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Abstract—We consider the problem of distributed estimation,
where a set of nodes is required to collectively estimate some
parameter of interest from noisy measurements. The problem is
useful in several contexts including wireless and sensor networks,
where scalability, robustness, and low power consumption are de-
sirable features. Diffusion cooperation schemes have been shown
to provide good performance, robustness to node and link failure,
and are amenable to distributed implementations. In this work we
focus on diffusion-based adaptive solutions of the LMS type. We
motivate and propose new versions of the diffusion LMS algorithm
that outperform previous solutions. We provide performance and
convergence analysis of the proposed algorithms, together with
simulation results comparing with existing techniques. We also
discuss optimization schemes to design the diffusion LMS weights.

Index Terms—Adaptive networks, diffusion LMS, diffusion net-
works, distributed estimation, energy conservation.

I. INTRODUCTION

W E study the problem of distributed estimation, where
a set of nodes is required to collectively estimate some

parameter of interest from noisy measurements by relying solely
on in-network processing. Distributed estimation algorithms are
useful in several contexts, including wireless and sensor net-
works, where scalability, robustness, and low power consump-
tion are desirable. The availability of low-power sensors and
processors is generating demand for in-network processing so-
lutions, with applications ranging from precision agriculture to
environmental monitoring and transportation.

Thus, consider a set of nodes distributed over some geo-
graphic region (see Fig. 1). At every time instant , every node
takes a scalar measurement of some random process
and a regression vector, , corresponding to a realiza-
tion of a random process , which is correlated with .
The objective is for every node in the network to use the data

to estimate some parameter vector .
In the centralized solution to the problem, every node in the

network transmits its data to a central fusion center
for processing. This approach has the disadvantage of being
non-robust to failure by the fusion center. Moreover, in the con-
text of wireless sensor networks, centralizing all measurements
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Fig. 1. At time �, every node � takes a measurement �� ���� � �.

in a single node lacks scalability, and may require large amounts
of energy and communication resources [1]. On the other hand,
in distributed implementations, every node in the network com-
municates with a subset of the nodes, and processing is dis-
tributed among all nodes in the network. We say that two nodes
are connected if they can communicate directly with each other.
A node is always connected to itself. The set of nodes that are
connected to node (including itself) is denoted by and is
called the neighborhood of node . The number of nodes con-
nected to note is called the degree of node , and is denoted
by .

In-network distributed estimation algorithms have been pro-
posed in the context of distributed adaptive filtering [2]–[4].
These include incremental LMS [3], [5], [6], incremental RLS
[3], diffusion LMS [3], [7], and diffusion RLS [8], [9]. Diffusion
Kalman filtering and smoothing algorithms were also proposed
[10], [11], [32]. Distributed estimation algorithms based on in-
cremental [3], [5], [12] and consensus strategies [13]–[15] have
also been proposed. The work [14] proposes a distributed LMS
algorithm based on consensus techniques that relies on node hi-
erarchy to reduce communications. The work [15] is related to
one of our diffusion algorithms from [8] and is discussed later
in Section III-B.

The purpose of this work is to motivate and develop dis-
tributed strategies that are able to update their estimates in real-
time through local interactions and by relying on a single time-
scale (namely, the observation time-scale). In this way, the re-
sulting network becomes an adaptive entity on its own right. In
comparison to the prior work on diffusion LMS in [7], the cur-
rent paper develops a formulation for deriving diffusion filters
and introduces a more general class of diffusion strategies of
which [7] is a special case. We subsequently study the perfor-
mance of this class of filters and optimize its parameters. Sim-
ulation results illustrate the theoretical findings and reveal the
enhanced learning abilities of the proposed filters.

This work is organized as follows. In Section II, we formu-
late the estimation problem and present the global solution. In
Section III, we motivate and derive a family of diffusion LMS
algorithms for distributed estimation. The algorithms are ana-
lyzed in Section IV. In Section V, we discuss different choices
of weighting matrices for the diffusion algorithms, including op-
timization techniques. We conclude our work with simulations
of our results in Section VI.
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II. PROBLEM FORMULATION

A. Global Optimization

We seek the optimal linear estimator that minimizes the
following global cost function:

(1)

where E denotes the expectation operator. Assuming the pro-
cesses and are jointly wide sense stationary, the op-
timal solution is given by [16], [17]

(2)

where is assumed positive-definite (i.e.,
) and , and where the operator

denotes complex conjugate-transposition. Observe that we
are allowing the second-order moments to vary
across the nodes.

B. Local Optimization

Now consider an matrix with individual non-neg-
ative real entries such that

(3)

where denotes the vector with unit entries. In other
words, is zero when nodes and are not connected. More-
over, the rows and columns of add up to one. When node
has access only to the data from its neighbors , it can
then seek to minimize the following local cost function:

(4)

where the coefficients give different weights to the data from
the neighbors of node . The local optimal solution is therefore

(5)

Thus, the local estimate, , is based only on covariance data
that are available to node . In comparison,

the global solution, in (2), requires access to the covariance
data across the entire network. Let

A completion-of-squares argument shows that (4) can be
rewritten in terms of as

(6)

where mmse is a constant term that does not depend on , and
the notation represents a weighted vector norm
for any Hermitian . An interesting question is how to
relate the local solutions (5) at all nodes to the global solution

(2). Note that because of (3), we can express the global cost (1)
as

(7)

Thus, using (4), (6) and (7), we find that minimizing the global
cost (1) over is equivalent to minimizing the following cost
function, for any :

(8)

We therefore have an alternative representation of the global
cost (1) in terms of the local estimates across the
network.

In the following sections we will show that (8) suggests sev-
eral distributed implementations of the diffusion type, and it will
be instrumental in the derivation of different diffusion estima-
tion algorithms.

C. Steepest-Descent Global Solution

To begin with, consider minimizing the cost function (1)
using a traditional iterative steepest-descent solution [16], say,

(9)

where is a step-size parameter and is an estimate
for at iteration . Moreover, denotes the complex
gradient of with respect to , which is given by1

(10)

Substituting into (9) leads to the steepest descent iteration:

(11)

Recursion (11) requires knowledge of the second-order mo-
ments . An adaptive implementation can be
obtained by replacing these second-order moments by local
instantaneous approximations, say of the LMS type, as follows:

(12)

Then, a global (centralized) LMS recursion is obtained, namely,

(13)

Algorithm (13) is not distributed: it requires access to data
across the entire network. It serves as an example

of an algorithm that can be run by a fusion center once all
nodes transmit their data to it. In the next section we will

consider distributed strategies, which is the main motivation
for this work.

1A factor of 2 multiplies (10) when the data are real. This factor can be ab-
sorbed into the step-size � in (10).
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III. DIFFUSION ADAPTIVE SOLUTIONS

As indicated above, the global LMS solution (13) is not dis-
tributed. If every node were to run (13), then every node will
need to have access to global information (namely, the measure-
ments and regressors of every other node) in order to compute
the new estimate . One fully distributed solution based on dif-
fusion strategies was proposed in [3], [7] and is known as diffu-
sion LMS.

We now propose more general variants that can accommodate
higher levels of interaction and information exchange among the
nodes. The formulation that follows includes the diffusion LMS
algorithm of [3], [7] as a special case. In addition, the formu-
lation provides a useful way to motivate and derive diffusion
filters by optimizing the cost (8) via incremental strategies.

A. MSE Minimization

Thus, refer to the equivalent global cost (8). Minimizing this
cost at every node still requires the nodes to have access to
global information, namely the local estimates, , and the
matrices , at the other nodes in the network. In order to facil-
itate distributed implementations, we now explain how the cost
(8) motivates useful distributed algorithms.

To begin with, we replace the covariance matrices in (8)
with constant-diagonal weighting matrices of the form

, where is a set of non-negative real coefficients that
give different weights to different neighbors, and is the

identity matrix. In particular, we are interested in choices of
coefficients such that

(14)

where is the matrix with individual entries . Fur-
thermore, we replace the optimal local estimate in (8) with
an intermediate estimate that will be available at node , and
which we denote by . In this way, each node can proceed to
minimize a modified cost of the form:

(15)
Observe that while (15) is an approximation for the global
cost (8), it is nevertheless more general than the local cost (4).
That is, we used the relation (7) between global and local costs

to motivate the approximation (15). Later we will
examine the performance of the diffusion algorithms that result
from (15) and how close their weight estimates get to .

Taking the gradient of (15) we obtain2

(16)

2A factor of 2 multiplies (16) when the data are real. This factor can be ab-
sorbed into the step-sizes � and � in (17).

Thus, we can use (15) to obtain a recursion for the estimate of
at node , denoted by , as we did in the steepest-descent

case, say,

(17)

for some positive step-sizes . However, note that the
gradient vector in (16) is a sum of two terms, namely

Incremental solutions are useful for minimizing sums of convex
functions as in (15) (see [5], [6], [12], [18]); they are based on
the principle of iterating sequentially over each term, in some
pre-defined order. For example, we can accomplish the update
(17) in two steps by generating an intermediate estimate as
follows:

(18)

(19)

We now replace in (19) by the intermediate estimate that is
available at node at time , namely, . We also replace
in (19) by the intermediate estimate (as argued in [4], such
substitutions lead to enhanced performance since, intuitively,

contains more information than ). This leads to

(20)

Note from the second equation that

(21)

so that if we introduce the coefficients

we obtain

(22)

where the weighting coefficients are real, non-neg-
ative, and satisfy:

(23)

where is the matrix with individual entries .

B. Diffusion LMS

Using the instantaneous approximations (12) in (22), we ob-
tain the Adapt-then-Combine (ATC) diffusion LMS algorithm.
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ATC Diffusion LMS
Start with for all . Given non-negative real
coefficients satisfying (23), for each time
and for each node , repeat:

(24)

The ATC diffusion LMS algorithm (24) consists of an incre-
mental update followed by a diffusion update of the form:

which represents a convex combination of estimates from LMS
filters fed by spatially distinct data . In the incre-
mental step in (24), the coefficients determine which
nodes should share their measurements
with node . On the other hand, the coefficients in the
diffusion step in (24) determine which nodes should
share their intermediate estimates with node . This is a
more general convex combination than the form employed be-
fore in the context of conventional adaptive filtering [19]–[21].
We note that when measurements are not exchanged (i.e., when

), the ATC algorithm (24) becomes similar to the one
studied in [15], where noisy links are also considered and
analyzed. We further note that this particular ATC mode of
cooperation with was originally proposed and studied in
[8], [9] in the context of least-squares adaptive networks.

If we reverse the order by which we perform the incremental
update (18)–(19), we get

(25)

(26)

We now replace in (25) by and in (26) by
. This leads to

Using instantaneous approximations for now
leads to the Combine-then-Adapt (CTA) diffusion LMS
algorithm.

CTA Diffusion LMS

Start with for all . Given non-negative real
coefficients satisfying (23), for each time
and for each node , repeat:

(27)

Fig. 2. ATC diffusion strategy.

Recall that and denote matrices with individual
entries and , respectively. For each algorithm, we
distinguish between two cases: the case when measurements
and regressors are not exchanged between the nodes (or, equiva-
lently, ), and the case when measurements and regressors
are exchanged . Note that in the former case, the CTA
diffusion LMS algorithm (27) reduces to the original diffusion
LMS algorithm [7]:

C. Structure

In general, at each iteration , every node performs a proce-
dure consisting of up to four steps, as summarized in Table I. For
example, the ATC algorithm without measurement exchange

, consists of three steps. First, every node adapts its
current weight estimate using its individual measurements avail-
able at time , namely , to obtain . Second, all
nodes exchange their pre-estimates with their neighbors.
Finally, every node combines the pre-estimates to obtain the new
estimate . Figs. 2 and 3 show schematically the cooperation
strategies for the ATC and CTA algorithms, respectively, for the
general case where measurements are shared .

When , the ATC algorithm has the same processing and
communication complexity as the CTA algorithm. In Section VI
we will see by simulation that the ATC version outperforms the
CTA version, and therefore also outperforms diffusion LMS [7],
without penalty.

IV. PERFORMANCE ANALYSIS

In this section, we analyze the diffusion LMS algorithms in
their ATC (24) and CTA (27) forms. In what follows we view
the estimates as realizations of random processes , and
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Fig. 3. CTA diffusion strategy.

TABLE I
STEPS FOR ATC AND CTA ALGORITHMS WITH AND WITHOUT

MEASUREMENT SHARING

analyze the performance of the algorithms in terms of their ex-
pected behavior. Instead of analyzing each algorithm separately,
we formulate a general algorithmic form that includes the ATC
and CTA algorithms as special cases. Subsequently, we derive
expressions for the mean-square deviation (MSD) and excess
mean-square error (EMSE) of the general form, and specialize
the results to the ATC and CTA cases. Thus, consider a general
LMS diffusion filter of the form3

(28)

where the coefficients and are generic
non-negative real coefficients corresponding to the entries
of matrices and , respectively, and satisfy

(29)

3We are now using boldface symbols to denote random quantities.

TABLE II
DIFFERENT CHOICES OF MATRICES � � AND � RESULT IN

DIFFERENT LMS ALGORITHMS

Equation (28) can be specialized to the ATC diffusion LMS al-
gorithm (24) by choosing and , to
the CTA diffusion LMS algorithm (27) by choosing

and , and to the diffusion LMS algorithm from
[7] by choosing and . Equation (28)
can also be specialized to the global LMS algorithm (13) by
choosing and , and also to the case
where nodes do not cooperate and run LMS recursions individ-
ually, by selecting . Table II summarizes the
choices of the matrices and required to obtain different
LMS algorithms. Notice that a constraint of the form
is not required at this point, since it has no implications on the
subsequent analysis.

A. Modeling Assumptions

To proceed with the analysis, we assume a linear measure-
ment model as follows:

(30)

where is a zero-mean random variable with variance ,
independent of for all and , and independent of for

or . Linear models as in (30) are customary in the
adaptive filtering literature [16] since they are able to capture
many cases of interest. Note that in the above equation is the
same as the optimal solution in (2).

Using (28), we define the error quantities

and the global vectors:

...
...

...

We also introduce the diagonal matrix

(31)

and the extended weighting matrices

(32)

where denotes the Kronecker product operation. We further
introduce the following matrices:
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Then we have

or, equivalently,

(33)

Moreover, let

(34)

(35)

We now introduce the following independence assumption:
Assumption 1 (Independence): All regressors are spa-

tially and temporally independent.
Assumption 1 allows us to consider the regressors inde-
pendent of for all and for . Though not true in
general, this type of assumption is customary in the context of
adaptive filters, as it simplifies the analysis. Some results in the
literature indicate that the performance analysis obtained using
this assumption is reasonably close to the actual performance
for sufficiently small step-sizes [16], [17].

B. Mean Stability

From Assumption 1, is independent of , which de-
pends on regressors up to time . Taking expectation of (33)
yields

(36)

We say that a square matrix is stable if it satisfies as
. A known result in linear algebra states that a matrix is

stable if, and only if, all its eigenvalues lie inside the unit circle.
We need the following lemma to proceed.

Lemma 1: Let , and denote arbitrary ma-
trices, where and have real, non-negative entries, with
columns adding up to one, i.e., . Then,
the matrix is stable for any choice of and
if, and only if, is stable.

Proof: See Appendix I.
The following theorem guarantees asymptotic unbiasedness

of the general diffusion LMS filter (28). We use the notation
to denote the maximum eigenvalue of a Hermitian

matrix .

Theorem 1: Assume the data model (30) and Assumption 1
hold. Then the general diffusion LMS algorithm (28) is asymp-
totically unbiased for any initial condition and any choice of
matrices and satisfying (29) if, and only if,

(37)

Proof: In view of Lemma 1 and (36), we have asymp-
totic unbiasedness if, and only if, the matrix is stable.
Thus, we require to be stable for all

, which, by using , is equivalent to
and (37) follows.

Notice that the maximum eigenvalue of a Hermitian matrix
is convex in the elements of [22, p. 118], and from the

convexity of the coefficients , we have from (37)

Thus, we note that a sufficient condition for unbiasedness is
.

C. Variance Relation

We now study the mean-square performance of the general
diffusion filter (28). To do so, we resort to the energy conserva-
tion analysis of [16], [17], [23], [31]. Evaluating the weighted
norm of in (33) we obtain

(38)

where is any Hermitian positive-definite matrix that we are
free to choose. Using Assumption 1, we can rewrite (38) as a
variance relation in the form

(39)

Let

where the notation stacks the columns of its matrix argu-
ment on top of each other and is the inverse operation.
We will also use the notation to denote . Using the
Kronecker product property

(40)

and the fact that the expectation and vectorization operators
commute, we can vectorize expression (39) for as follows:
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where the matrix is given by

(41)

Using the property we can rewrite (39)
as follows:

(42)

D. Special Cases

We now specialize our results to different cases, namely the
case of small step-sizes, and the case where the regressors are
Gaussian.

1) Small Step-Sizes: Note that the step-sizes
only influence (42) through the matrix . When

these step-sizes are sufficiently small, the rightmost term of
(41) can be neglected, since it will depend on , while all
other terms will depend at most on . In this case, we get
(43), shown at the bottom of the page.

2) Gaussian Regressors: Assume now that the regressors
are circular complex-valued Gaussian zero-mean random vec-
tors. In this case, we can evaluate the right-most term in (41) in
terms of the fourth moment of a Gaussian variable. We show in
Appendix II that in this case, is given by (44), shown at the
bottom of the page, where if the regressors are complex,

if the regressors are real, , and the re-
maining quantities are given by

(45)

and

... (46)

with being column vectors with a unit entry at position
and zeros elsewhere.

E. Mean-Square Performance

1) Steady-State Performance: In steady-state, and assuming
that the matrix is invertible (see Section IV-E-3), we have
from (42)

(47)

The steady-state MSD and EMSE at node are defined as [16]

The MSD at node can be obtained by weighting with
a block matrix that has an identity matrix at block and
zeros elsewhere. We denote the vectorized version of this matrix
by , i.e.,

Then, choosing , the MSD becomes (48),
shown at the bottom of the page.

The EMSE at node is obtained by weighting with
a block matrix that has at block and zeros elsewhere,
that is, by selecting

and , the EMSE becomes (49), shown at the
bottom of the page. The network MSD and EMSE are defined
as the average MSD and EMSE, respectively, across all nodes
in the network:

(43)

(44)

(48)

(49)
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2) Transient Analysis: Starting from (42), we define
and we get

(50)

where we assumed for all . Thus, by taking
or , we can compute, recursively, the instantaneous
EMSE and MSD, respectively, for every node in the network and
for every time instant. Equation (50) is also useful to compute
the steady-state EMSE and MSD when and are large, and
inverting the matrix (of size ) is not
computationally tractable.

3) Convergence Analysis: We now provide conditions on the
step-sizes for mean-square convergence. Let and let

denote the characteristic polynomial of the matrix
, where

Then we have

Let , and selecting ,
we have

...

...
. . .

...
...

Matrix is in companion form, and it is known that its eigen-
values are the roots of , which are also the eigenvalues of

. Therefore, a necessary and sufficient condition for the con-
vergence of is that is a stable matrix, or equivalently, that
all the eigenvalues of are inside the unit circle. In view of
Lemma 1 and (41), and noting that the matrices and

have real, non-negative entries and their columns add
up to one, we conclude that will be stable for any matrices

and if, and only if, the step-sizes are such that the
following matrix is stable:

(51)

Notice that the stability of guarantees that will be
invertible, and therefore the steady-state expressions (48) and

(49) are well defined. We conclude that in order to guarantee
mean-square convergence, the step-sizes must be chosen
such that in (51) is stable. This condition can be checked in
practice when the right-most term in (51) can be computed, as
in the Gaussian case, or when the step-sizes are small such that
this term can be neglected.

A simpler, approximate condition can be obtained for small
step-sizes. In this case, we have

which is stable if, and only if, is stable. This condition
is the same as the condition for mean stability (37) and can be
easily checked.

We summarize our results in the following theorem.
Theorem 2: Assume the data model (30) and Assumption 1

hold. Then the general diffusion LMS algorithm (28) will con-
verge in the mean-square sense if the step-sizes are such
that the matrix in (51) is stable. In this case, the steady-state
MSD and EMSE are given by (48) and (49) respectively, where
the matrix is given by (41). For the case of Gaussian regres-
sors, simplifies to (44) and to

F. Comparison of ATC and CTA Algorithms

In Section VI, we will show through simulation examples that
the ATC diffusion LMS algorithm (24) tends to outperform the
CTA version (27). In this section we provide some insight to
explain this behavior, and show that it is always true when both
algorithms use the same weights, and the diffusion matrix sat-
isfies certain conditions.

From (24) and (27), we have

The above expressions show that in order to compute the
new estimate , the CTA algorithm uses the measurements

from all nodes in the neighborhood of node ,
while the ATC version uses the measurements from all nodes
in the neighborhood of nodes , which are neighbors of . Thus,
the ATC version effectively uses data from nodes that are two
hops away in every iteration, while the CTA version uses data
from nodes that are one hop away. For the special case ,
the CTA algorithm uses the measurements available at node
only, while the ATC version uses measurements available at the
neighbors of node .
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We now present a more formal comparison. Starting from
(38), and introducing the small step-size approximation, we
have

If the step-size is chosen such that is stable, we get

(52)

where we defined

For the ATC version, we set and , while for
the CTA version, we set and , where

, and the diffusion matrix is such that the spectral
radius of is one, i.e., . This condition is not
satisfied for general diffusion matrices, but is satisfied by all
doubly stochastic diffusion matrices , and therefore
by symmetric diffusion matrices. Let

Then we can write (52) as

and therefore,

The above inequality follows from the fact that is positive
semi-definite, and that when has unit spectral radius, so
does , and the matrix is also positive semi-def-
inite. Therefore, the network MSD of the CTA algorithm is
always larger than or equal to the network MSD of the ATC
version, when they use the same diffusion matrix satisfying

. When does not satisfy this condition, the above
statement is not true in general, though it is usually the case that
ATC outperforms CTA, as we shall see in Section VI.

In a similar fashion, we now show that under some condi-
tions, a diffusion LMS algorithm with information exchange

will always outperform the same algorithm with no
information exchange . Intuitively, this behavior is to
be expected, since measurement exchange allows every node
to have access to more data. More formally, we will now as-
sume that every node has the same regressor covariance,

, and the same noise variance, . Under these as-
sumptions, does not depend on , and can be written as

. Selecting ,

TABLE III
POSSIBLE COMBINATION RULES. IN ALL CASES, � � � IF � �� � , AND �

IS CHOSEN SUCH THAT � � � FOR ALL �

where satisfies and , we have from (52)
that

where is some positive semi-definite matrix that does not
depend on . Again, the above inequality follows from the fact
that is positive semi-definite. We conclude that the
algorithm that uses measurement exchange will have equal or
lower network MSD than the algorithm without measurement
exchange, under the above assumptions.

V. CHOICE OF WEIGHTING MATRICES

It is clear from the analysis of Section IV that the perfor-
mance of the diffusion LMS algorithms depends heavily on the
choice of the weighting matrices , and in Table II.
There are several ways by which the combination weights can
be selected. Some popular choices of weights from graph theory,
average consensus, and diffusion adaptive networks are shown
in Table III, where denotes the degree of node . Although
these rules are shown for the coefficients , they can also
be applied to the coefficients , provided , as in the
Metropolis, Laplacian or Maximum-degree rules.

One rule that has been employed previously is the relative-
degree rule [9], which gives more weight to nodes that are better
connected. However, if a node that is well connected has high
noise variance, this rule may not be a good one as shown in [24].
We can consider a new rule denoted “relative degree-variance,”
where every neighbor is weighted proportionally according to
its degree times its noise variance as shown in Table III. This rule
assumes that the noise variance is known, or can be estimated
from the data. As we shall see in Section VI-B, this rule has
improved performance when some of the nodes are very noisy.

In the above rules, the combination weights are largely
dictated by the sizes of the neighborhoods (or by the node de-
grees). When the neighborhoods vary with time, the degrees
will also vary. However, for all practical purposes, these com-
bination schemes are not adaptive in the sense that the schemes
do not learn which nodes are more or less reliable so that the
weights can be adjusted accordingly.

An adaptive combination rule along these lines can be mo-
tivated based on the analysis results of [19]. The combination
weights can be adjusted adaptively so that the network can re-
spond to node conditions and assign smaller weights to nodes
that are subject to higher noise levels. This strategy was used
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in [7], while a newer, more powerful adaptive strategy was pro-
posed in [24].

A. Weight Optimization

We now consider optimal choices for the weighting matrices
in the general diffusion LMS algorithm (28). Our objective in
this section is to find matrices and that minimize the
steady-state average network MSD, i.e.,

subject to (29)

To accomplish this, we will use expression (52), which is valid
for small step-sizes. Equation (52) is neither convex nor quasi-
convex in or in general. However, it is convex in when

and are fixed, since in this case is convex
for every . Still, we can attempt to minimize (52) in or
using a general nonlinear solver, and the following approxima-
tion:

(53)

where is some positive integer ( is usually suffi-
cient in simulations). This technique of minimizing (53) yields
very good results in practice as we shall see in Section VI.

The average MSD of (52) can be made convex in for
and fixed , and convex in for and fixed , if we

introduce the following three assumptions: for every
for every , and the weighting matrices satisfy

and . This can be shown by noticing that
under these assumptions, we have

and that is convex in for and
[22, p. 116]. Unfortunately, the restriction that the diffusion ma-
trices and be symmetric reduces the performance of the
diffusion LMS algorithms, and it is usually the case that opti-
mized symmetric matrices are outperformed by non-symmetric
matrices.

VI. SIMULATION RESULTS

In order to illustrate the adaptive network performance, we
present a simulation example in Figs. 4–6. Fig. 4 depicts the
network topology with nodes, together with the net-
work statistical profile showing how the signal and noise power
vary across the nodes. The regressors have size , are
zero-mean Gaussian, independent in time and space and have
covariance matrices . The background noise power is de-
noted by .

Fig. 5 shows the learning curves for different diffusion LMS
algorithms in terms of EMSE and MSD. The simulations use a
value of , and the results are averaged over 100 inde-
pendent experiments. For the diffusion algorithms, relative-de-
gree weights [9] are used for the diffusion matrix. For the adap-
tation matrix , we present two cases: one where the mea-
surements are not shared , and a second where the

Fig. 4. Network topology (top), noise variances � (bottom, left) and trace
of regressor covariances ���� � (bottom, right) for � � �� nodes.

Fig. 5. Transient network EMSE (top) and MSD (bottom) for LMS without
cooperation, CTA and ATC diffusion LMS, and global LMS.

measurements are shared. In the latter case, we use metropolis
weights [13] for the adaptation matrix, and denote it as .
This choice of relative-degree weights for the diffusion matrix
and metropolis weights for the adaptation matrix is based on
our previous work [9], though other choices are possible. We
observe that in the case where measurements are not shared

, the ATC version of the diffusion LMS algorithm out-
performs the CTA version. Note also that there is no penalty in
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Fig. 6. Steady-state performance of different diffusion LMS algorithms, com-
paring simulation versus theory, using expressions (48) and (49).

using ATC over CTA, since both require one exchange per it-
eration. Further improvement can be obtained if measurements
are shared between the nodes, at the expense of requiring twice
as many communications. In our simulations, we checked that
condition (37) was met, and that the step-sizes were such that
(51) is stable.

Fig. 6 shows the steady-state EMSE and MSD for a set of
diffusion LMS algorithms, and compares with the theoretical
results from expressions (44), (48), and (49). The steady-state
values are obtained by averaging over 100 experiments and over
40 time samples after convergence. It can be observed that the
simulation results match well the theoretical values.

If we compute the theoretical steady-state behavior, by using
the small step-size approximation of , given by (43), the dif-
ference is imperceptible for this value of the step-size. For a
step-size , this difference becomes more prominent, as
depicted in Fig. 7.

A. Hierarchical Cooperation

We now compare our proposed algorithms with two hierar-
chical LMS algorithms, namely our recently proposed multi-
level diffusion [29], and the consensus-based D-LMS algorithm
of [14]. In contrast to the diffusion algorithms proposed in this
work, where all nodes perform the same type of processing,
hierarchical algorithms introduce node hierarchy, and different

Fig. 7. Steady-state performance of different diffusion LMS algorithms, com-
paring simulation versus theory, using expressions (48) and (49), where � is
computed using (43) and (44).

Fig. 8. Network topology, where red squares denote leader nodes (left) and
bridge nodes (right).

nodes perform different types of operations. Hierarchical algo-
rithms may provide increased performance at the expense of
reduced robustness, and higher complexity required to estab-
lish and maintain the hierarchies. The multi-level diffusion al-
gorithm is based on the diffusion LMS algorithm (24) proposed
here (see [29] for details). The algorithm designates a subset of
the nodes, called leader nodes, which perform a special type of
processing. The nodes that are not leaders run a conventional
diffusion LMS algorithm such as (24). At the same time, leader
nodes form a second network, where a second diffusion LMS
algorithm such as (24) is ran. This results in increased speed
and performance as we shall see, at the expense of requiring
multi-hop communications.

In order to simulate and compare different hierarchical al-
gorithms, we clustered the network as described in [29], and
the result is shown in the left plot of Fig. 8, where the leaders
are denoted by red squares. In order to compare with the con-
sensus-based D-LMS algorithm of [14], we also clustered the
nodes as described in [14]. The resulting “bridge” nodes are
shown as red squares in the right plot of Fig. 8.

Fig. 9 shows the learning curves for different LMS algo-
rithms, including the (non-hierarchical) ATC and CTA diffusion
LMS algorithms with , multi-level diffusion LMS from
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Fig. 9. Transient network EMSE (top) and MSD (bottom) for different LMS
algorithms.

[29] and the consensus-based D-LMS from [14]. The step-size
for all cases is . Since the consensus-based D-LMS
algorithm [14] uses a step-size of value , we used
for this algorithm. The remaining parameters are
and , where denotes the number of bridge
nodes connected to node . For multi-level diffusion, we use
relative-degree weights for the diffusion step, and metropolis
weights for the adaptation step. We observe that among the hier-
archical algorithms, multi-level diffusion outperforms all other
solutions. The performance of the consensus-based D-LMS al-
gorithm of [14] is comparable to the performance of the CTA
diffusion LMS of [7] (or (27) with ). This does not contra-
dict the results of [14], where only MSE curves were provided,
and here we are showing EMSE and MSD curves. Nonetheless,
the proposed ATC version of diffusion LMS with out-
performs [14], although D-LMS may provide savings in com-
munications as discussed in [14].

B. Weight Optimization

We now show a simulation where the diffusion weights are
either optimized or adapted. The results obtained when nodes
have similar noise and regressor statistics across space are sim-
ilar to the results obtained by using an ad hoc choice for the
diffusion weights (using, for instance, relative-degree weights).
However, as noted in [24], weight adaptation provides a con-
siderable improvement in performance when the noise statistics
across the nodes are very different. In particular, we will con-
sider the case where all regressors across nodes have the same

Fig. 10. Noise variances � (left) and trace of regressor covariances
���� � (right) for � � �� nodes, where the noise variance of three nodes
is increased by a factor of 50.

Fig. 11. Transient network EMSE (top) and MSD (bottom) for different
LMS algorithms. All diffusion LMS algorithms use � � � (no measurement
sharing).

covariance matrix, but the noise variances of three nodes
are fifty times higher than the average of the remaining nodes.
The noise profile is shown in Fig. 10.

Fig. 11 shows the resulting learning curves for different al-
gorithms, including LMS without cooperation, ATC diffusion
LMS with , the adaptive weighting technique of [24],
ATC diffusion LMS with and optimized according to
(53), ATC diffusion LMS with and relative-degree-vari-
ance weights from Table III, and the global LMS solution. The
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optimized weights were computed using the MATLAB Opti-
mization Toolbox. We observe that the optimized solution pro-
vides the best performance, and is even better than the global
steepest descent solution (13). The relative-degree-variance rule
achieves a performance close to the optimal one, and the adap-
tive algorithm of [24] also achieves performance better than the
global solution (13). The reason is that both the relative-de-
gree-variance rule and the optimized weights assume knowl-
edge of the noise variances at each node , while the adaptive
algorithm of [24] learns this noise variance on the fly. In con-
trast, the global steepest descent solution (13) does not utilize
or attempt to estimate the noise variance.

VII. CONCLUSION

We presented a general form of diffusion LMS algorithms,
and formulated the Adapt-then-Combine and Combine-then-
Adapt versions of diffusion LMS, which allow information ex-
change. Steady-state mean and mean-square analysis was pre-
sented and matched well with simulation results. Convergence
of the algorithms was also analyzed. It is observed that the ATC
version of diffusion LMS outperforms the original diffusion
LMS from [7] and better performance can be obtained if mea-
surements are also shared. We also showed how to formulate
the weight optimization problem in such a way that it can be
approximately solved using a nonlinear solver, and discussed
restrictions required to formulate it as a convex problem. We
showed that the optimized weights outperform other solutions,
including the global steepest-descent solution, when some of the
nodes are extremely noisy.

APPENDIX I
PROOF OF LEMMA 1

Assume that is stable. A known result in matrix theory [30,
p. 554], [16] states that for every square matrix , and every

, there exists a submultiplicative matrix norm4 such
that , where is the spectral radius of .
Since is stable, , and we can choose such
that and . Then we have

Now, since both and have non-negative entries with
columns that add up to one, they are element-wise bounded by
unity. This implies that their Frobenius norms are bounded, and
by the equivalence of norms, so is any norm, and in particular

and . Thus, we have

so converges to the zero matrix for large . Therefore, is
stable.

4A submultiplicative matrix norm satisfies ���� � ��� � ���.

Conversely, assume is not stable. Then, for the choice
is not stable.

APPENDIX II
DERIVATION OF (44)

In view of (45), we can rewrite in (34) as

Assume now that the regressors are circular complex-valued
Gaussian zero-mean random vectors. Then, for any Hermitian
matrix it holds [16, p. 46]

where if the regressors are complex, and if the
regressors are real. Consider the matrix where

. Its block is given by

and we can write

where

...
. . .

...

Taking the vector operator of the above matrix , and using
property (40) obtain

(54)

where is given by (46). Equation (44) follows.
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