andd = 1 — \). The ratio of the excess errors is
D = [V, 2] Ly € [E ) A O et
mw O\ 3(M+Dp T \sMm/

Consequently, the state-space model of interest in this case
takes the form The factorn is small for largep and M. It can be seen
that when the input chirped SNEp) is less than3M, the
wo(n + 1) =F(¢)wo(n), performance of the LMS algorithm is superior to that of the
y(n) =u" (n)wo(n) +v(n)

(9) RLS algorithm; forp > 3, the reverse is true.
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Fig. 1. Tracking ability of RLS and LMS algorithms in case 1) for optirha('- - -’ is actual, ‘—' is optimal RLS algorithm, - -” is optimal LMS algorithm).

TABLE VII
MISADJUSTMENT OF LMS, RLS, AND ERLS2 FOR THE CHIRPED SINUSOID PROBLEM
Case I (p=2) Case II (p = 100)
Hmin Mmin/Pn Hmin Mmin/P,.
Theor. | Exp. | Theor. | Exp. | Theor. | Exp. | Theor. | Exp.

LMS | 0.0037 | 2p0p: | -20.85dB | -24.37dB || 0.0261 | 2u0p | -12.31dB | -15.11dB
RLS 0.0039 | popt | -20.55dB | -22.19dB || 0.0144 | pop: | -14.89dB | -16.23dB
ERLS2 - - - -27.64dB - - - -31.33dB

In the chirped-tone case, normal operation is in the regidiuctuates the weights to create poles (IIR) in the filter transfer
where the weight difference between the filter weights and thenction [20], [21]. Therefore, the filters generally perform
optimal weights is dominated by a nonzero mean-lag weigliietter than the linear theory predicts. (Note the discrepancy
In this case, the weight fluctuations caused by the adaptatlegtween the theoretical optimum and the measured value in
can be neglected. This explains why a similar resultffgr,,, Fig 6(b) of [18].)
which measures the total weight noise from the mean lag andThe same chirped signal was used for all three algorithms:
the mean lag fluctuation component due to the nonstationarity!S, standard RLS, and ERLS2. The estimates of the misad-
and the adaptation process respectively, is not available. justment were measured as the meafyok) —u" (k)iv(k|k -

To compare the performance of the RLS and LMS algd-)|” over 1500 iterations in steady state. This was repeated 10
rithms with the ERLS2 algorithm, we simulate two differenfimes to find a mean value for the misadjustment. In order to
cases indicated by (10p < 3M, and p > 3M. The |IIu_strate that t_h(_a_ERLSZ algorithm can esnmate an unkr_10wn
parameters are chosen to complement those in [17] and [Hg]rp ratg,_t_he initial value affl, was set to the identity matrix,
and are given by the following: %nd the _|n|t|al gutess for the chmptw;sb set '_co 0. 'Il'he fact tlhatf

i _ o Was incorrect was compensated by using a larger value for

D (p <3M):p=2M=274 =10 4_ o2 in the algorithm. We found that the error decreaseds

2) (p>3M): p=100,M = 2,9 = 10~

_ ' . is increased for this case. The simulations results shown here
An approximate value for the optimal adaptation constagte for 52 that is 200 times larger than the actual.

is defined in [17] and [19] and summarized in Table VI. This The results are summarized in Table VILI. It can be seen that
value was used as a first approximation to the optimal valugither the LMS nor the RLS is superior in all cases; in this

and a more exact value was determined experimentally biiirped-tone example, however, the LMS might be favored
minimizing the output prediction error with respect to thgince the region of interest is usually low SNR. Note also that
adaptation parameter. It is known that in the chirped cashe misadjustments for the LMS and RLS actually increase as
the adaptive-algorithm-update behaves as a feedback pd#tle, SNR(p) is increased since neither algorithm is estimating

which not only updates the filter weights (FIR filter) but alstéhe chirp rate. The ERLS2 algorithm uses the additional SNR



1126 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 5, MAY 1997

TABLE VIII 1) The optimal RLS parameter$p i, Ay min @and the
e e e et sk " optimal LIS parametefe w i, achEViNg the
1: Rl = R=
E)Sf%alue Con:l:i?i;)n Efaﬁe Coxfg;;ion Note AD, M min =1 = ¢, 1>e>1-a, (A-1)
Apmin | 0.98 ~1 0.98 ~1 | (A o win < (IRE )R], g win < or{B]™
AMmin 0.98 1 0.9622 ~1 (A1) (A-2)
UDmin | 0.1562 < 25.0 0.0827 <159 | (A2 where
UMmin | 0.0827 < 1.367 0.0827 « 1367 | (A.2) K(n)
a 0.0283 <1 0.0535 <1 | (A3) 2 E[(w,(n) — w(n|n — 1)) (w,(n) — @(n|n — 1))].

2) The Markov model in (7) satisfies the conditionsbdw
to improve its estimate of the chirp rate, thereby decreasing statistical variation i.e.,
the misadjustment. It was observed that on a run-by-run basis, 1
the ERLS2 always performed better. a=_VURQ < 1. (A3)

The discrepancy between the theoretical LMS and RLS ) . )

results are due to non-Wiener effects explained earlier. The! N€ rationale for these conditions can be found in [2] and
weight update behaves as a feedback path, which produ[@s In aqqmon, we like Fo select_ a.set of conditions that not
poles in the transfer function. As in [18], we observed that boff[!lY Verifies the theoretical predictions of Tables | and II but
the LMS and RLS performed better than the theory predict@&so does so under meaningful tracking conditions, i.e.,
at low chirp rates. The difference, however, is greater for the = pRLS,LMS pRLS,LMS

min min

LMS. ElwomE ~  ug

VII. CONCLUSIONS ~ Under these constraints, we simplify the problem of assign-
N . ) ing good values to the free parameters of the experiment by
The Kalman filter is known to be the linear optimum traCke('fonsidering the case wheogy, ¢1, g2, ando have been set

on the basis of second-order statistics. Building on this f liori. We call this set of parameters tpeimary parameters

and exploiting the one-to-one correspondences between fhe experiment, as opposed to the others, which we call the

RLS and Kalman variables, we may derive extended forr@%condary parameterdssume thaDRLS = 4 is then selected
of the RLS algorithm that inherit the good tracking behavigy, B

satisfy condition (A.4). Since [2
of the Kalman filter. In this paper, we have considered two bt A4 2]

—a?)=6<1. (A9

particular forms of this extension: \ 1 | tr[Q] N
« ERLS-1, pertaining to a system identification problem, Dmin = 1 = o\ R (A-5)
and
« ERLS-2, pertaining to the tracking of a chirped sinusoigonditions (A.3) and (A.1) imply that
in noise. , 1 tQ

In each case, prior knowledge about the original dynamical o= e_Qtr[R_l] = Ku[RQ), KE>1 (A.6)

system model is built into the formulation of the extended form

of the RLS algorithm, making it the optimum linear tracking/N€re £ can be considered an “overdrive” factor that mea-

device for the particular application of interest. We should adgt"eS the degree to which the condition of slow statistical
ariation holds. Specializing to case (1)

though, that if sufficient prior knowledge is not available, sa)Y,

if some of the parameters needed in the formulations of ERLS- K- 1 S 1 for e« 1 1
1 and ERLS-2 are not available, then the extended algorithms - Me? “SUM V2
would have to be expanded to include provisions for estimatiresg ) LS -
n the other hand, from the relation f&r:LS in Table I, we

these quantities. min
Finally, we can go one step further and say that, HVUSt choose and ¢
exploiting the _time-_shift structure of the input data in the d 2 aé(lJqu)
manner described in [2] and [8], we may develop order- c=\l—-""= =
; o . 002 (1+ q2) d
recursive realizations of extended RLS algorithms that are Q
linear in their order of computational complexity; this is asimilarly, for case (2)

issue that we will leave for future considerations.

such that

Q2—Q%

_ Q2—Q%
K= 2 2
1+2q1 +(_Z2

APPENDIX (1422 + ¢3)
BACKGROUND THEORY FOR TRACKING EXPERIMENT and

>1 for ex

For cases 1) and 2) described in Section VI-A, the free 9
parameterss, og, ¢, g1, and go must be chosen such that we = 1 . <0_(1 + QQ)> )
have the following: (g2 — q7) d
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It is important to note that had been assumed to be unity[19] O. M. Macchi and N. J. Bershad, “Adaptive recovery of a chirped
for both cases 1) and 2)' not all the required conditions for sinusoid in noise: Performance of the RLS algorithfEEE Trans.

. . . Acoust., Speech, Signal Processiagl. 39, pp. 583-594, Mar. 1991.
RLS
the validity of even justD,;;> can be met for any choices o) 3. R. Glover, “Adaptive noise canceling applied to sinusoidal interfer-

min
of the primary and secondary parameters; in this sense, the ences"|EEE Trans. Acoust., Speech, Signal Processiag; ASSP-25,
generalization pro_\(ided by the factois crucial. As Iong_as [21] EPSSGEﬁalJFEbZ:Le?cZIZr T. R. Albert, and W. H. Ku, “Comparison
[hence,a by condition (A.1)] andc are selected according to of adaptive lattice filters to LMS transversal filters for sinusoidal can-
these relations for each case, conditions (A.1), (A.3), and (A.4) cellation,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Processing
will be satisfied forA = Apmin. In other words, the optimum Mar. 1992, vol. IV, pp. 33-36.
mean-square deviations of the RLS algorithm for cases 1)
and 2) with the primary parameters are realizable, albeit
with different secondary parameters. The obvious question
follows: Is this true with the other optima in Table 1? Without
going into the details, it is straightforward to verify that
the answer is indeed yes for the numerical choices of the
primary and secondary parameters given in Table Ill. Table
VIII summarizes the results of the verification. In all cases, the
formulae for the optimal parametelss min, Ars mins 4D min,
and ia7 min €an be found in [2] and [6]. Where possible, th
constraint values are determined from the theoretical formul
(A.1) to (A.3); the exception is the constraint value fQs i,
which can only be easily computed after the actual experime
is complete since we have no prior knowledge of the predict:
weight sequenc&(n|n — 1).
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