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Parameter Estimation with Multiple Sources and
Levels of Uncertainties

Ali H. Sayed, Senior Member, IEEE,and Shivkumar Chandrasekaran

Abstract—Least-squares designs are sensitive to errors in the
data, which can be due to several factors including the approx-
imation of complex models by simpler ones, the presence of un-
avoidable experimental errors when collecting data, or even due to
unknown or unmodeled effects. In this paper, we formulate a new
design criterion that treats multiple sources of uncertainties in the
data with possibly varied degrees of intensity. We show that the
solution has a regularized form, with one regularization param-
eter for each source of uncertainty. The parameters turn out to be
model dependent and can be determined optimally as the nonnega-
tive roots of certain coupled equations. Applications in array signal
processing and image processing are considered.

Index Terms—Cross validation, modeling errors, parameter es-
timation, regularization, robust estimation, total least squares.

I. INTRODUCTION

I N MANY applications in signal processing and communica-
tions, data are collected from several sources and are subject

to different levels of noise, distortion, or interference. A typical
example arises in the context of co-channel interference cance-
lation in array signal processing, as depicted in simplified form
in Fig. 1 for the case of two sources (or users) and four antenna
elements.

The figure shows two emitters transmitting signals from
different directions to an antenna array. The signals interfere
with each other at the antenna array, and it is desired to recover
them by annihilating co-channel interference (CCI) and by
suppressing noise. A difficulty that is encountered by most
techniques that are used for this purpose is that they require
good initial estimates of the channel gains (i.e., of the gains
from each source to the various antennas). These gains are often
estimated before signal recovery by a variety of methods (see,
e.g., [1] and [2]), and they are, therefore, subject to errors. Such
errors, or uncertainties, in the gain estimates can ultimately
influence the accuracy of signal recovery (see the discussion
in Section III).

Several robust design techniques have been developed in the
estimation and control literature in order to minimize the ef-
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Fig. 1. Spatial processing with multiple users and antennas.

fect of uncertainties in the data or model on the performance
of the overall design. Among the most widely used techniques
are those based on the total-least-squares method (TLS) [3],
the generalized cross-validation method (GCV) [4], [5], and the

method (see, e.g., [6] and the many references therein).
These methods perform deregularization in general (e.g., TLS
and ), and their formulations do not usually incorporate dif-
ferent sources of uncertainties. For example, in the aforemen-
tioned co-channel interference application, it might be the case
that the gains recovered for User 1 are less certain than the gains
recovered for User 2. It is therefore useful to study a design pro-
cedure that allows the user to incorporate into its formulation
information about the number of sources of uncertainties in a
model and about how large (or how damaging) each uncertainty
can be. Such issues, of course, arise in many other settings and
applications other than the CCI cancelation example of Fig. 1.

Given the above, the purpose of this paper is to study per-
turbed models that involvemultiplesources of uncertainties in
the data with possiblydifferent levels of intensity (or interfer-
ence). More specifically, we develop an estimation technique
for models with multiple sources and levels of bounded data un-
certainties. For reasons of brevity, we will refer to the resulting
method as a BDU estimation method.

The new estimation technique is derived by formulating and
solving a constrained game-type problem with multiple oppo-
nents of different strengths. Although the solution can be ob-
tained algebraically, we resort instead to geometric arguments
(such as orthogonality conditions and projections). These ar-
guments provide powerful insights into the nature of the solu-
tion (as explained in [7] for the single source case), and they
also establish important connections with classical least-squares
theory, where such geometric insights are prevalent.

1053–587X/00$10.00 © 2000 IEEE
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Fig. 2. Orthogonality principle:Ax̂ � b ? R(A).

II. L EAST-SQUARESMETHOD AND THE BDU FORMULATION

In this section, we review the least-squares criterion and for-
mulate the BDU problem of this paper.

A. The Least-Squares Criterion

Consider an matrix with .1 Let denote
a measurement vector that is related to an unknown-dimen-
sional vector via the linear model , for some ad-
ditive noise component. The least-squares criterion estimates

by solving

(1)

where the notation stands for the Euclidean norm of its
vector argument (it will also be used to denote the maximum
singular value of a matrix argument).

Due to , the vector does not, in general, lie in the column
span of , which is denoted by . The least-squares
problem then seeks the vector in that is closest to

in the Euclidean norm sense. The solution of (1) is obtained
by requiring the residual vector to be orthogonal to
the data matrix (see Fig. 2), i.e.,

(2)

or, equivalently, by solving the normal equations

(3)

We will see later in Section V that this useful geometric inter-
pretation of the least-squares solution extends to the BDU for-
mulation of this paper.

Now, least-squares methods are well known to be sensitive
to errors in the data. More specifically, a least-squares design
that is based on can perform poorly if the vector has been
actually generated by a perturbed version of, say

for some unknown . In this case, if we persist
in using the solution from (3), which is based solely on the
nominal data matrix , then the actual residual norm will be

. This norm satisfies, in view of the triangle
inequality of norms

LS residual additional term

(4)

The first term on the right-hand side is equal to the least-squares
residual norm that is associated with . The second term

1We use the capital letterN to denote the larger dimension ofA and the letter
n to denote the smaller dimension ofA.

is due to the perturbation in the data. Such perturbation errors
in the data are very common in practice, and they can be due to
several factors including the approximation of complex models
by simpler ones, the presence of unavoidable experimental er-
rors when collecting data, or even due to unknown or unmod-
eled effects. Regardless of their source, they can degrade the
performance of least-squares designs. Several examples to this
effect, and comparisons with alternative robust design methods,
are provided in [7] as well as later in this paper (see Section III).

B. The BDU Formulation

Motivated by the above discussion, we formulate below a new
optimization problem. Thus, let be a given matrix,
which we shall refer to as thenominal matrixor the nominal
data. Assume further that is partitioned column-wise into sev-
eral submatrices , say of them

With each , we associate an unknown perturbation matrix of
the same dimension , and denote the overall perturbation
matrix by

We assume that a bound is available on the size of each per-
turbation , viz., .

Let be a measurement vector that is generated by the model
. That is, is produced by a perturbed version

of the nominal matrix . The exact value of the perturbation
is not known. What is known are bounds on the how large the
individual submatrices of can be. We now pose the problem
of determining optimally by solving

(5)
This is a constrained game-type problem where the uncertainties

are treated as opponents with varied strengths (or sizes);
the designer tries to minimize the cost through the selection of,
whereas the opponents try to maximize the cost. In this way, the
solution will be such that it performs best in the worst-possible
scenario. The game problem is constrained since it imposes a
limit on how large (or how damaging) each opponent can be.
This further limits how “bad” the worst-possible scenario can
be and, in this way, overly conservative designs are avoided.

In applications, the submatrices can refer to different
components in a model or a system. For example, returning to
the co-channel interference application of Fig. 1, we shall see
later in Section III that the matrix will consist of two columns:
One column contains the gains for User 1, whereas the second
column contains the gains for User 2. Since the paths from the
two users will, in general, have different levels of uncertainties,
we will thus be reduced to a BDU formulation as in (5) with two
submatrices and two uncertainty levels .

The special case , i.e., the case of a single source of
uncertainty in the data

(6)
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was studied in detail in [7]–[10]. This case was independently
formulated and solved in [9] and [10] by using very different
(algebraic) solution techniques; one was based on LMI tech-
niques [9], whereas the other was based on SVD techniques
[10]. It turns out that for problem (6), the LMI technique is more
costly. In [7], the same problem was solved from a purely geo-
metric point of view by extending to the BDU context several of
the projection arguments that are widely used for least-squares
problems. We will adopt this geometric approach in this paper
in order to solve the more general problem (5).

For notational convenience in the remainder of the paper, we
will partition the vector accordingly with and write

col (7)

We will also assume that

rank and (8)

That is, we will assume that is a full-rank matrix and that
is a nonzero vector that does not belong to its column span (this
requires ). The analysis can be extended to cases where
assumptions (8) are violated but, for simplicity, we will focus in
this paper on (8) in order to highlight the main ideas.

C. Form and Properties of the Solution

Before discussing the solution of problem (5) and in order to
not to overburden the reader with the derivations, we choose to
summarize here the main conclusions of the coming sections for
ease of reference.

Thus, let denote a solution of (5). We will show thathas
the following properties.

1) The solution exists and is unique.
2) The solution is zero only if the uncertainties are

large enough. Otherwise, it is nonzero. This is established
in Lemma 1.

3) When the solution is nonzero, it has an interesting reg-
ularized form. For example, in a so-called regular case to
be studied later, the expression forwill be given by (see
Section V-A)

where is a diagonal matrix of the form

diag

and the are certain nonnegative scalar regularization
parameters. Such regularized solutions have been used
extensively in signal and image processing applications
(see, e.g., [11]–[14]) and in adaptive filtering (see, e.g.,
[15] and [16]).

4) A major issue in applications (see, e.g., the titles of
[12]–[14]) is always how to select the regularization
parameters. It turns out that the BDU solution leads to
an automatic selection of the parameters . More
explicitly, these parameters will be shown to be the
unique non-negative roots of certain coupled equations
that are fully determined from the given data
(see Section VI).

Fig. 3. Orthogonality condition for BDU estimation.

5) Recall from Fig. 2 that the least-squares solution satis-
fies the orthogonality condition (2), which states that the
residual vector has to be orthogonal to the given data.
Interestingly enough, the BDU solutionhas a similar
interpretation. More specifically, we shall show in Sec-
tion V that the residual vector has to be orthog-
onal not to but to arank-one modification of . That is

for some matrix that is rank one (and dependent on
). This is depicted in Fig. 3. Equivalently, the BDU solu-

tion can be regarded as performing an oblique projection
onto rather than an orthogonal projection.

Some of the above properties may not be straightforward to
establish as the reader will be able to verify from some of the
arguments in the appendices. Nevertheless, when all is said and
done, it is interesting to note that the final solution of the BDU
problem (5) turns out to share some desirable properties with
classical least-squares designs (such as uniqueness of solution,
regularization, orthogonality properties) in addition to new dis-
tinguishing features (such as robustness to errors, automatic reg-
ularization, oblique projection, and multiple levels of regular-
ization).

Before establishing the above properties, we will demonstrate
the application of the BDU solution to two problems in array
signal processing and image separation.

III. A PPLICATIONS IN ARRAY PROCESSING ANDIMAGE

SEPARATION

Our first example is the co-channel interference cancelation
problem of Fig. 1. The figure shows two emitters transmitting,
at time , the signals from different directions to an
antenna array; the signal transmitted by User 1 is denoted by

, and the signal transmitted by User 2 is denoted by.
The antenna array has four elements that are equally spaced.2

The signal received by the elements of the antenna array can be
expressed in vector form as

(9)

where denotes a 4 1 measurement noise vector, and where
and are 4 1 column vectors. Theth entry of is

2Although our discussion is general and applies to a higher number of sources
and antenna elements, we limit ourselves to an example with two sources and
four antenna elements in order to convey the main ideas without an overburden
of notation.
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the gain from User 1 to theth antenna. Likewise, theth entry
in is the gain from User 2 to theth antenna. As mentioned
before, these gains can be estimated by a variety of methods (see
[1] and [2]).

Once the are known (or estimated), the common
techniques in the literature proceed to recover the transmitted
signals by solving a least-squares problem of the
form

Assuming a full-rank data matrix , the unique
solution is given by

In situations where the data matrix may not be well conditioned,
a regularized least-squares problem can be solved, say

(10)

for some regularization parameter that is chosen by the
designer. The solution in this case is given by

Choosing is usually not a trivial task. One method that has
been proposed for the choice ofis the so-called generalized
cross-validation (GCV) method [4], [5]. It picks by mini-
mizing the following cost function:

Trace

[Note that the term in the numerator is the norm of the residual
vector with .]

Another popular technique that has been used in the litera-
ture in order to address uncertainties in the data matrixis the
total-least-squares (TLS) method [3]. This method first replaces
the given by another estimate and the given vector by an-
other vector that lies in the range space of. It then solves the
consistent linear system of equations in order to deter-
mine the estimates . In the so-called nondegenerate
case, this construction amounts to the following. We determine
the smallest singular value of the extended matrix , say

, and then use it as a “deregularization” parameter to find

(11)

In this method of solution, there is noa priori bound on how
much correction can be made to the matrixin order to obtain
the . For this reason, the solution can at times be overconser-
vative.

To apply the BDU formulation of this paper, we start with
bounds on the sizes of the uncertainties in (these

bounds can usually be estimated from the identification proce-
dure that led to and ), say and .
We then recover the by solving

which is a special case of (5). The solution, as mentioned in the
previous section, will be of the form

with two regularization parameters that are deter-
mined by solving two coupled equations of the form (see
Section VI)

where the functions are determined by the data
. Such equations can be solved by any

appropriate zero-finding technique (e.g., the command fsolve
of Matlab3 was used to generate our simulation results).

In our simulations, the transmitted signals were
chosen uniformly from the 4PAM distribution
so that the variance of each source was . The variance
of the noise vector was taken as , and the signal-to-noise
ratio of each source was defined as

SNR

The simulations were carried out for different values of the
SNR. At each SNR, 300 data points and 300 data points

were generated and transmitted through nominal chan-
nels with path gains

col

col

and with relative uncertainties 15% and 25%, respectively. That
is, and (by relative uncertainties, we
mean and ). We simulated two scenarios.
First, for each pair of transmitted symbols , the
perturbations wererandomlygenerated within the
permissible bounds. Second, the nominal paths were
perturbed maximally by 15% and 25%, respectively, for each
SNR (and then fixed at these values during the transmission of
the 300 symbol pairs ). The first scenario allows us
to observe the behavior of the different estimators on average,
whereas the second one allows us to observe their behavior
under a worst-case condition.

Estimates were determined by using the least-
squares method, regularized least-squares (with ), gen-
eralized cross-validation, and BDU.4 For each method, and at

3Matlab© is a trademark of the MathWorks, Inc. Matlab codes for the tech-
nique developed in this paper can be obtained from sayed@ee.ucla.edu.

4The TLS method did not perform well in this case, and its MSE curves are
not shown in Fig. 4.
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Fig. 4. MSE curves for both users 1 and 2 in a 4PAM modulation scenario with perturbation bounds� � 15%, � � 25%. The plots (a) correspond to
random perturbations within the permissible bounds. The plots (b) correspond to maximal perturbations (on the boundary). Each point in the plots wasobtained
by averaging over 300 transmissions.

each SNR, a relative mean-square error measure (in dB) was
computed as

Relative MSE

Fig. 4 compares the resulting MSE curves for both Users 1 and
2 as a function of the SNR, and for both cases of random pertur-
bations [plots (a)] and maximal perturbations that
lie on the boundary [plots (b)]. Recall that the uncertainty in the
paths for User 2 is significantly more than that in the paths for
User 1; the MSE curves for User 2 show how the BDU solution
is more robust in this case.

Figs. 5–7 show the results of a similar experiment in a dif-
ferent context. Now, the transmitted signals repre-
sent the pixels of two 256 256 images that are being trans-
mitted over the different paths. Here, the purpose is to iden-
tify and separate the superimposed images. In this example, the
nominal paths were chosen as

col

col

and the relative uncertainties were % and %.
Fig. 5 shows the original images (a clock and a chart), and
Figs. 6 and 7 show the received image at the left-most antenna
in addition to the recovered images by means of five different
methods (followed by 3 3 median filtering):

1) least-squares;

2) regularized least-squares (with );
3) TLS;
4) GCV;
5) BDU.

In this example, the chart image was transmitted through the
more erroneous channel.

Fig. 7 shows that the BDU solution recovers more fine details
of this image than the other methods. A special feature of the
chart image is that it exhibits many edges, and its pixels are
generally at extreme values (black and white). The purpose of
this image processing example is, of course, not to show that
the BDU method is always superior to other methods since the
other methods will perform reasonably well in many situations.
The purpose of the example is to show the superior robustness
of the BDU solution in situations that involve perturbed data.

IV. EQUIVALENT ESTIMATION PROBLEM

In the remaining sections of this paper, we return to problem
(5) and provide the full details for its solution. That is, we es-
tablish analytically all the properties that we mentioned before
(such as uniqueness of solution, orthogonality, and automatic
regularization). The arguments in these sections are mostly geo-
metric and rely on several useful and accessible concepts from
linear algebra and matrix theory such as projections, nullspaces,
and range spaces. Those interested in the final statement of the
solution can move directly to Theorem 2.

We start with the following result, which gives the exact con-
dition under which the solution of the BDU problem is the zero
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Fig. 5. Original 256� 256 clock and chart images.

vector. Loosely speaking, the result states that the solution is
zero if the uncertainties in the data are large enough. This makes
sense from a practical point of view; if the data is sufficiently
corrupted, then the safest, or most robust, estimate should be the
zero estimate. Observe further that the condition in the lemma
is both necessary and sufficient.

Lemma 1 (Zero Solution Vector):The BDU estimation
problem (5) has a unique solution at if and only if

for all (12)

Proof: One direction of the lemma is straightforward to
establish, whereas the proof of the other direction is more com-
plex. We provide the details in Appendix A.

It then follows that a nonzero solutionwill exist if and only
if (12) is violated at least for some, say

for some (13)

We will in fact show that the nonzero solution is also unique
in this case. In order to arrive at this uniqueness result, we first
need to solve the maximization step in (5). Thus, let denote
the solution of the maximum in (5), i.e.,

Then, the following result can be established (in terms of the
partitioning in (7)).

Lemma 2 (Maximum Residual):It holds that

(14)

Moreover, one choice for the worst-case perturbations that
achieve is (these perturbations are functions of)5

(15)

In addition, the following facts hold.

1) The resulting perturbed matrix

(16)

has full column rank for all , where denotes the
column vector

col (17)

2) For any perturbation matrix that achieves the
maximum residual norm , the residual vectors

and are collinear. They also point
in the same direction (i.e., one is a positive multiple of
the other).

Proof:: The argument requires that we first identify the
perturbations that achieve the worst-case residual. The details
are given in Appendix B.

The important fact to note is that we are now reduced to
studying the equivalent problem

(18)

where the are defined as in (7). Observe that (18) is adis-
tanceproblem, involving sums of distances rather than sums of
squared distances (as is prevalent in least-squares designs; see,
e.g., (10)). We can now establish the uniqueness of the nonzero
solution.

Lemma 3 (Uniqueness of Nonzero Solution):A unique
nonzero solution of (5) (or, equivalently, (18)) exists if, and
only if (13) holds.

Proof:: The equivalence between problems (5) and (18)
holds for all . Now, we verify that the cost function in
(18) is strictly convex in in view of the condition
[recall (8)]. Indeed, for any two distinct vectorsand , and for
any real number

5Here,a denotes the pseudo-inverse of the scalara. It is equal toa if a
is nonzero; otherwise, it is zero.



686 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 3, MARCH 2000

Fig. 6. Received image at the left-most antenna in addition to the clock images that are recovered by the LS, regularized LS, TLS, GCV, and BDU methods
followed by 3� 3 median filtering. The clock image is the one that is transmitted over the nominal channelA with relative uncertainty bound 15%. In this case,
the performances of the methods are comparable.

with equality only if and are parallel, as well as
and . This last condition violates the assumption of a
full-rank matrix with a nonzero that satisfies .
Therefore

which shows that is strictly convex so that it must have a
single global minimum.

When (13) holds, we already know that cannot be
the global minimum. Therefore, the unique global minimum is
necessarily nonzero. Conversely, when the unique solution is
nonzero, then in view of Lemma 1, (13) must hold.

V. GEOMETRY OF THEBDU PROBLEM

We therefore know that problem (5) always has a solution and
that this solution is unique. Let us now verify that the nonzero
BDU solution admits an interpretation in terms of an orthogo-
nality condition in much the same way as classical least-squares
solutions do.

To see this, we first note that we can rewrite the BDU estima-
tion problem (18) in the equivalent form

(19)

where, as we already know from (16), the perturbed matrix
attains the maximum residual norm. For compactness of

notation, we will further denote the worst-case perturbed matrix
used in (19) by

so that (19) becomes

(20)

This statement looks similar to a least-squares problem with two
important distinctions. First, the coefficient matrixof (1) is re-
placed by a perturbed version of it, i.e., ,
and second, the new coefficient matrix is dependent on
the unknown as well. Hence, what we have is a nonlinear
least-squares problem with a special form for the coefficient ma-
trix . If were a constant matrix and therefore not de-
pendent on , then we know from the geometry of least-squares
estimation that the residual vector must be orthogonal to[cf.
(2)]. In the BDU case (20), however, the coefficient matrix
is a nonlinear function of . Interestingly enough, it turns out
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Fig. 7. Received image at the left-most antenna in addition to the chart images that are recovered by the LS, regularized LS, TLS, GCV, and BDU methods
followed by 3� 3 median filtering. The chart image is the one that is transmitted over the nominal channelA with relative uncertainty bound 25%. In this case,
the BDU solution recovers more details.

that the solution can still be characterized by a similar orthog-
onality condition.

We establish this fact by distinguishing between two classes
of vectors .6. Recall that we are partitioning everyinto indi-
vidual components in accordance with the
partitioning of the coefficient matrix itself. A nonzero vector

, however, can still have one or more zero components. We
thus let denote the set of all vectorswith nonzero compo-
nents (we will refer to these vectors are regular vectors)

with all components

The unique nonzero solutionof (18) can either be in (i.e.,
has all its components nonzero) or in (i.e.,
has some zero components). We refer to the first case as a
regular solution and to the second case as a boundary solution.
We study the regular case first.

6This distinction is not necessary in the single source case(K = 1), as ex-
plained in [7] and [10]

A. A Unique Nonzero Regular Solution

The next result establishes that the unique solutionof (18)
belongs to if and only if an element of can be found that
satisfies the following orthogonality condition (see Fig. 8):

(21)

Since, from fact 2 in Lemma 2, the residual vector
is collinear with , we obtain the equivalent orthogonality
condition

or, equivalently

(22)

where is as defined in (17). That is, the residual vector
has to be orthogonal not to but to a rank-one perturbation

of that is equal to .
Compared with least-squares theory, we can interpret the re-

sult (22) as an oblique projection onto rather than an or-
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Fig. 8. Orthogonality condition for BDU estimation.

thogonal projection. We now establish the validity of the above
claims.

Theorem 1 (Orthogonality Condition):Assume (13) holds.
Then, an is the unique solution of (18) or, equivalently,
(20) for all if and only if the residual vector is orthog-
onal to the following rank-one modification of the data matrix

:

(23)

that is, if and only if either (21) or (22) hold.
Proof: See Appendix C.

It further follows in this case that the solution of the BDU
problem can be expressed in a regularized form. Thus, introduce
the auxiliary non-negative numbers

(24)

and define the diagonal matrix diag .
Then, we can rewrite (22) in the form

(25)

Expressions (24) and (25) define a system of equations in the un-
knowns . The mapping between the variablesand is
bijective. Given , we can evaluate the uniquely via (24),
and given the , we can evaluate uniquely via (25). Hence,
since the regular solution is nonzero and unique, when it ex-
ists, we conclude that the above-coupled nonlinear equations in
the have a unique non-negative solution .

The regularization parameters are determined by the
BDU solution rather than specified by the designer. In this sense,
we can say that the BDU problem (18) performs automatic reg-
ularization.

B. A Unique Nonzero Boundary Solution

If a vector satisfying the orthogonality condition (23)
does not exist, i.e., one with all its entries nonzero, then
the unique minimizer belongs to the set . That is,
we need to examine the possibility of a solutionwith one or
more zero entries . In this case, the search for the solution
can be obtained by considering smaller order problems.

We illustrate this point by considering the simple case of
, in which case, the cost that we wish to minimize in (18)

becomes

(26)

Recall that we are assuming that (13) holds. This means that
either , or , or both.

From Theorem 1, a minimizer with and
exists if and only if it satisfies

If such an does not exist, then we need to check for solutions of
the form or . We will refer to these as boundary
solutions. In the first case, with , the cost function
collapses to

(27)

A unique nonzero minimum of this cost exists if and only if
, in which case, it is given by the solution of

the orthogonality condition

(28)

We should stress that this orthogonality condition is a necessary
and sufficient condition for the existence of a nonzero minimizer
for the above cost . It is, however,only a necessary con-
dition for the corresponding to be the minimum of the
original cost . Indeed, if is the minimum of ,
then by differentiation of with respect to , we obtain
(28). On the other hand, if (28) holds, it would not follow in
general that is the minimizer of . This is because
the other boundary solution can still lead to a smaller
cost.

Likewise, in the second case with , the cost function
collapses to

A unique nonzero minimum of this cost exists if and only if
, in which case, it is given by the solution of

the orthogonality condition

Once the unique minimizers of and have been
determined, we pick that solution or that has
the smallest cost as the unique minimizer of the original
problem (26).
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In a similar manner, if were equal to three, then the de-
termination of the boundary solutions would require that we
first seek all minimizers of the form

for the collapsed
cost function. These are defined by appropriate orthogonality
conditions. Then, the desired global minimizer is the boundary
solution that has the smallest cost .

C. Statement of the Solution of the BDU Problem

We summarize here the solution of the BDU problem (5) for
ease of reference.

Theorem 2 (Solution of BDU Estimation):Consider a full
rank matrix with and a nonzero vector

that does not belong to the column span of. The solution of
the BDU estimation problem (5) is always unique. In particular,
we have the following.

I) The solution is zero if and only if each satisfies
.

II) The solution is nonzero if and only if at least onesat-
isfies . In this case, the solution can be a
regular solution or a boundary solution.
II.1) The unique solution is regular (i.e., with all its com-

ponents ) if and only if an exists (i.e.,
a regular vector exists) that satisfies (22). Alterna-
tively, this unique can be found by solving the non-
linear system of equations (24) and (25) inand
(see Section VI).

II.2) If a regular solution does not exist, then the unique
minimizer is a boundary solution (i.e., with some
equal to zero).

VI. DETERMINING THE REGULARIZATION PARAMETERS

In this section, we exhibit one method for determining the
regularization parameters in the regular case by using the
SVD of the nominal data (similar procedures hold in the nonreg-
ular case since the orthogonality conditions lead to similar non-
linear equations). To illustrate the main idea, we focus, without
loss of generality, on the case

Assume so that a nonzero solutionexists.
Assume further that the solution is regular: . It is then
given by the solution of the coupled equations

One way to determine the is as follows. Recall that
is and full rank with . Assume has columns
and has columns. We introduce the SVD of the full-rank
matrix

with , and partition , and
the vector accordingly with , say

with
. Then, is is , and they

are given by and , where the ( -dependent)
vector is defined by , with

It further follows that

where the ( -dependent) vector is defined by

In this way, we obtain the following expressions for and ,
where the unknowns have been eliminated.

These provide two nonlinear coupled equations in the non-neg-
ative parameters . All other quantities in the equations
are known. Such equations can be solved by appropriate zero-
finding techniques (e.g., the command fsolve of Matlab).

VII. CONCLUDING REMARKS

This paper developed a geometric framework for BDU esti-
mation in the presence of multiple sources of uncertainties with
possibly different levels of intensity. In particular, it was shown
that the solution requires a number of regularization parame-
ters that is equal to the number of error sources. It was also
shown that these parameters are determined automatically as
the non-negative roots of certain coupled nonlinear equations.
Two applications were considered in the context of image sepa-
ration and array signal processing. The results show that there is
merit to the new method, but there are also issues and extensions
that remain to be addressed. In particular, it would be useful to
study the statistical properties of the BDU estimator in terms of
bias and consistency. (The curves in Fig. 4, which show that the
MSE curve of BDU is on average lower than the other curves,
suggest that the BDU solution can have good statistical proper-
ties.) It would also be useful to study more general formulations
that allow for weightings in the data as well as exploit structure.
Some extensions in this direction appear in [17].

APPENDIX A
PROOF OFLEMMA 1

In order to prove Lemma 1, we first establish a preliminary
result. The result states that when (12) holds, i.e., when the un-
certainty set is large enough, then there exists a
perturbed matrix that is orthogonal to.
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Lemma 4: The uncertainty set contains a
perturbation such that is orthogonal to

, if and only if (12) holds.
Proof: Assume there exists a valid perturbation, say

, with and such that . Then,
for each , we also have and, consequently,

. This further means that

which implies that and, hence, (12) must
hold for each . Conversely, assume (12) holds, and choose

(29)

Then

This shows that is a valid perturbation for each. Now note
that

(30)

so that

(31)

where the matrix is the projector onto the orthog-
onal complement space of. This implies that ,
as desired.

In fact, we can further verify that the matrix in (31)
has full column rank. Indeed, assume otherwise. Then, there
should exist a nonzero vectorsuch that

If we denote by ( is also nonzero since is full column
rank), this means that we must have

which is only possible if is parallel to the vector, say
for some , since the matrix is the projector
onto the orthogonal complement space of. Hence, we must
have . This contradicts our assumption thatdoes not
lie in the column span of . Therefore, the matrix in
(31) has full column rank.

We also conclude from the proof of the above lemma that,
for some whenever , then we can find a
perturbation , as in (29), such that

It further holds that the resulting in (30) has full
column rank since otherwise, we would be able to conclude, as
above, that lies in the column span of , which in turn lies in
the column span of , thus leading again to a contradiction.

Proof of Lemma 1:Assume first that (12) holds, and let us
show that is the unique solution. Choose

We already know from the proof of Lemma 4 that is a valid
perturbation since and that . We
also know that has full column rank. Now, sinceis
orthogonal to , it follows that

for any nonzero vector. Therefore

Now, note that if we set equal to zero in the BDU cost function
(5), we obtain that the cost is equal to , regardless of .
Therefore, has to be the unique solution of (5).

The proof of the converse statement is more involved. Thus,
assume is the unique solution of (5), and let us establish
that (12) must hold. If is the unique solution, then for
every

That is, for every

(32)

Choose as a scaled multiple of , say , for
some positive scalar. Then, the above inequality implies that
for any such

(33)

where

We now claim that for the above inequality to hold, it must be
true that

(34)

Indeed, assume to the contrary that (34) does not hold, say

for some . Then, for all .
Choose such that . Then, it is
easy to verify that this would lead to

since



SAYED AND CHANDRASEKARAN: PARAMETER ESTIMATION WITH MULTIPLE SOURCES 691

where we replaced the first term inside the by its
maximum value and the second term by its smallest value.
The result contradicts (33) so that (34) must hold. The
maximum the expression between parenthesis can be is

, which is achievable if
we choose . This
is a valid perturbation since . Therefore,

, which leads to the desired
conclusion that .

We can now repeat the argument by choosingof the form
col to conclude that , and so

on, until all are proven to satisfy (12).

APPENDIX B
PROOF OFLEMMA 2

We first identify the perturbations that maximize the
residual norm in (5). Thus, in view of the triangle inequality of
norms, it holds that for any and for any

with equality if and only if the perturbations are such that
the vectors are collinear with the vector , i.e.,

(35)

for some scalars . Moreover, it holds that
with equality if and only if the perturbation is also

such that

(36)

Combining (36) with (35), we see that (36) will hold only if

This expression for is well defined since , in
view of our earlier assumption thatdoes not lie in the column
span of .

The above discussion shows that if for a vectorthere exists a
perturbation in the valid domain that satisfies,
for each

(37)

then

It is easy to verify that the following (rank-one) choice for
satisfies (37)

if
if

(38)

and is a valid perturbation (since ). Therefore,
the maximum residual in (14) is attainable. We remark that, in
general, there can exist many other 's that satisfy (37) for

any given (see, e.g., [7]). It is enough for our purposes, how-
ever, to identify one set of perturbations that achieves the
maximum residual, e.g., the above.

Let us now establish the two properties that are stated in
Lemma 2. To prove the full-rank property, assume to the con-
trary that is rank deficient for some. This means
that there exists a nonzero vectorsuch that

The vector is necessarily not orthogonal to since other-
wise, we would obtain , which contradicts our assump-
tion that itself has full column rank. Define the scalar nonzero
quantity . It then follows from the above
equality that

This means that should lie in the column span of, which
again contradicts our earlier assumption about.

Finally, it also follows from (35) that any that attains the
maximum residual in (14) leads to a residual vector

that is necessarily collinear with since

(39)

APPENDIX C
PROOF OFTHEOREM 1

Let be a regular vector that satisfies the orthogonality
condition (21) or (22) . Let us now show that
it has to be the unique global minimizer of the cost function in
(18). Indeed, pick any other vector(in or otherwise). Then,
we necessarily have

This is because we already know from Lemma 2 that for a given
is a matrix that maximizes over .

We now verify that because of the above orthogonality condi-
tion, it holds that

in order to conclude that

so that is a minimizer. To establish this fact, we perform the
following calculations:

where in the third step, we used the fact that
. We thus established that ifsatisfies the orthogonality

condition (22), then for any
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nonzero , and therefore, is a minimizer. However, since the
global minimum is unique, is the unique minimizer.

Conversely, suppose that is a nonzero minimizer of
the cost function in (18) [or of in (14)]. Then, the gradient
of at must be zero. (Note that the gradient of
is defined at all ; the function is not differentiable only at
points that have some equal to zero.) Using the relations

and

etc.

we obtain that

Therefore, leads to

which is equivalent to

as desired.
This completes the proof of Theorem 1.
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