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Time-Variant Displacement
Structure and Triangular Arrays

Ali H. Sayed, Member, IEEE, Hanoch Lev-Ari, Member, IEEE, and Thomas Kailath, Fellow, IEEE

Abstract— We extend the concept of displacement structure
to time-variant matrices and use it to efficiently and recursively
propagate the Cholesky factor of such matrices. A natural imple-
mentation of the algorithm is via a modular triangular array of
processing elements. When the algorithm is applied to solve the
normal equations that arise in adaptive least-squares filtering,
we get the so-called QR algorithm, with the extra bonus of a
parallelizable procedure for determining the weight vector. It is
shown that the general algorithm can also be implemented in
time-variant lattice form; a specialization of this result yields a
time-variant Schur algorithm.

I. INTRODUCTION

HE notion of displacement structure provides a natural

framework for the solution of many problems in signal
processing and mathematics, and represents a powerful and
unifying tool for exploiting the existing structure in several
applications (see [1], [2] for surveys on the origin and history
of the subject). In this paper we extend the notion of structured
matrices to the time-variant setting and show that we can,
as well, study matrices that exhibit structured time-variations.
We shall say that an » X n matrix R(t) has a time-variant
Toeplitz-like displacement structure if the matrix difference
VR(t) defined by

VR(t) = R(t) - F()R(t — A)F*(t)

has_low rank, say r(¢) (usually r(¢) < n), for some lower
triangular n x n matrix F(t) whose diagonal elements we
shall denote by { f;(t)}"=,. The symbol * stands for Hermitian
conjugation (complex conjugation for scalars), and the indices
t and (¢— A) denote two discrete-time instants. It follows from
the low rank property that we can factor VR(t) and write

R(t) — F()R(t — AYF*(t) = G)JOG*(t) ()
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where G(t) is an n x r(t) so-called generator matrix and J(t)
is an 7(t) x (t) signature matrix with as many +1’s as VR(t)
has strictly positive or negative eigenvalues. The notation I,
refers to the p(t) x p(t) identity matrix and

sy = [0 )Lt =p0+ a0,

Special cases of the time-variant structure (1) often arise
in adaptive filtering [3]-[5], where one is usually faced with
the task of computing a new estimate at time ¢ upon the
arrival of a new datum, given the old estimate at time ¢ — 1.
In the standard recursive least-squares setting (see, e.g., [3],
[4]), this problem reduces to solving normal equations where
the coefficient matrix, say ®(t), varies with time as follows:
®(t) — A®(t — 1) = u*(t)u(t), for some scalar 0 < X < 1,
and row vector u(t). This is clearly a special case of (1) with
R(t) = ®(t), F(t) = VX, r(t) = 1, J(t) = 1, G(t) = u*(t)
and A = 1. In this case, ®(t) and A®(¢ — 1) differ by a rank
one “update” matrix. In other problems, such as in the block
RLS formulation (see, e.g., [4], [6]), the matrices ®(t) and
A®(t—1) differ by a higher order rank update, where the single
column u*(¢) is replaced by a matrix with multiple columns.
More general forms of the time-variant displacement structure
(1) arise in the study of time-variant interpolation problems
and matrix completion problems, as discussed in [7]-{11].

In this paper we consider a general time-variant structured
matrix R(t) as in (1) and show how to exploit the dis-
placement structure to efficiently and recursively propagate
its Cholesky factor. We also discuss an associated triangular
array interpretation, and show that the derived algorithm can
be implemented by an array of elementary cells composed of
elementary rotations and time-variant tapped-delay filters. We
then consider the special case of the recursive least-squares
problem and show that the derived algorithm collapses to the
now widely studied QR algorithm (see [3], [4], [12]-[14] and
the references therein), with the extra ingredient of allowing
for a parallel extraction of the weight vector.

To conclude this introduction, let us state a readily estab-
lished matrix result that since [15] has played an important
role in the derivation of all so-called square-root algorithms.

Lemma 1.1 Consider two n x m (n < m) matrices A and
B.If AJA* = BJB* is of full rank, for some m xm signature
matrix J = (I, ® —1,), p+ g = m, then there exists an m x m
J-unitary matrix © (©J0©* = J) such that A = BO.

Proof:  One proof follows by invoking the hyperbolic
singular value decompositions of A and B (see, e.g., [16] or
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([171, pp. 43-45), viz.

. [Zar 0 0 0]
A‘UA[ 0 0 Z,- O]VA’
[+ 0 0 0]..
B‘UB[ 0 0 Xp-_ O}VB

where U4 and Up are n X n unitary matrices, V4 and Vp
are m x m J-unitary matrices, and ¥4 4,%X4 _, ¥p 4, and
Yp_,are p xp', ¢ x¢,p xp and ¢ x ¢’ diagonal
matrices, respectively, with p’ + ¢ = n. It further follows
from the full rank condition and the equality AJA* = BJB*,
that £4 + = ¥p 4+, ¥a,— = Xp,_, and that we can choose
Us =Up. Let © = JVpJV} then ©J0* = J and BO = A.

II. RECURSIVE CHOLESKY FACTORIZATION

The positive-definiteness of R(t) guarantees the existence
of a unique (lower triangular) Cholesky factor L(t) such that
R(t) = L(t)L"(t). We shall denote the nonzero parts of the
columns of L(t) by {I:(t)}7=2. We shall also from now on,
and without loss of generality, write (¢ — 1) instead of (¢ — A).

We first verify that because of the special time-variant
structure (1) (and with an additional “sparsity” condition on
F(t)), the Cholesky factor of R(t) can be updated from time
(t — 1) to time ¢ in O(r(t)n?) operations (multiplications and
additions), viz., L(t — 1) — L(t) in O(r(t)n?) operations.
It follows from (1) that we can write

0 mf' | =1rwze-y )
5 AJFre)

This last expression fits into the statement of Lemma 1.1.
Hence, there exists an (I, ® J(¢))-unitary matrix I'(¢) such that

[L(t) 0]=[F()L(t-1) G®IT(). @
In other words, I'(¢) is an (I, @ J(t))—unitary rotation that
produces the block zero entry in the postarray on the left-
hand side of the above expression. Schematically, I'(¢) takes
a prearray of numbers of the form

8 8 8

T
T

88 8
8 8 8
8 8 8

T

and transforms it to a postarray of numbers of the form

8 8 8
o oo
[eo N R e}
oo o

x
xr z

This transformation can clearly be implemented as a sequence
of elementary transformations, say I'g(¢), I'1(¢), - -, that pro-
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duces the block zero in the postarray by introducing one zero
(row) at a time, such as

T r T z T 0 0 0O
To(t)
T T z z z|—|z =z r T T
T r r T T X T T T T T X
ra ) F‘(t)x 0 0 0
AV A 000
z z x 0 0 O

We now verify that this procedure leads to a simple array
algorithm that efficiently computes L(t) from the knowledge
of L(t — 1), F(t) and G(t). The annihilation of each row can
be achieved in several ways and we do not pretend to exhaust
all possibilities. We shall instead describe the general picture
and some possible options.

Let do(t) and go(t) denote the (0,0) entry of R(¢) and the
first row of G(t), respectively. It follows from the displace-
ment equation (1) and from the positive-definiteness of R(t)
that

do(t) = fo(t)do(t — 1) f5 () + g0(t)J(t)go(t)* > 0

Consequemly, the first row vector of the prearray in (2),

[fo(t)d1 2t—=1) 0 go(t (t)]. has positive (I, & J(t))-
norm (by the J-norm of a row vector x, where J is a
signature matrix, we mean the indefinite quantity xJx*, which
can be positive, negative, or even zero). Hence, by Lemma
1.1, we can always find an (I, & J(t))-unitary transforma-
t10n Fg(t) such that the above row is reduced to the form
[d (t) 0 0] That is

[fo()dg*(t —=1) 0 go(t)]To(t) = [dy/*(t) 0 o]

It is clear that we can express this last transformation more
compactly by dropping the zero entries that are common to
both the pre- and postarrays, viz.

[fo(t)d*(t = 1) go(t)]To(t) =

where I‘o_(t) is a (1 @ J(t))-unitary rotation. The relation
between I'g(t) and I'g(t) is evident: if we write

= 1 _ lao(t) bo(t
Tot) = o) 2]

where ag(t) is a scalar, bg(t) is a 1 x 7(¢) row vector, co(t) is
an r(t) x 1 column vector, and so(t) is an 7(t) x 7(t) matrix,
then [y(t) is given by

[d*(t) 0]

ap (t) 0 bo(t)
To()=( 0 Iy O
co(t) 0  sg(t)

We see that the effect of 'g(¢), when applied to the prearray

of expression (2), is to annihilate the first row of G(t) by

pivoting with the first column of F'(¢)L(t — 1), while keeping

unaltered the remaining columns of F'(¢)L(¢ —1). This can be

expressed as follows

FOLE-1 GOIo®) = [o) 7 0]
F(t)la(t-1) Gi(t)

(3)
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where F(t) and L;(t — 1) are the submatrices obtained after
deleting the first row and column of F(t) and Ly(t — 1) =
L(t — 1), respectively. The first column of the postarray, i.e.,
the array on the right-hand side of (3) has to be ly(t) by virtue
of the identity (2).

Let us now check the significance of the matrix G1(¢) that
is produced on the right-hand side of (3). Comparing the
(In @ J(t))-norm on both sides we obtain

F(OL(t - 1)L
:MMWHWHmﬁa—QWZM_U”w]

+{Gﬂw]nu Gr(t)].

But the Cholesky factor of the Schur complement of roo(t—1)
in R(t — 1) is Ly(t — 1) itself (see, e.g., [18], {19]). That is,
Ry(t—1) = L1(t — 1)I;(t — 1), where R;(¢ — 1) denotes the
Schur complement. Hence, using (1) we get

(- D)F(t) + G(t)J ()G (1)

0 0
R@—hﬁMﬂ:L mm&a—nﬂw]

+ [0 0 ]
0 Gi()J)Gi(t) |
Consequently

Ry(t) — ()R (t — DFT () = Gi(1)J(H)G1(2)

since

RO -L050 = o gl |

This shows that Gy(t) is a generator matrix of the Schur
complement R; (%), with respect to the displacement operation
Ri(t) — Fi(t)Ri(t — 1)FY ().

We can now proceed by annihilating the first row of G (t)
via an ([,_1 & J(t))-unitary transformation I'y(¢)

(ALt -1) Gi(t) T (t)

< 0 0
ZPNEWEM—U Ga(t) ]

where Fy(t) and Ly(t — 1) are the submatrices obtained after
deleting the first row and column of Fy(t) and IL;(t — 1),
respectively, and so on. In summary, each transformation
T'i—1(¢) produces a generator matrix of the Schur complement

Rty =[]

where the successive Schur complements are related as follows

0 0 TN
o pt | =m0 - Lo,

Here I;(t) is equal to li(t)di_l/Q(t) where [;(t) and d;(t) denote
the first column and the (0, 0) entry of R;(t), respectively. We
are thus led to the following algorithm.

, of the leading ¢ x ¢ submatrix in R(t),
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Algorithm 2.1 The Cholesky factor of a positive-definite
Hermitian matrix R(¢) with time-variant Toeplitz-like struc-
ture, viz., R(t) — F)R(t — V)F*(#) = G@#)J)G*(t),
with F(t) lower triangular, can be time-updated by using
the following recursive procedure: start with Fy(t) = F(t),

o(t) = G(t), Lo(t — 1) = L(t — 1) and repeat for i =
0,1,---,mn = 1:

a) At step ¢ we have F;(t) and G;(¢). Let g;(¢) denote the

first row of Gy(t).

b) Choose a convenient (I,,_; & J(¢))—unitary transforma-

tion T';(¢) that performs the rotation

[t -1) 0 g:(t)]Ti(t)
= [d;*®t) o o).

c) Applying I';(¢) to the prearray leads to

[F)Li(t-1) Gi®)] ()
0 0
=[O -1 Ga) @

where Fiyi(t) and T;4;(t — 1) are the submatrices
obtained by deleting the first row and column of each of
Fy(t) and T;(t — 1), respectively. Moreover, the matrix
Gi41(t) that appears in the postarray is a generator
matrix of the (¢ + 1)th Schur complement R, ;(¢). That
is

Ripa(t) = Fig1 (D) Riga(t — 1) Fig (2)
= Gir1()J (G (D).

"L constitute the columns of the

The column vectors {1;(t)}7=;

~ Cholesky factor L(t). O

In other words, each transformation T';(¢) is chosen so
as to annihilate a row in the postarray (as in (4)). Each
such transformation then produces one column of the desired
Cholesky factor L(t). A sequence of k (k < n) transforma-
tions {T'o(¢),T'1(¢),---,Tk—1(¢)}, would clearly produce the
first k columns of L(¢). More explicitly (we shall use this
fact later while deriving a systolic solution for the normal
equations)

[FOL-1) o] =5
0 0 0
W o0 o
0
Tea (1) 0 0

Fili(t - 1) Gi(t)
(5)

The overall effect of the sequence of transformations I'g(¢),
Ty(t), -+, T'_1(2), is to produce the block zero entry in the
postarray of expression (2), and thus to update the Cholesky
factor from time (¢ — 1) to time ¢.

Finally, observe that G;(¢) has (n — i)r(¢) elements as
compared to (n — )% in R;(t) and usually r(t) < n. If
the matrix F'(t) is sparse enough so that the complexity of
computing the matrix-vector product F'()x is O(n) operations
(multiplications and additions), for any column vector x,
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Fi(?) A

F(t)li(t-1) Ii(1)
Ti(t)

Gi(t) ——»

— Gin(?)

Fig. 1. One step of the generator recursion.

then n steps of the above recursive procedure would require
O(r(t)n?) operations per time step.

III. TRIANGULAR ARRAY IMPLEMENTATION

Fig. 1 depicts one step of Algorithm 2.1. Each such step
is characterized by a (1 & J(t))-unitary transformation T';(t),
and a storage element A that stores the present value of I;(#)
to the next time instant.

The generator matrix G;(t) and the column vector
F,(t)l;(t — 1) undergo the transformation T';(t) and yield
the next generator G;11(t), as well as the ith column of the
Cholesky factor, I;(¢). That is (this is a compact rewriting of
(4), where we have dropped the entry Fj1(t)L;;,(t—1) that
is common to both the pre- and post-arrays)

- - 0
Gi(t)] Ti(t) = |Li(¢t .
o170 = [0 6.2, |
The matrix-vector product F;(¢)l;(t — 1) indicated in the
feedback line in Fig. 1 can be implemented by a time-
variant tapped-delay filter. To clarify this, we first remark
that the rows of the prearray, [_F,-(t)li(t —1) Gy(t)], are
fed one row at a time through T';(¢). Moreover, recall that
F;(t) is a lower triangular matrix whose diagonal entries are
{fi(®), fix1(2), - -}. We shall denote its off-diagonal elements
by {€itp,i(t)}p21,520
fit)
&itr0(t)  firr(?)

O
Cir20(t) &iv21(t)  fira(t)
Eirao(t) &gz 1(t) &iyaa(t)  firs(t)

[F,‘(t)li(t - ].)

Fit) =

If we denote the entries of I;(t — 1) by
Lt—1)=[iolt—=1) Tia(t—-1) ---)7

then the computation of the elements of the column vector
F;(t)l:(t — 1) reduces to inner product evaluations. The jth
entry of the resulting column is the inner product of the jth
row of F;(t) with I;(£—1). Hence, the entries of F;(¢);(t—1)
can be obtained as outputs of time-variant tapped-delay filters,
whose coefficients are given by the rows of F;(t). This is
shown in Fig. 2.

The A block stores the elements of 7;(t) for the next time in-
stant, and multiplication by F;(¢) corresponds to processing by
time-variant finite-impulse-response filters whose coefficients
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Lo(t—1) Lis(t)

Eiriolt) Eieiia () X fuit®)

Fig. 2. Time-variant tapped delay line.

First row of Fi(t)

Tia(t)

f‘,‘(i)

First row of
Gi(t) ;

Second row of Fi(t)

; i)

Second row of First row of
Gi(t) Gisa(t)

t

Last row of Fi(t)
Lin—ica(t)

Ti(t)

Last row of Last row of
————
Gi(1) P G
Fig. 3. A layer of elementary sections for one generator step.

vary (for a fixed t) as follows: when the first row of G;(¢)
is fed through I';(¢), the filter coefficients are the elements
of the first row of F;(¢). When the second row of G;(t) is
fed in, the filter coefficients are the elements of the second
row of Fi(t), and so on. More precisely, recall that G;(t) has
(n — i) rows. Hence, we can decompose Fig. 1 into (n — 4)
elementary sections as shown in Fig. 3.

Each section consists of the same (1 & J(t))-unitary trans-
formation T';(t) and a tapped-delay filter whose coefficients are
the corresponding row in the F;(¢) matrix. One row of G;(t)
is applied to each section. The outputs of the layer are then
the rows of G4 1(t). Notice that the output of the top section
is zero, since each generator step produces one zero row.

If we represent each section in Fig. 3 by a square box, then
n steps of the generator recursion of Algorithm 2.1 correspond
to a triangular array as depicted in Fig. 4.
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— To(t)

To(t) Ti(1)

! }

To(t) Ti(1) (1)
! ¢ +
} } 4

To(2) (1) Ta(t) T Tn-1(t)

G() Gi(t) Ga(t) Ga-1(t)

Fig. 4. Triangular/array implementation of the generator recursion.

The first layer of the array operates on the n rows of G(t)
and produces the n — 1 rows of Gi(t). The second layer
operates on the rows of G1(¢) and produces the n — 2 rows
of G(t), and so on. It is clear that once the rows of G(t)
propagate through the first layer, the array can already receive
the rows of G(t + 1), etc.

Before proceeding further in discussing simplifications of
the recursion of Algorithm 2.1, we pause for a while and
illustrate the application of this algorithm to an important prob-
lem that arises in adaptive filtering. We show that the simple
recursive procedure described in Algorithm 2.1 collapses to
the well-known QR algorithm for solving the so-called normal
equations (see, e.g., ([3], ch. 14), ([4], ch. 5) and promptly
yields a parallel method for the extraction of the weight vector.

IV. AN APPLICATION: THE QR ADAPTIVE ALGORITHM

In adaptive filtering one is often faced with the task of
solving a linear system of equations of the form

@(tyw(t) =6(t) 6)

where ®(¢) is an n x n positive-definite Hermitian matrix
usually referred to as the autocorrelation matrix, #(¢) is an
n X 1 column vector known as the cross-correlation vector and
w(t) is an n X 1 so-called weight vector. The equations (6) are
often termed the normal equations. The reader is referred to
[31, [4], [20] for more on the derivation and motivation of the
normal equations in the context of the recursive least-squares
problem.

In adaptive filtering, and in other applications, it often
happens that the quantities ®(¢) and 6(¢) in (6) satisfy the
time recursions

O(t) = A®(t — 1) = u*(H)u(?) @)

6(t) — A0t — 1) = d(t)u*(t) 8)

where A is a positive scalar (0 < A < 1), u(¢) is a row vector
u(t) = [ua(t)  ua(t) un(t)]

and d(t) is a scalar. In the adaptive applications, one usually
encounters the problem of solving (6) for successive time
instants £,¢+ 1,4+ 2, - -, and one expects a computationally
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efficient procedure for going through the calculations, w(t) —
w(t+1) — w(t+2) — - - -, since the corresponding quantities,
(®(2),0(t)), (2(t+1),0(¢t+ 1)), (®(¢+2),0(¢t+2)),---are
closely related because of (7) and (8). For example, ®(¢t + 1)
and A®(¢) differ only by a rank-one matrix u*(t+ L)u(t+1).
We shall now show how to exploit the existing time-variant
(or low-rank) structure in a straightforward manner, by using
the results developed in the previous sections.

To begin with, observe that ®(¢) is a time-variant structured
matrix and (7) is a special case of (1) with F(t) = Ny
G(t) = u*(t), A =1, and J(t) = 1. Hence, we can propagate
its Cholesky factor (denoted by Lg(t)) via the square-root
array (recall (2))

VALo(t - 1) u*(t)]0(t) = [La(t) 0] ®

where T'(t) is any unitary transformation (I'(¢)[™*(¢) = I,,41)
that produces the block zero in the postarray. Expression (9)
is the so-called QR recursion that updates the Cholesky factor
of the autocorrelation matrix through a sequence of unitary
rotations [3], [4], [12]. Once L(t) is determined, then one
way to obtain the weight vector w(t) is to solve the following
triangular system (via back-substitution)

La(hw(t) = Ly (4)8(1).

This, however, does not yield a fully parallelizable algorithm.

We now extend an embedding technique used in [21]
to the time-variant setting and derive a parallel procedure
for obtaining w(t) by exploiting the notion of time-variant
displacement structure, as introduced in the previous sections.
The main point is to start by expressing w(t) as a Schur
complement in a suitable block matrix, and then to properly
exploit the structure of this matrix.

Consider the following (2n x (n + 1)) extended matrix

o = [0 %]

and note that the Schur complement of ®(t) in R(¢) is
—&~1(#)4(t), which is equal to (minus) the desired weight
vector w(t). This already suggests the following route: if we
can show how to efficiently go from the Schur complement at
time £ — 1 to the Schur complement at time ¢, then we obtain
an efficient procedure for going from w(t — 1) to w(t). But
this is precisely what is provided by Algorithm 2.1, as we
now further elaborate.

We shall, for convenience, redefine R(t) as a (2n X 2n)
square matrix

=40 )

where the Schur complement of ®(t) is now [—w(t) 0],
which still completely identifies w(t).

The relations (7) and (8) indicate that the matrix R(t) in
(10) is clearly a time-variant Toeplitz-like matrix. In fact, it
readily follows that

(10)

w0 P re-0= [0 we a0 o
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which is a special case of a non-Hermitian time-variant
displacement equation of the form

R(t) — F()R(t — 1)A*(t) = G(t)J(t)B* (1)
with A(t) = Ion, J(t) = 1,A = 1, F(t) = (M, & I,)

u*(t)

u*(t) d(t)
0

G(t):[ 0 ] and B(t)

Although R(¢) has a non-Hermitian structure, we are only
interested in its first n Schur complementation steps (that is,
in its first » triangular factors) and the leading n x n submatrix
of R(t) is Hermitian (equal to ®(t)).

Let us first check the form of the first n triangular factors
of R(t). To begin with, observe that the Cholesky factor of
&(t) (La(t)) is clearly a part of the first n triangular factors
of R(t), since ®(¢) is a leading submatrix of R(t) in (10).
Moreover, we can express R(t) as the product of lower and
upper triangular factors, L(¢) and U(¢) say, R(t) = L(t)U(¢),
where L(t) and U(t) have the forms

B0} =[]

for some matrices X and Y (the symbol “?” stands for
irrelevant entries). We can be more specific about the values
of X and Y. By comparing the entries on both sides of the

equality
d(t) 6(t) 0 Lo(t) O)[La(t) Y
[() ) ]: <§(() ?]Pa() ?]
Y = [Z;'(08) o]

L) =

I, 0 o
we readily conclude that
X =I5,

That is, the first n columns of the factor L(¢) and the first n
rows of the factor U(t) are completely determined by Lg(t)
and 6(t), viz.

Lo(t) ] ==y -1
[r;*u)}’ [Lo(t) Lg (1)6(t) 0]

We are interested in computing the Schur complement of
®(t) in R(t). Hence, we only need to apply the first n recursive
steps (known as Schur reduction steps) to R(t) (which is
2n X 2n) and get its first n triangular factors. But since the
leading n x n submatrix of R(t) is ®(¢) itself, then these first
n Schur reduction steps can be clearly achieved by using the
same transformation ['(¢) as in (9), which rotates Lg(t — 1)
into L (t). That is (recall (5) and the discussion preceding it)

VALg(t—1) u*(t) _[LZe(® 0
1Lt -1) 0 Jro= 220 mo0)
(11)
VALg(t—1) u*(t) La(t) 0
VI (t - 1)Ig (¢ —1) d*(t) {T(t) = |6*()Ty (t) e(t)
0 0 0 0
(12)

where we designated the resulting entries in the postarrays by
Aw(t) and g(t). Moreover, it is easy to check (by multiplying
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both arrays and comparing entries, as we did while checkiig
the significance of G1(¢) after (3) in Section II) that

—fw(t) O]+ [w(t-1) 0]=2Aw®)e(t) o]

This is the (non-Hermitian) analog of the statement given in
Algorithm 2.1 (and (5)) that

0. [§]

are generator matrices of the Schur complement of ®(t)
in R(t), viz.,, [~w(t) 0]. Therefore, w(t) — w(t — 1) =
—Aw(t)e*(t). Moreover, the arrays (11) and (12) can be
compactly grouped together as

VXLg(t - 1) u*(t)
VAt — D)Lg (t=1) d*(t) | (1)
ZLs (t-1) o |
Ly(t) ]
= |00)Ts (1) et) | (13)
L (t)  Bu()

which constitute the desired algorithm for propagating the
Cholesky factor Lg(t) as well as the weight update vector
Aw(t). It can be verified that the quantity (¢) is a normalized
version of the so-called a posteriori error [3], [4], [8]. In
summary, we are led to the following array algorithm.
Algorithm 4.1 The solution of the normal equations (6) that
arise in the recursive-least squares problem can be recursively
updated by using the array equation (13), where I'(¢) is any
unitary matrix that produces the zero block in the postarray
and w(t) = w(t — 1) — Aw(t)e* (t). ]
The first two block lines of array (13) constitute the so-
called QR algorithm of the adaptive filtering literature (see,
e.g ([3], ch. 14), ([4], ch. 5). This has been for some time the
main tool for solving the normal equations, where the weight
vector w(t) is then obtained by solving the linear system
Lo(Hw(t) = Ly (1)8(t) via back-substitution. McWhirter
[13], [14] introduced an alternative approach for determining
w(t) by exploiting the fact that the normalized error &(t)
also appears in the postarray. However, his solution requires
“freezing” the triangular array at each instant. Alternative
recent systolic derivations have been proposed in [22], [23].
We further remark that the complete QR array, as stated in
Algorithm 4.1, was also independently derived by Yang and
Bohme {24], who suggested adding the third block line

[5Le (=1 0]T(1) = [T5°() Aw(t)]

to the QR array, but without a priori motivation (in their
approach, the arrays are not introduced directly as in our
method, but are inferred from an explicit set of equations
describing the QR algorithm). Our derivation gives directly
all three lines of the array and makes clear the significance of
each line, as depicted in Fig. S.

The entries of the column vector u*(¢) are rotated along
with v/ XLg(t — 1) into zero. This updates the Cholesky factor
into La(t), which is stored in the left triangular array for the
next time instant. The right triangular array rotates the zero
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ui(t) — ™

Aw(t)

up(t) —=

0 (1)Lg"(t—1)

a(t) — e

Fig. 5. Block diagram of the complete QR array algorithm.

u3(1)

a(?)

Weight vector

Fig. 6. A systolic implementation of the QR algorithm.

in a — /X Finl
~ ¥ =in/VAa
y

n, out[a out]h[ﬁa m]vlil_'yl?['yl‘ _‘17]
Y

out [a Om]‘_[%a m]\—/ﬁ{i‘ _‘{J

we w—ine*

Fig. 7. Functional descriptions of the cells in the systolic array.

vector along with %f;*(t — 1) into the weight increment
Aw(t) and updates the inverse of the Cholesky factor. The last
(line) array rotates d*(t) along with VA8*(t — 1)Ly (t — 1)

into the normalized error &(t), and updates into 6*(t)Ly " (t).
A more detailed description is shown in Figs. 6 and 7.
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The approach presented here of the extended QR algorithm
treats the problem as a special case of Algorithm 2.1 and we
feel provides more insight into the significance of the arrays.
A natural extension of the theory discussed here is to consider
normal equations as in (6), where ®(t) and 6(t) are allowed
to exhibit a more general time-variant structure of the form
(compare with (7) and (8))

Q(t) — F(H)Q(t - 1)F*(t) = Gt)J()G*(t)
0(t) = F(t)8(t — 1) = G(t)J(t) D*(¢)
for some lower triangular matrix F(¢), a generator matrix
G(t), a signature matrix J(t) (e.g., J(t) = I), and a data
row vector D(t). It is straightforward to check that ‘the
corresponding array algorithm is of the form
F()Le(t-1)  G(1)
9*(t — 1)Ly (t—1) D(t) |T(#)
F™*M)Ly (t—1) 0

Zcp(t) 0
= |6"()Lg (1) E(t)
Ly (1)  AW()

where I'(t) is an arbitrary (I, ® J(¢))-unitary transformation
that produces the block zero entry in the post-array, E(t) is a
row vector, AW(t) is a matrix, and

w(t) — F*(w(t — 1) = —AW () J()E"(t).

V. TIME-VARIANT LATTICE IMPLEMENTATIONS

We now return to the recursions of Algorithm 2.1 and ex-
amine more closely some computational issues. In particular,
we show that the general algorithm can be implemented in
a time-variant lattice form, by invoking the notion of proper
generators.

Referring to Fig. 1 we recall that each generator step is
characterized by a (1 @ J(t))-unitary transformation T;(t),
chosen so as to perform the following rotation

[£:(d2 (1~ 1) gu()]Tu() = [d2() 0]

Here dil/Z(t—l) is the top entry of the ith column [;(t—1). That
is, T;(¢) annihilates the row vector g;(t). Now there are many
possible choices for achieving such a transformation, and we
describe here one such possibility (among many others). First
note that the row vector g;(¢) can have positive, negative, or
zero J(t)-norm, which follows from the equality

&i(t) = |f:(O)Pds(t ~ 1) = gi(t) I (£)g; ().

In other words, the sign of the quantity ¢;(¢).J(t)g?(t) depends
on the sign of the difference d;(t) — | fi(t)|?d;(t — 1). Hence,
9i(t)J (t)g; (t) is sign indefinite and we have to consider three
possible cases while looking for a suitable rotation T;(#).

(14)

A. Positive J(t)-Norm

Assume g;(t)J(t)g; (t) > 0, then it follows from Lemma
1.1 that we can always choose a J(t)-unitary matrix ©;(¢)
that reduces g;(t) to the form

9:(1)0i(t) = [6:(1) 0 .-+ 0] (15)
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where §;(t) is a positive scalar. By comparing the J(t)— norm
on both sides of (15) we conclude that the value of 6;(t) is

gi(t)J(t)g}(t). Hence, the effect of ©;(t) is to
reduce the generator G;(t) to the form
() 0 -~ 0
z T T —
Gi(t)@i(t) = . . . = Gl(t)

X T x T

where the first row of G;(t) lies along the basis vector
1o 0]. Clearly, G;(t) is also a generator of R;(t)
since G;(8)J(£)Gr(t) = Gi(t)J ()G, (). We say that Gy(t) is
a proper generator of R;(t) and ©;(t) is a J(¢)-unitary rotation
that transforms G;(t) to proper form. This can be achieved in
a variety of ways: by using a sequence of elementary Givens
and hyperbolic rotations [18], Householder transformations
[26]-[28], etc. Referring to (14), we see that the effect of
©;(t) is the following

1 0
[fid*(t - 1) a:(t)] [o e,-(o]
= [f:(0d*(t-1) &(t) o]

where we still need to annihilate the nonzero entry §;(¢). This
can be achieved by using a 2 x 2 elementary unitary rotation
Ui(t)

(16)

[f)di (e -1) &) 0][Ulét) I(r(gfl)}

= [d*(t) o]

Hence, we can implement T;(t) as the sequence of two
transformations ©;(t) and U;(¢)

ro=lo ofo][’s” n)

and we thus have

(Lt - 1) G,-(t)](l) @fzt)]

) = [F®L(t-1) Gi1)]
and
[F@)L(t - 1) al(t)]’—Ui(Et) I(r(?)—l)]

- [L-(t) Giﬂ(t)]

This is graphically depicted in Fig. 8. The generator G;(t)
is transformed to proper form by ©;(t). The last columns
of G;(t) are kept unchanged and constitute the last columns
of G;;1(t), while the first column of G;(t) is rotated with
F,()l;(t — 1) (by U;(t)) in order to yield a zero row.

We mentioned earlier that ©;(¢) can be implemented in a
variety of ways. We can also give a global expression for
©;(t). Since g;(t) has positive J(¢)-norm, then at least one
of the first p(¢) entries of g;(¢) is nonzero. Hence, we can
always assume that the leftmost entry is nonzero, by choosing
a convenient J(t)-unitary rotation P;(¢), for instance, and

1059

L(t)

Gi(t) 1)

Gita(t)

Fig. 8. A positive proper-step of the generator recursion.

by using G;(t)P;(t) instead of G;(t). A global expression
for ©;(t) is given as follows: partition the signature matrix
J(t) and the first row g;(t) into J(¢) = (1 & —F()),
E(t) = (—Ipa)—1) ® Iy(r)) and g:i(t) = [gi0(t)  T:(1)], gio(t)
is a scalar and g;(¢) is a 1 X (r(¢) — 1) row vector. If we
define the row vector (also known as Schur parameter or
reflection coefficient), v;(t) = g;' (£)g;(t)E(t), then ©;(t)
can be expressed in the form [25]

0=t T |78 S |

E(t) 0 At
where 0;(t) = (1 — w%()E#)y(t))~/2, and A(t) is an
(r(t) = 1) x (r(t) — 1) matrix that satisfies A;(¢)E(¢t)A%(t) =
(E()~~7(t)7:(¢))~L. It follows from the positive definiteness
of R(t) that (1 — v;(£)E(¢)¥}(t)) > 0 and hence, o;(t) is
well-defined.

B. Negative J(t)-Norm

Assume g;(t)J(t)g}(t) < 0, then it follows from Lemma
1.1 that we can always choose a J(¢)-unitary matrix ©;(¢)
that reduces g;(t) to the form

9i({t)8:(t) =0 --- 0 &(t)]

where 6;() is a positive scalar. By comparing the J(t)-norm
on both sides of (17) we conclude that the value of §;(¢) is

a7

—gi(t)J(t)g;(t). Hence, the action of ©;(t) is to
reduce the generator G;(¢) to the form
0 - 0 &)
T T =z —
Gi(1)O;(t) = : Tl =

where the first row of G;(t) lies along the basis vector
[0 - 0 1]. Clearly, G;(t) is also a generator of R;(t)
since G;(t)J(t)Gr(t) = G;(£)J(£)G, (t). We also say that
G;(t) is a proper generator of R;(t), and ©;(¢) is a J(t)-
unitary rotation that transforms G;(¢) to proper form. We see
that the effect of ©;(t) is the following

Oa -1 0]y o]
= [fd*t-1) 0 5]

where we still need to annihilate the nonzero entry §;(t). This
can be achieved by using an elementary hyperbolic rotation
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0i(t)

0
Giyi(t)

Fig. 9. A negative proper-step of the generator recursion.

Vi(t)

ch; (t)

[0di? 1) 8] [—shxt) _Sm(t)}

Chi(t)
1/2
= [a}*(t) o]
where we denoted the rotation parameters of V;(t) by

_ | chi(t)  —sh(?)
Vi(t) = {_csh;*(t) ch;(#) ]

This discussion shows that we can also implement T';(t) as the
sequence of two transformations ©;(¢) and V;(¢), as shown in
Fig. 9. The generator G;(t) is transformed to proper form by
©;(t). The first columns of G;(t) are kept unchanged and
constitute the first columns of G;1(¢), while the last column
of G;(t) is rotated with F;(¢)I;(t — 1) (by V;i(t)) in order to
yield a zero row.

We can also write down, as in the previous section, a global
expression for ©;(t): define E(t) by J(t) = E(t) & -1
and partition g;(t) = [g;(t) g:r(t)—1(t)], where g;(t) is a
1 x (r(t) — 1) row vector. The row vector v;(t) defined by
vi(t) = g;:(t)_l(t)ﬁi(t)E(t) is called a time-variant Schur
parameter (or reflection coefficient). The transformation ©;(t)
is then given by :

=[5 N k)

where o;(t) = (1 — w(O)E(@)y;(#))"Y? and A;(t) is an
(r(t)—1) x (r(¢) — 1) matrix that satisfies A;(t)E(¢)A;(t)* =
(E(t) =77 (Ow(t) "

C. Zero J(t)-Norm
1/2

If g;(t) has zero J(¢)-norm then f;(¢t)d;’"(t — 1) is nec-
essarily nonzero, since d;(t) > 0. Therefore, we can use
fi(t)dg/ *(t — 1) as a pivot element in order to annihilate all
the entries of g;() in (14).

We again remark that the implementation of T';(#) is highly
nonunique, and that the discussion in the last subsections
reveals one such possible implementation that leads to simple
time-variant lattice sections as depicted in Figs. 8 and 9.

VI. TWO SPECIAL CASES

We now present two examples that correspond to special
cases of the theory developed so far. The first example assumes
a strictly lower triangular matrix F'(¢), which leads to further
simplifications in the lattice picture. The second example is a
time-variant extension of the classical Schur algorithm.
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Gi(t) 0:(t) n Fi(t S
— © [%m

Fig. 10. A proper-step with F'(#) strictly lower triangular.

A. Strictly Lower Triangular F(t)

When F(t) is strictly lower triangular, the diagonal entries
{f:(t)} are zero and consequently

di(t) = gi(t)J (t)g; (1)

Hence, g;(t) necessarily has positive J(t)-norm since d;(t) >
0 due to the positive-definiteness of R(t). We are thus reduced
to the special case studied in Section V, which corresponds
to positive J(t)-norm: we first choose a J(¢)-unitary matrix
0,(t) that reduces g;(¢) to proper form, viz.

That is, the effect of ©;(t) is the following, where we use
fi(t) = 0 (compare with (16))

0 a0y oly| =0 80 ol

We still need to annihilate the nonzero entry §;(t). This can
now be achieved by simply permuting the first two columns
of the postarray

0 1 0
0]f{1 0 0
0 0 Iow-n
which readily leads to the simple lattice picture shown in
Fig. 10.
The generator G(t) is transformed to proper form by ©;(¢).
The last columns of G;(t) are kept unchanged and constitute

[0 &(t) =[&(t) 0 0]

‘the last columns of G;41(t), while the first column of G;(t—1),

which has been stored in A, is multiplied by F;(¢). This can
be compactly expressed as follows

[Qﬁm}:EWQ“*U@“‘”E ﬂ

0 0
+G;(1)0;(t
(£)0:(2) {0 fw)—l)}
which has the the following interpretation: multiply G;(¢) by
©;(t) and keep the last columns; multiply the first column of
G;(t—1)0;(t—1) by Fi(t); these two steps result in G; 1 (¢).

B. A Time-Variant Schur Algorithm

We now consider a special time-variant Toeplitz-like struc-
ture that corresponds to r(t) =2, J(¢) = J = (1@ —1), and
F(t) is the lower triangular shift matrix Z with ones on the
first subdiagonal and zeros elsewhere. We denote the columns
of G;(t) by u,(t) and v;(¢), viz.

ui(t) v (t)

Uit1,i(t) Vg1t
Gl(t) = [ul(t) vl(t)] = uiig’igt; viiQ,iEt§
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§ 1750} 0
R = [aco]
it ~ |
( b, N E ]
YESa 1t
2 Ay vin(®)

Fig. 11. One step of the time-variant Schur algorithm.

Under these conditions, we are reduced to the following time-
variant structure

R(t) — ZR(t - 1)Z* = G(t)JG*(¢)

which should be compared with the time-invariant counterpart
that is usually considered during the study of the classical
Schur algorithm (see, e.g., {2], [19]), viz.

R-ZRZ*=GJG".

We can verify easily that the array picture discussed in
Section V.A reduces to a simple algorithm, which is a straight-
forward generalization of the time-invariant counterpart [2]:
choose ©;(t) such that g;(t) is reduced to the form (ob-
serve that we now always have g;(t)Jgf(t) = di(t) > 0)
g:(1)0;(t) = [6:(t) 0], where §;(¢) is a scalar. A possible
choice for ©;(t) is the following hyperbolic rotation: let
%i(t) = vii(t)/usi(t) then

} _ 1 1 —')’i(t)
0= Jrhor [—v:(t) i ]

The array picture of the generator recursion is then given by

[Giﬂ(t)} — ZGy(t - 1)8(t — 1) Ll) 8]

0 0
+G;(t)0,(t) [0 1}
which has the the following simple array interpretation: mul-
tiply G;(t) by ©;(t) and keep the second column; shift down
the first column of G;(t — 1)©;(t — 1); these two steps result
in Gi+1(t).
This is depicted in Fig. 11 where we defined ~+{(t) =
1—|y(t)]2. The block with a A represents a storage
element where the first column of G;(¢)©;(t) is stored for
the next time instant. The entries of the first column of G;(t)
propagate through the top line, while the entries of the second
column propagate through the bottom line.

VII. CONCLUDING REMARKS

We extended the notion of displacement structure to the
time-variant setting and used it to obtain a fast recursive
algorithm for finding the triangular (Cholesky) factors of
matrices with a general time-variant displacement structure.
We also presented a triangular array implementation of the
recursive algorithm. An application was made to an important
special case that arises in adaptive filtering. We showed that
in this case the algorithm collapsed to the widely known QR
algorithm with the additional ingredient of providing a parallel
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procedure for extracting the weight vector. Further applications
of the general displacement structure considered here to the
study of lossless time-variant systems, to time-variant interpo-
lation problems, and to matrix completion problems will be
presented elsewhere, though see [7]-[10].
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