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Parameter Estimation with Multiple Sources and
Levels of Uncertainties

Ali H. Sayed Senior Member, IEEEBNd Shivkumar Chandrasekaran

Abstract—t east-squares designs are sensitive to errors in the
data, which can be due to several factors including the approx-
imation of complex models by simpler ones, the presence of un-
avoidable experimental errors when collecting data, or even due to
unknown or unmodeled effects. In this paper, we formulate a new
design criterion that treats multiple sources of uncertainties in the
data with possibly varied degrees of intensity. We show that the
solution has a regularized form, with one regularization param-
eter for each source of uncertainty. The parameters turn out to be
model dependent and can be determined optimally as the nonnega-
tive roots of certain coupled equations. Applications in array signal
processing and image processing are considered.

Index Terms—Cross validation, modeling errors, parameter es-
timation, regularization, robust estimation, total least squares.

Fig. 1. Spatial processing with multiple users and antennas.
|. INTRODUCTION

I N MANY applications in signal processing and communicaf—ec

. of uncertainties in the data or model on the performance
tions, data are collected from several sources and are sub . : .
. . : i . . e overall design. Among the most widely used techniques
to different levels of noise, distortion, or interference. A typica
. ) . are those based on the total-least-squares method (TLS) [3],
example arises in the context of co-channel interference cange-

lation in array signal processing, as depicted in simplified forgjte generalized cross-validation method (GCV) [4], [5], and the

- method (see, e.g., [6] and the many references therein).
g‘le':r;génltéor the case of two sources (or users) and four antenPﬁése methods perform deregularization in general (e.g., TLS

and?..), and their formulations do not usually incorporate dif-

The figure shows two emitters transmitting signals frorPerent sources of uncertainties. For example, in the aforemen-

different directions to an antenna array. The signals interfere . Lo
) L . ioned co-channel interference application, it might be the case
with each other at the antenna array, and it is desired to recoyer, ; - .
that the gains recovered for User 1 are less certain than the gains

tsrfjemr:gsiﬁnnngni C;&??S?“?L;?t;ﬁ;igien t(e(:gc;) bamrjnc?s covered for User 2. It is therefore useful to study a design pro-
ppr 9 ) Y ) y cedure that allows the user to incorporate into its formulation
techniques that are used for this purpose is that they requirg . L
- : . ) Information about the number of sources of uncertainties in a
good initial estimates of the channel gains (i.e., of the gains 1 and about how large (or how damaging) each uncertainty
from each source to the various antennas). These gains are often : . )
estimated before sianal recovery by a variety of methods (Sggn be. Such issues, of course, arise in many other settings and
9 y by y applications other than the CCI cancelation example of Fig. 1.

e.g., [1] and [2]), and they are, therefore, subject to errors. Su iven the above, the purpose of this paper is to study per-

errors, or uncertainties, in the gain estimates can UItImfm:’r‘ll.}/rbed models that involveultiple sources of uncertainties in

::flgggggnﬂ:ﬁ) accuracy of signal recovery (see the d|scuss& & data with possiblgifferentlevels of intensity (or interfer-

Several robust design techniques have been developed in%ﬂge)' More_spemﬂgally, we develop an estimation technique
L . ) L or models with multiple sources and levels of bounded data un-
estimation and control literature in order to minimize the e{- - . ) i
certainties. For reasons of brevity, we will refer to the resulting
method as a BDU estimation method.
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is due to the perturbation in the data. Such perturbation errors
b in the data are very common in practice, and they can be due to
A% —b several factors including the approximation of complex models
by simpler ones, the presence of unavoidable experimental er-
rors when collecting data, or even due to unknown or unmod-

N > = R(A) eled effects. Regardless of their source, they can degrade the
b=As performance of least-squares designs. Several examples to this
Fig. 2. Orthogonality principlez — b L R(A). effect, and comparisons with alternative robust design methods,

are provided in [7] as well as later in this paper (see Section ).
IIl. LEAST-SQUARESMETHOD AND THE BDU FORMULATION 5 The BDU Formulation

In this section, we review the least-squares criterion and for-potivated by the above discussion, we formulate below a new
mulate the BDU problem of this paper. optimization problem. Thus, lett be a givenN x n matrix,
which we shall refer to as theominal matrixor the nominal
data. Assume further thatis partitioned column-wise into sev-

Consider anV x n matrix A with N > n.t Let b denote eral submatrice$A;}, sayK of them
a measurement vector that is related to an unknevdimen-
sional vectorz via the linear modeb = Ax + v, for some ad- A=[A Ay - Akl
ditive noise component. The least-squares criterion estimat
z by solving

A. The Least-Squares Criterion

With eachA,, we associate an unknown perturbation matrix of
the same dimensiofid;, and denote the overall perturbation

min || Az — b|| Q) matrix by

where the notation| - || stands for the Euclidean norm of its oA=[0A4 84z o 0di].

vector argument (it will also be used to denote the maximuwe assume that a boung is available on the size of each per-

singular value of a matrix argument). turbationd A;, viz., ||6 4;]] < ;.

Due tov, the vector does not, in general, lie in the column et be a measurement vector that is generated by the model
span of A, which is denoted byR(A). The least-squaresp = (A+§A)x+v. Thatispbis produced by a perturbed version
problem then seeks the vector= Az in R(A) thatis closestto of the nominal matrixd. The exact value of the perturbatiér
b in the Euclidean norm sense. The solution of (1) is obtaingsinot known. What is known are bounds on the how large the
by requiring the residual vectqdz — &) to be orthogonal to individual submatrices afA can be. We now pose the problem

the data matrix4 (see Fig. 2), i.e., of determiningr optimally by solving
AT(Az -b)=0 (2) min  max _|[[Ai+6A1 - Arx +6Ar]x—b.
x S5A:||<n;
. . . (ngil_lzj
or, equivalently, by solving the normal equations )
(AT A)g = AT, ©) This is a constrained game-type problem where the uncertainties

{6A;} are treated as opponents with varied strengths (or sizes);

We will see later in Section V that this useful geometric intethe designer tries to minimize the cost through the selection of
pretation of the least-squares solution extends to the BDU fayhereas the opponents try to maximize the cost. In this way, the
mulation of this paper. solutionz will be such that it performs best in the worst-possible

Now, least-squares methods are well known to be sensit§eenario. The game problem is constrained since it imposes a
to errors in the data. More specifically, a least-squares designit on how large (or how damaging) each opponent can be.
that is based ont can perform poorly if the vectdr has been This further limits how “bad” the worst-possible scenario can
actually generated by a perturbed versiomdpfsayb = (A + be and, in this way, overly conservative designs are avoided.
§A)r + v for some unknownsA. In this case, if we persist In applicati.ons, the submatricdsi;} can refer to differer_1t
in using the solutior: from (3), which is based solely on thecomponents in a model or a system. For exgmple, returning to
nominal data matrix4, then the actual residual norm will bethe co-channel interference application of Fig. 1, we shall see
(A + 6A)2 — b||. This norm satisfies, in view of the trianglelater in Section Il that the matrix will consist of two columns:

inequality of norms One column contains the gains for User 1, whereas the second
column contains the gains for User 2. Since the paths from the
I(A+064)z —b]| < [[AZ —b]| + |6 AZ]] (4) two users will, in general, have different levels of uncertainties,
S——- S——"

we will thus be reduced to a BDU formulation as in (5) with two
submatriced A;, A>} and two uncertainty level§y , 72 }.

The first term on the right-hand side is equal to the least-squareThe special cas& = 1, i.e., the case of a single source of
residual norm that is associated with, b, &). The second term uncertainty in the data

LS residual additional term

We use the capital letteY to denote the larger dimension.dfand the letter min  max ||(A; + 8A; )z — b (6)
n to denote the smaller dimension &f z ||5AL||<m
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was studied in detail in [7]-[10]. This case was independently
formulated and solved in [9] and [10] by using very different
(algebraic) solution techniques; one was based on LMI tech-
niques [9], whereas the other was based on SVD techniques
[10]. It turns out that for problem (6), the LMI technique is more
costly. In [7], the same problem was solved from a purely geo-
metric point of view by extending to the BDU context several of
the projection arguments that are widely used for least-squares
problems. We will adopt this geometric approach in this paper
in order to solve the more general problem (5).

For notational convenience in the remainder of the paper, we Fig. 3. Orthogonality condition for BDU estimation.
will partition the vectorz accordingly withA and write

— R(A)

R(A + 8A°)

5) Recall from Fig. 2 that the least-squares solution satis-

x =colzy,w2,..., 7K} (7) fies the orthogonality condition (2), which states that the
. residual vector has to be orthogonal to the given data.
We will also assume that Interestingly enough, the BDU solutioh has a similar
interpretation. More specifically, we shall show in Sec-
rankA) =n, b+£0, and bgR(A).  (8) P P 4

tion V that the residual vectdrdz — b) has to be orthog-

That is, we will assume that is a full-rank matrix and thak onal not toA but to arank-one modification ofl. That is

is a nonzero vector that does not belong to its column span (this [A+ 64 (Az —b) =0
requiresN > n). The analysis can be extended to cases where
assumptions (8) are violated but, for simplicity, we will focus in for some matrix5 A° that is rank one (and dependent on

this paper on (8) in order to highlight the main ideas. Z). This is depicted in Fig. 3. Equivalently, the BDU solu-
. _ tion can be regarded as performing an oblique projection
C. Form and Properties of the Solution onto A rather than an orthogonal projection.

Before discussing the solution of problem (5) and in order to Some of the above properties may not be straightforward to
not to overburden the reader with the derivations, we chooseegtablish as the reader will be able to verify from some of the
summarize here the main conclusions of the coming sections &guments in the appendices. Nevertheless, when all is said and

ease of reference. done, it is interesting to note that the final solution of the BDU
Thus, letz: denote a solution of (5). We will show thathas problem (5) turns out to share some desirable properties with

the following properties. classical least-squares designs (such as unigueness of solution,
1) The solution: exists and is unique. regularization, orthogonality properties) in addition to new dis-

2) The solution is zero only if the uncertaintie§y; } are tinggishing feat.ures (suph as robustness.to errors, automatic reg-
large enough. Otherwise, it is nonzero. This is establish&lfrization, oblique projection, and multiple levels of regular-
in Lemma 1. ization).

3) When the solutiott is nonzero, it has an interesting reg- Before_z es_tablishing the above properties, we will demonstrate
ularized form. For example, in a so-called regular case 3¢ application of the BDU solution to two problems in array
be studied later, the expression fowill be given by (see signal processing and image separation.

Section V-A)

I1l. A PPLICATIONS IN ARRAY PROCESSING ANDIMAGE
T = (ATA + Da)—lATb

SEPARATION
whereD,, is a diagonal matrix of the form Our first example is the co-channel interference cancelation
D., = diag{éul, Gol axl} problem of Fig. 1. The figure shows two emitters transmitting,
@ T ’ 3t 44

at time, the signals{xy ;, 2 ; } from different directions to an

and the{&; } are certain nonnegative scalar regularizatioAntenna array; the signal transmitted by User 1 is denoted by
parameters. Such regularized solutions have been uged. and the signal transmitted by User 2 is denotedcby.

extensively in signal and image processing applicatiod$'e antenna array has four elements that are equally spaced.
(see, e.g., [11]-[14]) and in adaptive filtering (see, e_g'[he signal received by the elements of the antenna array can be

[15] and [16]). expressed in vector form as

4) A major issue in applications (see, e.g., the titles of
[12]-[14]) is always how to select the regularization

parameters. |t turns out that the BDU solution leads {gherey; denotes a 4« 1 measurement noise vector, and where
an a_uFomacheIectlon of the paramete@i}. More 4, and A, are 4x 1 column vectors. Thgth entry of A; is
explicitly, these parameters will be shown to be the _ o _ .

unique non-negative roots of certain coupled equationszAlthough our discussion |_sg_eneral and appllestoahlgher_numberofsources
hat fullv determined from the given datd. b. n- and antenna elements, we limit ourselves to an example with two sources and
that are fully ! given datal, b, 7} four antenna elements i order to convey the main ideas without an overburden
(see Section VI). of notation.

by = A1z1; + Asxa i + i ©)
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the gain from User 1 to th@h antenna. Likewise, thith entry  bounds can usually be estimated from the identification proce-
in A, is the gain from User 2 to thgth antenna. As mentioned dure that led tod; and A,), say||6A;|| < n and||6Az]| < 7.
before, these gains can be estimated by a variety of methods (8&ethen recover théz; ;,x2 ;} by solving
[1] and [2]).

Once the{A;, Ao} are known (or estimated), the common . nax H[A1+5A1 Ap+645] [xu} _b,
techniques in the literature proceed to recover the transmitteg.:-#z.: (||6A1||§m)
signals{z, ;,x2,;} by solving a least-squares problem of the 642 ll<
form

2,0

which is a special case of (5). The solution, as mentioned in the
. previous section, will be of the form

min
T1,i,02,4

[A1 As] F“} —b;

24

i) _ ([AT ) 40 4 a1 AT,
Assuming a full-rank data matrid = [A; A], the unique | z,, | = \ | a7 [A1 Az]+ & AL | b
solution is given by ’
. with two regularization parameter&y;, ¢z} that are deter-
1] _ ([A] (A1 As] AT b mined by solving two coupled equations of the form (see
g | \ | AF ]V T AT Section VI)

T2

2

In situatiqns where the data matrix may not be well conditioned, ar = filar,a), az = falar,as)

a regularized least-squares problem can be solved, say

) where the functions{f, fo} are determined by the data

] (10) {A1,A2,b;,m,m2}. Such equations can be solved by any
appropriate zero-finding technique (e.g., the command fsolve

o ) of Matlal® was used to generate our simulation results).
for some regularization parametgr> 0 that is chosen by the |, gur simulations, the transmitted signdls, ;, z2,;} were

min l’y(|x17i|2 + |x27i|2) + HA [wl’i} — b

T1,i,%2,4 2.4

designer. The solution in this case is given by chosen uniformly from the 4PAM distributiofi—3, —1,1, 3}

. T 1 .7 so that the variance of each source wgs= 5. The variance
[af“} = <[A1T} [A4; As] —|—fy_[2> [AlT} b;. of the noise vectows; was taken as21,, and the signal-to-noise

T2 A3 A3 ratio of each source was defined as

Choosingy is usually not a trivial task. One method that has o2

been proposed for the choice ofis the so-called generalized SNR= 10108‘(—;) .

cross-validation (GCV) method [4], [5]. It picks by mini- v

mizing the following cost function: The simulations were carried out for different values of the

SNR. At each SNR, 300 data poirits; ; } and 300 data points

T —1 AT\ |2
in (T — A(AT A+ ~I1)" 1 AD)b|| _ {z2,;} were generated and transmitted through nominal chan-
T T —1 AT2 ’ . .
7 Tracgly — A(ATA +~l)~1AT] nels with path gains

[Note that the term in the numerator is the norm of the residual .
vectorh; = b; — b; with b; = A(AT A 4 L)t ATb, ] Ay = col{1,-0.5,0.2,0.1}

Another popular technique that has been used in the litera- Ap = col{—-0.32,0.76,0.08, 0.024}
ture in order to address uncertainties in the data matis the ) ) o )
total-least-squares (TLS) method [3]. This method first replac_@gd with relative uncertainties 15% and _25%, respgcﬂ_vely. That
the givenA by another estimatd and the given vectdr; by an- 1S 1 = 0.1710 andr2 = 0.2072 (by r_elatlve uncertainties, we
other vectob; that lies in the range space f It then solves the Mean7u/|[A1]| and /[ Az[]). We simulated two scenarios.
consistent linear system of equatiofs; = b; in order to deter- First, for each pair of transmitted symbofs: i, 22}, the
mine the estimate§i, ;, }. In the so-called nondegeneratderturbations 64, 64} wererandomlygenerated within the
case, this construction amounts to the following. We determiR§Missible bounds. Second, the nominal pdths, A} were
the smallest singular value of the extended matrixb;], say perturbed maximally by 15% and 25%, respectively, for each

owims and then use it as a “deregularization” parameter to fingf\R (and then fixed at these values during the transmission of
{2, ’ ! the 300 symbol pair$z+ ;,z2;}). The first scenario allows us

to observe the behavior of the different estimators on average,
e AT “lrgr whereas the second one allows us to observe their behavior
Tl (Fh ][4 A I Llb (11 iti
=\ |4z [A 2] = ominlz AT i (11)  under a worst-case condition.
Estimates{z: ;, Z. ;} were determined by using the least-
In this method of solution, there is reopriori bound on how squares method, regularized least-squares Gnith0.02), gen-
much correction can be made to the mattiin order to obtain eralized cross-validation, and BDUFor each method, and at

the A. For this reason, the solution can at times be overconser- _
vative SMatlab®© is a trademark of the MathWorks, Inc. Matlab codes for the tech-
: . . . nique developed in this paper can be obtained from sayed@ee.ucla.edu.
To apply the BDU formulation of this paper, we start with srpe 115 method did not perform well in this case, and its MSE curves are

bounds on the sizes of the uncertainties{i;, A,} (these not shown in Fig. 4.

L2,
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User 1 (a) User 1 (b)
: 8
N | == Least-squares
.| - Regularized LS
g & 4 > GOV
= z & BDU
w & »
2 s
2 o Of
2 ]
= ®
3 3}
o o

Relative MSE (dB)
Relative MSE (dB)

Fig. 4. MSE curves for both users 1 and 2 in a 4PAM modulation scenario with perturbation bpumelsl5%, . =~ 25%. The plots (a) correspond to
random perturbations within the permissible bounds. The plots (b) correspond to maximal perturbations (on the boundary). Each point in thebpéoted/ias
by averaging over 300 transmissions.

each SNR, a relative mean-square error measure (in dB) wa) regularized least-squares (with= 0.02);

computed as 3) TLS;
4) GCV;
1 300 a2
Relative MSE= 10log | 22 Limi i = #1alT) 5) BDU.
o3 In this example, the chart image was transmitted through the

) . more erroneous channel.
Fig. 4 compares the resulting MSE curves for both Users 1 angxjg 7 shows that the BDU solution recovers more fine details

2 as afunction of the SNR, and for bOth cases of fa“‘?'om Pertyf-ihis image than the other methods. A special feature of the
bations{6A;,6 A} [plots (a)] and maximal perturbations thal.hart image is that it exhibits many edges, and its pixels are
lie on the boundary [plots (b)]. Recall that the uncertainty in tr@enerally at extreme values (black and white). The purpose of
paths for User 2 is significantly more than that in the paths_f%is image processing example is, of course, not to show that
User 1; the MSE curves for User 2 show how the BDU solutiqye gpy method is always superior to other methods since the
IS more robust in this case. . ) ) -other methods will perform reasonably well in many situations.
Figs. 5-7 show the results of a similar experiment in a difrne hymose of the example is to show the superior robustness

ferent context. Now, the transmitted signdls, ;. z2,;} répre- ot yhe BDU solution in situations that involve perturbed data.
sent the pixels of two 256 256 images that are being trans-

mitted over the different paths. Here, the purpose is to iden-

tify and separate the superimposed images. In this example, the V. EQUIVALENT ESTIMATION PROBLEM

nominal paths were chosen as In the remaining sections of this paper, we return to problem
(5) and provide the full details for its solution. That is, we es-

Ay =col{1,0.5,0.1} tablish analytically all the properties that we mentioned before

Ap = c0l{0.4,0.9,0.2} (such as uniqueness of solution, orthogonality, and automatic

regularization). The arguments in these sections are mostly geo-
and the relative uncertainties weye = 15% andn, = 25%. metric and rely on several useful and accessible concepts from
Fig. 5 shows the original images (a clock and a chart), afflear algebra and matrix theory such as projections, nullspaces,
Figs. 6 and 7 show the received image at the left-most anten}@l range spaces. Those interested in the final statement of the
in addition to the recovered images by means of five differegplution can move directly to Theorem 2.
methods (followed by ¥ 3 median filtering): We start with the following result, which gives the exact con-
1) least-squares; dition under which the solution of the BDU problem is the zero
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Then, the following result can be established (in terms of the
partitioning in (7)).
Lemma 2 (Maximum Residual)t holds that

J(@) = [ Ax = bl + mllzall + - - +oxllexll. (14)
Moreover, one choice for the worst-case perturbations that

achieveJ(x) is (these perturbations are functionsw¥

or oy & nillzllt NLT
A (x) = Tz — 0] (Az — b)z; . (15)

In addition, the following facts hold.
T 1) The resulting perturbed matrix

A (Az — b) ¢*'(z)
A+ 0A(z) = A+ ———7 (16)
) e — o]
has full column rank for all;, whereg(x) denotes the
I column vector

A
q(z) = colf{my|lz1|[fzy, mollzal2a, ... nxllex|fzx}. (17)

=
" = 2) For any perturbation matrix’A that achieves the
" I e NS 3 maximum residual normJ(z), t_he residual vectors
T [ = (A+6A)z —band Az — b are collinear. They also point
I" S I|I\E|§ in the same direction (i.e., one is a positive multiple of
= the other).
' Proof:: The argument requires that we first identify the
B E |" l I I pertu_rbati(_)ns that aphieve the worst-case residual. The details
are given in Appendix B. |
Fig. 5. Original 256x 256 clock and chart images. The important fact to note is that we are now reduced to
studying the equivalent problem

2
o
4
=

vector. Loosely speaking, the result states that the solution is min (|| Az — bl| + mu||z1]| + - - + x|z x]) (18)

zero if the uncertainties in the data are large enough. This makes *

sense from a practical point of view; if the data is sufficientlwhere the{z;} are defined as in (7). Observe that (18) dis
corrupted, then the safest, or most robust, estimate should bettirceproblem, involving sums of distances rather than sums of
zero estimate. Observe further that the condition in the lemrsquared distances (as is prevalent in least-squares designs; see,

is both necessary and sufficient. e.g., (10)). We can now establish the uniqueness of the nonzero
Lemma 1 (Zero Solution Vector)The BDU estimation solution.
problem (5) has a unigue solutioniat= 0 if and only if Lemma 3 (Uniqueness of Nonzero SolutioA): unique

H . H nonzero solutiori: of (5) (or, equivalently, (18)) exists if, and
A7 . only if (13) holds.
> 1 <i< K. .
= (10| foralll i< K (12) Proof:: The equivalence between problems (5) and (18)
o _ _ holds for allz. Now, we verify that the cost functiod(z) in
Proof: One direction of the lemma is straightforward tq18) is strictly convex inz in view of the conditionh ¢ R(A)
establish, whereas the proof of the other direction is more coffecall (8)]. Indeed, for any two distinct vectarsandz, and for

plex. We provide the details in Appendix A. O any real numbep < v < 1
It then follows that a nonzero solutidnwill exist if and only
if (12) is violated at least for somg say Sz + (1= 7v)z] = [|[Alyz + (1 = 7)2] - b
AL + il v + (1 — )z
i, < % for somei,,. (13) ;77 I (1 =)l
K

We will in fact show that the nonzero solution is also unique <7 <||Aﬂj — bl + Zmll%ll)

in this case. In order to arrive at this uniqueness result, we first =1 .

need to solve the maximization step in (5). Thus/let) denote =

the solution of the maximum in (5), i.e., + 1= | 1Az bl + Zmll%ll

i=1

(10>

max  |[(A+ Az — bl SHere,a’ denotes the pseudo-inverse of the scaldt is equal toa " if @
(I16A: ]| <m: } is nonzero; otherwise, it is zero.

J(2)
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Received image Least-squares

Regularized LS TLS
: 1 7

GCV BDU

Fig. 6. Received image at the left-most antenna in addition to the clock images that are recovered by the LS, regularized LS, TLS, GCV, and BDU methods
followed by 3x 3 median filtering. The clock image is the one that is transmitted over the nominal chénméth relative uncertainty bound 15%. In this case,
the performances of the methods are comparable.

with equality only ifz; andz; are parallel, as well asdz — &) where, as we already know from (16), the perturbed méttix
and(Az — b). This last condition violates the assumption of & 4°) attains the maximum residual norm. For compactness of
full-rank matrix A with a nonzerd that satisfiess ¢ R(A). notation, we will further denote the worst-case perturbed matrix

Therefore used in (19) byA(x)
Jyz + (1 —y)2] <yJ(z) + (1 = 7)J(2) o BT
which shows that/(z) is strictly convex so that it must have a A(x) 2 A+6A°(x) = A+ w
single global minimum.
When (13) holds, we already know that= 0 cannot be so that (19) becomes
the global minimum. Therefore, the unique global minimum is
necessarily nonzero. Conversely, when the unique solution is min | A(z)z — 0. (20)

nonzero, then in view of Lemma 1, (13) must hold. O

This statement looks similar to a least-squares problem with two
important distinctions. First, the coefficient matrbof (1) is re-

We therefore know that problem (5) always has a solution apticed by a perturbed version of it, i.el{x) = A + 6A°(z),
that this solution is unique. Let us now verify that the nonzer@nd second, the new coefficient matriX«) is dependent on
BDU solution admits an interpretation in terms of an orthogdhe unknownz as well. Hence, what we have is a nonlinear
nality condition in much the same way as classical least-squal@ast-squares problem with a special form for the coefficient ma-

V. GEOMETRY OF THEBDU PROBLEM

solutions do. trix A(zx). If A(z) were a constant matrix and therefore not de-
To see this, we first note that we can rewrite the BDU estim@endent orx, then we know from the geometry of least-squares
tion problem (18) in the equivalent form estimation that the residual vector must be orthogonal fof.

_ ) (2)]. Inthe BDU case (20), however, the coefficient mattix:)
min [[[A + §A%(z)]x — 0| (19) is a nonlinear function of. Interestingly enough, it turns out
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Received image Least-squares

i o

Fig. 7. Received image at the left-most antenna in addition to the chart images that are recovered by the LS, regularized LS, TLS, GCV, and BDU methods
followed by 3x 3 median filtering. The chart image is the one that is transmitted over the nominal cbannéth relative uncertainty bound 25%. In this case,
the BDU solution recovers more details.

that the solutiort: can still be characterized by a similar orthogA. A Unique Nonzero Regular Solution

onality condition. o The next result establishes that the unique solutiof (18)

We establish this fact by distinguishing between two classgg|ongs tat if and only if an element of X' can be found that
of vectorsz.5. Recall that we are partitioning everyinto indi-  gatisfies the following orthogonality condition (see Fig. 8):
vidual componentgz;.¢ = 1,..., K} in accordance with the

partitioning of the coefficient matrid itself. A nonzero vector AT(QA;)[A(QA;)QA; — b =0. (21)

x, however, can still have one or more zero compongntsVe

thus letX denote the set of all vectorswith nonzero compo- Since, from fact 2 in Lemma 2, the residual vectit)z — b
nents{z;} (we will refer to these vectors are regular vectors) is collinear withAz — b, we obtain the equivalent orthogonality

condition
B Lo z; £ 0, AT (@)[Az -b] =0
X = {a: € R™ with all components<1 <i< K)} .
or, equivalently
The unique nonzero solutiohof (18) can either be itt’ (i.e., A (Az — b)g*(2) r Ai—bl=0 29
has all its components; nonzero) or inkR™ — X — {0} (i.e., + ||Az — b|| (4% —b] = (22)

has some zero componerity. We refer to the first case as a _ o _ _
regular solution and to the second case as a boundary solutisiereg(2) is as definedin (17). Thatis, the residual vectdr—

We study the regular case first. b has to pe orthogonal not td but to a rank-one perturbation
of A that is equal tod + §A°(&).
6This distinction is not necessary in the single source ¢aSe= 1), as ex- Compared with least-squares theory, we can interpret the re-

plained in [7] and [10] sult (22) as an oblique projection ontd rather than an or-
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We illustrate this point by considering the simple cas&cf
2, in which case, the cost(x) that we wish to minimize in (18)
becomes

- R(A) J(z) = H[Al Az ] |:i;:| H + x| + nel|z2l- (26)

[A+684°(2))2 Recall that we are assuming that (13) holds. This means that

eithern; < ||AT||/1b||, ornz < ||AZ0]/||6]|, or both.
R(A + 64°(2)) From Theorem_l_, a min_imizefr with ; # 0andi # 0
exists if and only if it satisfies

R T
xr1 ma] il
<[A1 Ao] LJ —b> e T

Fig. 8. Orthogonality condition for BDU estimation.

thogonal projection. We now establish the validity of the above |[A1  As] +

claims. H[Al As] [{71} - bH
Theorem 1 (Orthogonality Condition)Assume (13) holds. . *2

Then, anz e_X is the unique so_lution of (18) or, eguivalently, . <[A1 Ay ] {xl} _ b) -0

(20) for allz if and only if the residual vectafZ — b is orthog- T2

onal to the following rank-one modification of the data matri>ff such anz does not exist, then we need to check for solutions of

A: the form{0, 22} or {#1,0}. We will refer to these as boundary
(A% — b)qT (&) solutions. In the first case, with; = 0, the cost function/(z)
AlZ)y=A+ A0 (23) collapses to

that i, if and only if either (21) or (22) hold. Ni@) = [ Az2 = bl + melz]l 27)

Proof: See Appendix C. U A unique nonzero minimum of this cost exists if and only if

It further follows in this case that the solution of the BDU,, < || AZ#||/||5||, in which case, it is given by the solution of
problem can be expressed in a regularized form. Thus, introdyge orthogonality condition

the auxiliary non-negative numbers

T
Agiy — b) 1222
M (Asiz —b) = 0.  (28)

Aoy + —
2T [ Az — b

LA N N
& = )| Az — blll|2:]|" (24)

We should stress that this orthogonality condition is a necessary
and sufficient condition for the existence of a nonzero minimizer
for the above cosf; (z). It is, howeveronly a necessary con-
dition for the corresponding0, -} to be the minimum of the

T Y original cost/(x). Indeed, if{0, Z»} is the minimum ofJ(z),
(ATA+ Do) = ATD. (25) then by differentiation of/(x) with respect tar,, we obtain
&%@). On the other hand, if (28) holds, it would not follow in
general thaf0, &, } is the minimizer ofJ(z). This is because
the other boundary solutiofi;,0} can still lead to a smaller
cost.

Likewise, in the second case wiily = 0, the cost function

and define the diagonal matri,, 2 diag{én !, ..., axl}.
Then, we can rewrite (22) in the form

Expressions (24) and (25) define a system of equations in the
knowns{z, &; }. The mapping between the variableandd; is
bijective. Givenz, we can evaluate th§y; } uniquely via (24),
and given thg &; }, we can evaluaté uniquely via (25). Hence,
since the regular solutiaf is nonzero and unique, when it ex-
ists, we conclude that the above-coupled nonlinear equationé]iq‘i”) collapses to
the {&; } have a unique non-negative solutid; }. Jo(z) = || Avas — b + m|lza]]-

The regularization parametefsy;} are determined by the
BDU solution rather than specified by the designer. In this senggeunique nonzero minimum of this cost exists if and only if
we can say that the BDU problem (18) performs automatic regr < || AZb||/||b]|, in which case, it is given by the solution of

ularization. the orthogonality condition
B. A Unigue Nonzero Boundary Solution (A1 — b)”l,.’;"lT
L . - A+ Wl 8 — ) = 0.
If a vectord € & satisfying the orthogonality condition (23) |A1Z1 — bl

does not exist, i.e., one with all its entri€s$;} nonzero, then

the unigue minimizer belongs to the §&t — X — {0}. Thatis, Once the unique minimizers aof;(z) and .J»(x) have been
we need to examine the possibility of a solutibmvith one or determined, we pick that solutiofD, z»} or {z;,0} that has
more zero entrie$z; }. In this case, the search for the solutionhe smallest cosf(x) as the unique minimizer of the original
can be obtained by considering smaller order problems. problem (26).
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In a similar manner, i’ were equal to three, then the dewith /(N x N),V(n x n), ¥(n x n), and partitionV, %, and
termination of the boundary solutions would require that wibe vectorl/7 b accordingly withA, say
first seek all minimizers of the form0, 25,23}, {%#1,0, Z3}, v 5 b
{&1, 49,0}, {0,0,23}, {0,22,0}, {#1,0,0} for the collapsed V= [Vl} Ry [ ! 5 } . UTh= [bl}
cost function. These are defined by appropriate orthogonality 2 2 2
conditions. Then, the desired global minimizer is the boundagjth Vi(ny xn), Va(naxn), £1(n1 xn1), Lo(na X ng), by(nx

solution that has the smallest coXtr). 1),bo(N —n x 1). Then,é1 isn; x 1,25 iSny x 1, and they
_ are given by, = Vicandz, = Vic, where the ¢;-dependent)
C. Statement of the Solution of the BDU Problem vectore is defined bye = M b, , with

We summarize here the solution of the BDU problem (5) for ) 1

ease of reference. M= <z2 +v7T [O‘l]m . } V) ]

Theorem 2 (Solution of BDU Estimation}Consider a full Azl

rank matrixA € IRYX™ with N > n and a nonzero vector |t further follows that

b that does not belong to the column spamdofThe solution of

the BDU estimation problem (5) is always unique. In particular, |AZ — bl = V/||b2]|* + || Zd]|?
we have the following.

I) The solutionis zergz = 0) if and only if eachy; satisfies
mi = || AT ll/][b]]-

II) The solution is nonzero if and only if at least ongsat-
isfiesn; < ||AT8||/]b||. In this case, the solution can be
regular solution or a boundary solution.

11.1) The unique solutiot is regular (i.e., with all its com-

where the {;-dependent) vectat is defined by

al-[nl

d=MVT [ } Vi,

a?-[nz

%n this way, we obtain the following expressions for andds,
where the unknown§z; , 22} have been eliminated.

ponentsz; # 0) if and only if angz E X exists (i.e., Gy = (771 ||b2||2 + ||Ed||2) ||V16||T

a regular vectof: exists) that satisfies (22). Alterna-

tively, this uniquez can be found by solving the non- dg = (772\/ 121> + ||Ed||2) [[Vac||F.

linear system of equations (24) and (25)imnd&;

(see Section VI). These provide two nonlinear coupled equations in the non-neg-

11.2) If a regular solution does not exist, then the uniqueative parameter§a, & ;. All other quantities in the equations
minimizer is a boundary solution (i.e., with sorg are known. Such equations can be solved by appropriate zero-
equal to zero). O finding techniques (e.g., the command fsolve of Matlab).

VI. DETERMINING THE REGULARIZATION PARAMETERS VII. CONCLUDING REMARKS

In this section, we exhibit one method for determining the This paper developed a geometric framework for BDU esti-
regularization parametefst; } in the regular case by using themation in the presence of multiple sources of uncertainties with
SVD of the nominal data (similar procedures hold in the nonregessibly different levels of intensity. In particular, it was shown
ular case since the orthogonality conditions lead to similar notirat the solution requires a number of regularization parame-
linear equations). To illustrate the main idea, we focus, withoters that is equal to the number of error sources. It was also

loss of generality, on the cagé = 2 shown that these parameters are determined automatically as
the non-negative roots of certain coupled nonlinear equations.
min ||6I£E|T§m I[AL +6A1 Ay +6Az]z — 1. Two applications were considered in the context of image sepa-
(||5:42 lI<ne ration and array signal processing. The results show that there is

merit to the new method, but there are also issues and extensions
Assumen; < ||ATb||/||b|| so that a nonzero solutioh exists. that remain to be addressed. In particular, it would be useful to
Assume further that the solution is regular:e X. It is then study the statistical properties of the BDU estimator in terms of

given by the solution of the coupled equations bias and consistency. (The curves in Fig. 4, which show that the
MSE curve of BDU is on average lower than the other curves,
<ATA n [&11 A D 5 ATy suggest that the BDU solution can have good statistical proper-
aol ties.) It would also be useful to study more general formulations
a . |z ||t that allow for weightings in the data as well as exploit structure.
[&J — [[Az — 0| [772”@2”4 =Y Some extensions in this direction appear in [17].

One way to determine thigh;, &2} is as follows. Recall thatt APPENDIX A

is N x n and full rank withV > n. Assume4, hasn; columns PROOF OFLEMMA 1

and A, hasn, columns. We introduce the SVD of the full-rank

In order to prove Lemma 1, we first establish a preliminary
result. The result states that when (12) holds, i.e., when the un-
E} VT certainty sef{||6A;|| < n:} is large enough, then there exists a

matrix A

A=U [ perturbed matri A + 6 A) that is orthogonal té.
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Lemma 4: The uncertainty sef||54;|| < 7;} contains a Proof of Lemma 1: Assume first that (12) holds, and let us
perturbations A such that{A + 6 A4) is orthogonal ta, (A + show thati = 0 is the unique solution. Choose
§A)T'b = 0, if and only if (12) holds. 1
Proof: Assume there exists a valid perturbati®n, say 6A; = T
37, with {|[54;| < n:} and such thatA + 54)7b = 0. Then, el
for eachi, we also havéA; + §4;)"b = 0 and, consequently, We already know from the proof of Lemma 4 tiat; is a valid

bt A;.

(64;)Tb = —ATb. This further means that perturbation sincd{é4,|| < n; and that(A + §A4)%b = 0. We
T T —T _ also know that A + 64) has full column rank. Now, sindeis
HAi b” = H‘Mi bH S H‘Mi |16l = NloAsll - ol orthogonal to/ A 4+ 6A), it follows that
which implies that|64;|| > ||A¥b||/|/b|| and, hence, (12) must (A +8A)z — bl > ||b]]
hold for eachi. Conversely, assume (12) holds, and choose
for any nonzero vectar. Therefore
TA 1 T N
0A; = = bl Ai. (29) max  ||[(A+8A) — b|| > [|(A+8A)x — b > ||B].
Hb” (oA |I<n:}
Then Now, note that if we set equal to zero in the BDU cost function
_ 1 - | AFb|| (5), we obtain that the cost is equal [tb]|, regardless of A.
64| < I1b]]2 [1Blll[o™ Asll = I15]] < Ni- Thereforez = 0 has to be the unique solution of (5).

_ o _ _ The proof of the converse statement is more involved. Thus,
This shows thaé A; is a valid perturbation for eachNow note assumet = 0 is the unique solution of (5), and let us establish

that that (12) must hold. If: = 0 is the unique solution, then for
o 1 bbT everyzx
Ai+6A; = A — —=bbT A; = [I - —2} A (30)
10| 10| max ||(A+6A)z —b|]> > ||p))>.
{leas|i<n:}
so that
s That is, for everyz
A+6d = [I_ ||b||2} A (31) max [z7 (A4 6A) (A +6A)x
{I6A:|I<n: }
where the matrix/—bb6"/||b||?) is the projector onto the orthog- — 2bT(A +6A)z] > 0. (32)
onal complement space &fThis implies that A +§4)7b = 0, . .
as desired. O Chooser as a scaled multiple df{ b, sayz = [ ]b, for

In fact, we can further verify that the matrixi +-6A) in (31) some positive scalay. Then, the above inequality implies that
has full column rank. Indeed, assume otherwise. Then, thégs any suchy
should exist a nonzero vectgprsuch that

max M; >0 (33)
buT 1841 ]| <m
{I B W} Ap =0. where
If we denoteAp by w (w is also nonzero sinc4 is full column My = b A (AL + 6A)T (AL +6A)ATD
rank), this means that we must have — 2T (Ay + 641 ATD.
T
[ - %} w=20 We now claim that for the above inequality to hold, it must be
21 true that
which is only possible ifv is parallel to the vectdr, sayw = ab T T
for somex # 0, since the matrix/ —bb? /||b||2) is the projector 15 An 2 [~26"(A4y + 840) AT D] 2 0. (34)

onto the orthogonal complement spaceboHence, we must

haveAp = ab. This contradicts our assumption tiedoes not Indeed, assume to the contrary that (34) does not hold, say
lie in the column span aft. Therefore, the matrix4 + 6A4) in max  [—267(A; + 641)ATH = —p <0

(31) has full column rank. lloAL<m

We also conclude from the proof of the above lemma th%rsomep > 0. Then2bT (A, +84,)ATb > p > 0forall 64
. y 1 1 1V 1-

for somei, whenevern; > || AZb]|/||b]|, then we can find a 5 L
U i Choosey such thaty[||b||?]| A1]]?(]| A1 ]| +71)?] < p. Then, itis
perturbations 4;, as in (29), such that easy to verify that this would lead to
(A4; +64)"b =0. max M, <0

_ SA1||<m
It further holds that the resulting4; + 6A;) in (30) has full ol

column rank since otherwise, we would be able to conclude, $i§Ce
above, that lies in the column span od;, which in turn lies in 211312 9 9
the column span afi, thus leading again to a contradiction. ||6fﬂﬁ§m My <A7|Bl[[[ A (| Al + )" —vp <0
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where we replaced the first term inside theax by its any givenx (see, e.g., [7]). It is enough for our purposes, how-
maximum value and the second term by its smallest valuaer, to identify one set of perturbatiof$4, } that achieves the
The result contradicts (33) so that (34) must hold. Thmaximum residual, e.g., the8 A?(x)} above.
maximum the expression between parenthesis can be iset us now establish the two properties that are stated in
=207 A1 ATh + 2n||b]] - |]ATb||, which is achievable if Lemma 2. To prove the full-rank property, assume to the con-
we chooseéA; = —n(bbT Ay /(||b]]||bY AL]])). This §A; trary thatA + §A°(z) is rank deficient for some. This means
is a valid perturbation since|6A4:]] < . Therefore, thatthere exists a nonzero vecgosuch that
—2[|ATD||2 + 2m1]|6]|||ATH|| > 0, which leads to the desired T
conclusion thaty; > || ATd]|/]|]. {A + w}p =0.

We can now repeat the argument by choosingf the form [ Az — b
« = ~ycol{0, A, 0}b to conclude thags > ||AZb]|/||b]l, and SO The vectorp is necessarily not orthogonal #x) since other-
on, until all; are proven to satisfy (12). O wise, we would obtaimip = 0, which contradicts our assump-

tion thatA itself has full column rank. Define the scalar nonzero

APPENDIX B quantityx = ¢¥'(z)p/|| Az — b||. It then follows from the above
PROOF OFLEMMA 2 equality that

We first identify the perturbation§64;} that maximize the 1
residual norm in (5). Thus, in view of the triangle inequality of A {ﬂf + ;p} =b.
norms, it holds that for anyA and for anyz
This means thab should lie in the column span oA, which
[(A+6A)x = b)|| < ||Az — b]| + ||6Ar| again contradicts our earlier assumption about
+ ||6Agzs|| + - + [|[6 Ak xK]| Finally, it also follows from (35) that an§A that attains the
maximum residual in (14) leads to a residual ve€tb#-5 A)x —

with equality if and only if the perturbation$ A; } are such that  that is necessarily collinear witiz — b) since
the vectorg 6 A4, } are collinear with the vectdrdz — b), i.e.,

(A+6A)z—b=(1+p + - +Bx)(Az—b). (39)

O
for some scalar$/3; > 0}. Moreover, it holds thalf6 A; x;|| <
;||| with equality if and only if the perturbatiofi4; is also APPENDIX C
such that PROOF OFTHEOREM 1
16 Aizi || = il l- (36) Letz € & be a regular vector that satisfies the orthogonality

condition (21) or (2247 (2)[Az—b] = 0. Let us now show that

Combining (36) with (35), we see that (36) will hold only if i )2 16 be the unique global minimizer of the cost function in

7|24 (18). Indeed, pick any other vector(in X" or otherwise). Then,
pi = Tz — bl we necessarily have
This expression fop; is well defined sincd| Az — b|| # 0, in | A(z)x — b]| > [|[A(Z)z — b|.
view of our earlier assumption thatdoes not lie in the column

This is because we already know from Lemma 2 that for a given
x, A(z) is a matrix that maximize§( A + 6 A)z — b|| overéA.

We now verify that because of the above orthogonality condi-
tion, it holds that

span ofA.

The above discussion shows that if for a veattinere exists a
perturbatior A in the valid domair{||6 4;|| < n;} that satisfies,
for eaché A;

S A — i ||z || (Az D) @37) A(#)2 — b|| < [|A(@)z — b
| Az — ]| in order to conclude that

then N
|A(Z)E — || < || A(z)x — bl

max ||(A+ §A)x — b

164; || <n: so thatz is a minimizer. To establish this fact, we perform the
= ||Azx = b|| + m|z]| + -+ nxcl|x k|- following calculations:
It is easy to verify that the following (rank-one) choice fot; |A@@)z — b|)* = |A@)(x + & — &) — b]|?
satisfies (37) = ||[A(&)2 — b] + A(z)(z — 2)||?
ety T = | A@)2 — b2 + | A@) (@ - )2
o JAN . |f X 7£ 0
§A2(z) = { TAz=l Tl i 38 RN
) { | o0 OO > || A(#)i — b

and is a valid perturbation (sindgA¢(x)|| < #;). Therefore, where in the third step, we used the fact thdt(2)[A(£)2 —
the maximum residual in (14) is attainable. We remark that, ih = 0. We thus established thatifsatisfies the orthogonality
general, there can exist many othfet;'s that satisfy (37) for condition (22), then|A(z)z — b|| < ||A(z)z — b|| for any
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nonzeroz, and thereforeg is a minimizer. However, since the [9] L. E. Ghaouiand H. Hebret, “Robust solutions to least-squares problems
global minimum is uniquef; is the unique minimizer. with uncertain data,'SIAM J. Matrix Anal. Appl.vol. 18, no. 4, pp.

1035-1064, 1997.

Conversely., suppose thate X.is a nonzero minimizer of [10] S. Chandrasekaran, G. H. Golub, M. Gu, and A. H. Sayed, “Parameter
the cost function in (18) [or of (x) in (14)]. Then, the gradient estimation in the presence of bounded data uncertain&aM J. Ma-
of J(z) atz = & must be zero. (Note that the gradientkifr) trix Anal. Appl, vol. 19, no. 1, pp. 235-252, Jan. 1998.

is defined at alle € &’; the function is not differentiable only at

[11] G. Demoment, “Image reconstruction and restoration: Overview of
commom estimation structures and problem&EE Trans. Acoust.,

points that have some equal to zero.) Using the relations Speech, Signal Processingl. 37, pp. 2024—2036, Dec. 1989.

and

we obtain that

Vil|Az = b|| =

[12] D. M. Titterington, “General structure of regularization procedures in
x image reconstructionAstron. Astrophysvol. 144, pp. 381-387, 1985.
Va;||371|| = { [zl } [13] N. P. Galatsanos and A. K. Katsaggelos, “Methods for choosing the
0 regularization parameter and estimating the noise variance in image
restoration and their relation]EEE Trans. Image Processingol. 1,
pp. 322-336, July 1992.
[14] V. Z. Mesarovi¢ N. P. Galatsanos, and A. K. Katsaggelos, “Regularized
0 constrained total least squares image restorati®EE Trans. Image
o Processingvol. 4, pp. 1096-1108, Aug. 1995.
Vallz2|| = Twoll , etc. [15] S.HaykinAdaptive Filter Theory3rded. Englewood Cliffs, NJ: Pren-
0 tice-Hall, 1996.
[16] A. H. Sayed and T. Kailath, “A state-space approach to adaptive RLS
filtering,” IEEE Signal Processing Magvol. 11, pp. 18-60, July 1994.
[17] A.H.Sayedand V. H. Nascimento, “Design criteria for uncertain models
with structured and unstructured uncertainties,Rimbustness in Iden-
+ q(a:) tification and Contro} A. Garulli, A. Tesi, and A. Vicino, Eds, London,
||Ag,j _ b|| ' U.K.: Springer Verlag, 1999, vol. 245, pp. 159-173. Lecture Notes in
Control and Information Sciences.

AT (Az — b)
Az b

VL&) = AT(Az — b)

Therefore,V,.J(&) = 0 leads to

which is equivalent to

AT(A% —b) + q(2)|| Az — ]| =0
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