1428

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 44, NO. 6, JUNE 1996

A Time-Domain Feedback Analysis of
Filtered-Error Adaptive Gradient Algorithms
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Abstract—This paper provides a time-domain feedback analysis
of gradient-based adaptive schemes. A key emphasis is on the
robustness performance of the adaptive filters in the presence
of disturbances and modeling uncertainties (along the lines of
H*-theory and robust filtering). The analysis is carried out in a
purely deterministic framework and assumes no prior statistical
information or independence conditions.

It is shown that an intrinsic feedback structure can be asso-
ciated with the varied adaptive schemes. The feedback structure
is motivated via energy arguments and is shown to consist of
two major blocks: a time-variant lossless (i.e., energy preserv-
ing) feedforward path and a time-variant feedback path. The
configuration is further shown to lend itself to analysis via a so-
called small gain theorem, thus leading to stability and robustness
conditions that require the contractivity of certain operators.
Choices for the step-size parameter in order to guarantee faster
rates of convergence are also derived, and simulation results are
inciuded to demonstrate the theoretical findings.

In addition, the time-domain analysis provided in this paper
is shown to extend the so-called transfer function approach to a
general time-variant scenario without any approximations.

I. INTRODUCTION

HE last decade has seen increasing interest in the fields of
Tadaptive filtering, robust estimation, and robust control.
Adaptive and robust filters (which are also known as H>—
filters) are increasingly being considered in numerous applica-
tions to help cope with time variations of system parameters
and to compensate for the lack of a priori knowledge of
the statistical properties of the input data and/or exogenous
signals. In the control community, and especially over the
past several years, considerable research has been conducted
on robust control and filtering [1]-[5]. A major motivation for
this work has been the need to design stabilizing controllers
for uncertain plants, namely, plants that operate in the pres-
ence of disturbances and modeling uncertainties. The ideas
developed in these contexts have been recently encountering
useful counterparts in signal processing and communication
problems.
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In this paper, we pursue these ideas for the important class
of gradient-based adaptive filters and study their robustness
(or o —stability) properties along the lines of H* theory. In
particular, one of the contributions of this work is to show how
to choose the step-size parameter of an adaptive filter in order
to result in a robust performance and in order to improve the
convergence speed.

A. Robust Adaptive Filters

Intuitively, a robust filter is one for which the estimation
errors are consistent with the disturbances in the sense that
“small” disturbances would lead to “small” estimation errors.
This is not generally true for any adaptive filter: The estimation
errors may still be relatively large even in the presence of
small disturbances.

The robustness issue is addressed in this paper in a purely
deterministic framework and without assuming prior knowl-
edge of noise and signal statistics or independence conditions.
This is especially useful in situations where prior statistical
information is missing since a robust design would guarantee a
desired level of robustness independent of the statistical nature
of the noise and signals. In loose terms, robustness implies
that the ratio of estimation error energy to disturbance energy
is guaranteed to be bounded by a positive constant, say, the
constant one

estimation error energy
disturbance energy

<1. (1)

Here, the term “disturbance energy” refers to the combined
energies of measurement noise, modeling uncertainties, error
in the initial weight guess, etc. From a practical point of view,
a relation of the form (1) is desirable since it guarantees that
the resulting estimation error energy will be at most equal
to the disturbance energy no matter what the nature and the
statistics of the disturbances are. In this sense, the algorithm
will not unnecessarily magnify the disturbance energy, and
consequently, small estimation errors will result when small
disturbances occur.

In this work, we show that gradient adaptive schemes can be
designed to be robust with respect to disturbances by imposing
suitable conditions on the step-size parameter. This may be
contrasted with results in a stochastic setting where stability
(or convergence) statements are often given in the mean and
mean-square sense. In such settings, even for the simple LMS
algorithm, a constant step-size p that is bounded by twice
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the inverse of the maximal eigenvalue of the autocorrelation
matrix can still lead to blow up in a practical experiment [6].

B. A Time-Domain Feedback Analysis

To address the robustness and convergence issues, this
paper develops a time-domain approach that proves to be
useful in both the analysis and design of robust estimators.
It highlights and exploits an intrinsic feedback structure that
can be associated with the gradient adaptive schemes.

Although the feedback nature of adaptive filters has been
exploited in earlier places in the literature [7]-[9], the feedback
configuration studied in this paper has a different emphasis.
It does not only refer to the fact that the update equations
can be put into a feedback form (as explained.in [10]) but
is instead motivated by energy arguments that also explicitly
take into consideration both the effect of the measurement
noise and the effect of the uncertainty in the initial guess for
the weight vector. These extensions are incorporated into the
feedback arguments of this paper because the derivation here is
specifically interested in a study of the robustness properties
of the adaptive schemes.

The feedback interconnection exhibits several features: Its
feedforward mapping is lossless (i.e., energy preserving) while
its feedback mapping is either memoryless or dynamic. More-
over, both mappings are time variant, and their interconnection
lends itself to stability analysis via a so-called small gain
theorem, which is a very useful tool in system theory [11],
[12].

An interesting fallout of the time-domain analysis of this
paper is that it can be regarded as an extension of the transfer
function approach that is often used in the analysis of gradient-
based recursions (e.g, [13], [14]). The time-domain analysis,
however, is shown to avoid the restrictions and limitations that
are characteristic of the transfer-function domain.

C. Notation

We use small boldface letters to denote vectors and capital
boldface letters to denote matrices. In addition, the symbol
“4” denotes Hermitian conjugation (complex conjugation for
scalars). The symbol T denotes the identity matrix of appropri-
ate dimensions, and the boldface letter O denotes either a zero
vector or a zero matrix. Finally, the notation ||x|| denotes the
Euclidean norm of a vector. All vectors are column vectors
except for the input data vector denoted by u;, which 1s taken
to be a row vector.

II. THE LEAST-MEAN-SQUARE ALGORITHM

One of the most widely used adaptive algorithms is the
least-mean-squares (LMS) algorithm [15]. It starts with an
initial guess w_; for an unknown M x 1 weight vector w
and updates it as follows:

w; = w1+ p(i)ui[d(i) — uwi_1]
= w1+ p(i)ugéa(i) @
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where the {u;} are given nonzero row vectors, the {d(i)} are
given noisy (or disturbed) measurements of the terms {u;w},
viz., d(i) = w;w + v(¢), and w; is the weight estimate at
iteration ¢. The factor u(z) is the step-size parameter (which
is allowed to be time variant), and the quantity v(:) may
account for both measurement noise and modeling errors. The
difference [d(i) — u;w;_1] is denoted by &,(7).

The following error measures are also useful for our later
analysis: W; denotes the difference between the true weight
w and its estimate w;, W; = W — w;, ¢,(i) denotes the a
priori estimation error, e,(i) = u;w;_1, and e, (i) denotes
the a posteriori estimation error e, (i) = u;W;.

It is straightforward to verify that &,(i) = e.(2) + v(3).
Moreover, it follows from (2) that W, satisfies

Wi = Wimg — p(i)utéa(i). 3)

If we further multiply (3) by u; from the left, we obtain the
following relation among {e, (%), e,(7),v(%)}:

ep(i) = [ 1= p()|will® ] ea() = p(@)uil* v(D). @)

A. Transfer Function Description of the LMS Algorithm

Before proceeding to the time-domain analysis of this paper,
we first review a well-known approach to the analysis of LMS-
type recursions that employs the concept of transfer functions
[13], [14].

In this method, the input vector u; is assumed to have
a shift structure, say, u; = [u(i),...,u(i — M + 1)], where
the individual entries are further assumed to arise from a
sinusoidal excitation u(i) = C cos(£2¢). Assuming a constant
step-size p and neglecting the initial condition W_;, the
transfer function from the disturbance v(-) to the a priori
estimation error ¢, (+) can be shown to be approximately (see
Appendix A, where E,(z) is the z—transform of e,(-))

I

Eu(2) £ [1 - zcos(Q)] )
V(z) 2 _9, cos(Q)(l - %) + (1 - %)

where we have defined i = 7. Although easily available
in the literature, a derivation of the above result is included
in Appendix A in order to highlight some of the restrictions
and approximations that are needed to establish (5). These
approximations will be avoided when the time-domain analysis
is introduced in later sections. For now, however, we stress
the fact that an interesting feedback structure is implied by
(5). To clarify this, we define V(z),

V(z) = Eviz) - (1 - é‘)Ea(z) 6)
o I
and use (5) to conclude that
-1 .
E.(2) 27! —cos() @

V(z)  z—cos(Q)

That is, the transfer function from o(-) to e,(-) is allpass.
Consequently, the transfer function (5), from v(7) to eq(-),
can be expressed as a feedback structure with an allpass filter
in the forward path and a constant gain in the feedback loop.
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V(z) P cos(Q)
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Fig. 1. Transfer function description for LMS: An allpass mapping with
gain feedback.

This is depicted in Fig. 1. The feedback gain is (1 — u/f),
which is thus equal to zero if we choose y = [. This is
known to be the choice that results in the highest convergence
speed. Further clarifications will be provided in later sections
in the time domain.

B. Comments on the Transfer-Function Description

The transfer function derivation has some limitations that
hinders its applicability to mere general scenarios.

1) The arguments explicitly assume that the input vectors
exhibit shift structure, which restricts the analysis to
transversal filter structures.

il) The input sequence is often assumed to be of a specific
class (usually sinusoidal), but other choices have also
been used in [14].

iii) The effect of initial conditions is ignored. Although this
may not be relevant to the steady-state performance of
a stable filter, it is nevertheless useful in a robustness
analysis of the filter.

iv) A constant, rather than time-variant, step-size is as-
sumed.

v) Some nonlinear mixing terms are neglected as ex-
plained in Appendix A.

One of the contributions of this paper is to remove these
limitations by employing a time-domain argument. We provide
an exact derivation that circumvents the above restrictions and
avoids any approximations. Once this is done, we then show
how the results provide conclusions concerning the robustness
and convergence behavior of gradient-type algorithms not only
of the type (2) but also for general filtered-error variants. This

is achieved by employing the energy-based arguments of [16]
and [17].

III. A TIME-DOMAIN ANALYSIS

The analysis that follows highlights an important feedback
structure that is implied by gradient-type recursions of the form
(2). Our purpose in this section (and Section IV) is threefold:

1) to show that certain local and global energy relations

can be associated with the LMS recursion (2)—these
are also known as passivity relations;

2) to employ the passivity relations in order to highlight a.

feedback structure;
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Fig. 2. Local contraction mapping.

3) to derive conditions on the step-size parameter in order
to guarantee that the feedback structure will behave as
a robust filter (cf. H* theory).
Later, in Section V, we shall extend the analysis to filtered-
error variants with update equations of the form (24).

A. Local Passivity Relations

To begin with, we compute the squared norm (i.e., energies)
of both sides of (3) and use the relation é,(z) = e, (i) + v(3)
to conclude the following equality:

Wil + s(i)lea (D + (D) ( 1= p(@)lull?) 2 ())* =

W1 ]f? + (i) |w (i) (8)

Equality (8) allows us to study how the energies of the error
terms {W,.e,(7)} propagate as the algorithm progresses. In
particular, if we define (i) = 1/||u;||?, then the following
result is immediate from (8).

Lemma 1: Consider the gradient recursion (2). It always
holds that

¥l + ieati)? [ =10 (o < 10 < RO
Wil + sOROF |51 for  w@d) > o)

B. Interpretation

The result of Lemma 1 has an interesting interpretation that
was exploited in [16] in order to provide a minimax analysis
of gradient recursions of the form (2) (see also [18] for a Krein
space formulation and the last section of [19] for an argument
based on the Cauchy-Schwarz inequality).

Here, we would like to stress that the first two cases of
Lemma 1 establish a local error-energy bound (or passivity
relation) that explains the robustness nature of the gradient
recursion (2): They state that no matter what the value of the
disturbance v(z) is, and no matter how far the estimate w;_{
is from the true vector w, the sum ||w;||? + p(7)|e(7)]? will
always be at most equal to the sum ||W;_1[|* 4+ p(4)|v(i)]?.

This establishes, as shown in Fig. 2, the existence of a
contractive map from the signals {W;_1, /u(?)v(?)} to the
signals {W;, \/u(i)e,(i)}.! The symbol ¢~ denotes the unit
delay operator.

' A map that takes x to y, say y = Tx], is said to be contractive if for all
x, we have [|T[2]|| < ||||. That is, the output energy does not exceed the
input energy.
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C. A Global Contraction Mapping

Since the contractivity relation of Fig. 2 holds for each time
instant 4, it should also hold globally over an interval of time.
Indeed, if p(:) < j(¢) for all ¢ in the interval 0 < ¢ < N,
then for all such 7 (cf. Lemma 1)

. 12 . . Ny (2
wi)lea(D” < NIWimall? = [1Will* + p(@)o()]".
Summing over ¢, we conclude that

N N
IWnl® + ) pli)lea (i) < [IW-al® + ) (@@ 9
=0 i =0

This relation states that the map from the disturbances

{Wo1,v/1(0) v(0), ..., vV u(N) v(N)} (10)
to the estimation errors
{V/1(0) €a(0),.... v/ u(N) ea(N), W} (1D

is a contraction. In other words, assume we stack the entries
of (10) into a column vector, the entries of (11) into a second
column vector, and let 75 denote the mapping that maps the
first vector (10) to the second vector (11). The entries of this
mapping can be determined from the update relation (3) and
from the definition of the a priori estimation error e, (-). The
specific values of these entries are not of immediate interest
here except to say that it can be verified that 7x turns out to
be a block lower triangular operator of the form

AORONE W,
vie) | e @ V1(0)v(0)
Wy e o o ol L/uuy)
Tn

(For example, the first block entry of 7, which relates e, (0)
to W_1, can be easily seen to be y/:(0)ug). The contractivity
of 7y means that its maximum singular value is at most one,
7(Iny) < L.

Inequality (9) is a desirable robustness property in the sense
that it guarantees that if the disturbance energy is small, then
the resulting estimation error energy will be accordingly small.

We may add that other similar local, and global, passivity
relations can be established by using a posteriori (rather than
a priori) estimation errors [16]. This is useful in the study of
(robust) adaptive IIR filters [20], but we forgo the details here.

IV. THE FEEDBACK STRUCTURE

The bounds in Lemma 1 can be described via an alternative
form that will lead us to an interesting feedback structure. The
structure will be shown to constitute the proper extension of
the transfer function description of Fig. 1 to the general time-
variant scenario, and it will further allow us i) to relax the
condition on p(7) in order to guarantee robustness and ii) to
select ju(7) for faster speeds of convergence.

We have argued above that if the step sizes are chosen
such that p(7) < (i), then robustness (or contractivity) is

1431

Wi-1
VA | amee | T =1 (i) eali)
L/
ol a
F10)
O
§ )
AG)

Fig. 3. Time-variant lossless mapping with gain feedback for gradient al-
gorithms.

guaranteed in the sense that the weighted estimation-error
energy will never exceed the weighted disturbance energy (cf.
(9)). That is, for u(i) < (), the ratio of the energies of the
signals in (11) and (10) will be bounded by one.

The condition on pu(¢) can be relaxed at the expense of
guaranteeing energy ratios that will be bounded by some other
positive number, say

weighted estimation error energy <K
weighted disturbance energy

< (12)
for some constant K (to be determined). This is still a desirable
property since it means that the disturbance energy will be at
most scaled by a factor of K.

This issue is addressed here in the context of a feedback
analysis. For this purpose, we first rewrite (4) as

: u(ﬂ) LN
ey(1) = |1 — —= Jey(1) — —=v(2
o0 = (1- 288 eo (i) - 203000
and use it to conclude that (2) can be rewritten in the equivalent
form

13)

wi = Wiy + (i)ug[ea(r) — ep(4)]

= wi_1 + fi(i)u[eq () + v(i)] (14)

where we have defined, for convenience, the signal 0(¢) =
—ep(i). Comparing with (2), expression (14) shows that (2)
can be rewritten in terms of a new step size fi(i) and a
modified “noise” term #(¢) (recall that in (2), we have €,(i) =
eq(i) + v(7)). Therefore, if we follow arguments similar to
those prior to Lemma 1, we readily conclude that for algorithm
(2), the following equality holds for all {4(4), v(i)}:

[Will2 + A5)lea (8)]*
W31 ]12 + A(8) ey ()|
This relation establishes a lossless map (which is denoted
by 7;) from {W;_1,/a()v(s)} to {W;, /11(i)eq(d)}. Corre-
spondingly, using (13), the map from the original disturbance
Vi($)v(i) to v/i(i)eq(d) can be expressed in terms of a
feedback structure, as in Fig. 3.
The similarities between Figs. 1 and 3 are clear. Both have
a lossless feedforward path and a memoryless feedback path.
However, it should be stressed that the analysis that led to
Fig. 3 is exact and valid in a general time-variant setting. No
approximations or assumptions were made on {u;, u(2)}.

=1. (15)
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A. lo—Stability and the Small Gain Theorem

Now that we have introduced the feedback structure of
Fig. 3, we can discuss conditions on the step-size parameter
w(z) in order to guarantee robustness according to (12) for
some K.

For this purpose, we start by noting that the feedback
configuration of Fig. 3 lends itself rather immediately to
stability analysis via tools that are by now standard in system
theory, as we explain in the sequel.

It follows from (15) that for every 7 and for any p(i), we
have

@l = Wi |® = Wil + B@IGH (16)
This allows us to conclude, under a suitable condition on p(z),
that the system in Fxg 3 is [o—stable, i.e., it maps a bounded
energy sequence {+/B(-) v(:)} to a bounded energy sequence
{V/ (") ea(-)} in a sense pre01sed in (17) below. In fact, we
shall also conclude that a similar result will hold even if we
replace fi(-) with u(-) (cf. (18)).

Define

(%)

=

A~
.

=

A(N) = max

d =
onax and y(N)

|

0<i<N

=

PN
=

=

That is, A(N) is the maximum absolute value of the gain
of the feedback loop over the interval of time 0 < 7 < N.
Likewise, v(N) is the maximum value of the scaling factor
w(2)/ A7) at the input of the feedback interconnection.

Theorem I: Consider the gradient-recursion (2), define
A(N) and y(N) as above, and let g(i) = 1/||u*> If
0 < u(i) < 2/(1), then the map from {Ww_1, /() v(-)}
to {4//i(*) eq(-)} is lo—stable in the following sense:

an

Likewise, the map from {w_1, /() v(-)} to {/p(-) ea()}
(i.e., with i(-) replaced by u(-)) is also [o—stable in the
following sense:

18)
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Proof: The proof is based on the triangle inequality of
norms and is given in Appendix B. v [ ]
Note that the upper bound on (%) is now 2fi(¢), which
is equivalent to requiring A(N) < 1. This is, in fact, a
manifestation of the so-called small gain theorem in system
analysis [11], [12]. In simple terms, the theorem states that the
[, —stability of a feedback configuration (that includes Fig. 3
as a special case) requires that the product of the norms of the
feedforward and the feedback operators be strictly bounded by
one. Here, the feedforward map has (2—induced) norm equal
to one (due to its losslessness), whereas the 2—induced norm
of the feedback map is A(N).

The fact that the inequalities in Theorem 1 are valid even
for 14(i) in the interval (i) < p(f) < 24(i) suggests that a
local bound, along the lines of Lemma 1, should also exist
for this interval. In fact, this is also the case, as shown in the
following statement (the derivation is given in Appendix C).

Lemma 2: Given recursion (2), the following holds for

pi) < p(i) < 20(0):

Il + pilea )
= e+ p@bOF 280 - w0

Before proceeding further, it will be convenient to introduce
a matrix notation for later use: Define

My = diag {u(i)}Ly, My = diag {a(i)}i%0  (19)
and (col() denotes a column vector of its arguments)
eqn = col{ea ()}, v = col{u(i) f o (20)

It is easy to see that A(N) and +(N) are equal to the
2—induced norms of My and My, respectively. The con-
dition A(N) < 1 then amounts to requiring the (memoryless)
feedback map (I - MyM; 1) to be contractive.

B. A Deterministic Convergence Analysis

In order to further appreciate the significance of the (robust-
ness) bounds of Theorem 1, we now exhibit a convergence
analysis that is derived in a purely deterministic setting and
without statistical assumptions.

It follows from (3) that W, satisfies

= Wien — V(0 [V (ea(i) + o)
a() + 0(2)]
where we have introduced the notation W, €, (1), 0(4) in order

to incorporate the factors +/u(z). We further introduce the
following two deterministic condltlons on {0(), (; }:

—Wq 1-u[

2n

i)  Finite noise energy: The sequence {6(-)} is assumed to
have finite energy, i.e., Yoo q p(i)|v(i)[* < oo.

i) Persistent excitation: The rows {{;} are assumed to be
persistently exciting. By this, we mean that there exists
a finite integer I, > M such that the smallest singular
value of col{il,,..., 0z} is uniformly bounded from
below by a positive quantity for sufficiently large <.



RUPP AND SAYED: TIME-DOMAIN FEEDBACK ANALYSIS OF ADAPTIVE GRADIENT ALGORITHMS

‘In the proof of the next statement, we employ the quantities

A =sup L= p(i)/a@)], = sup [1e(8) /(2]

Theorem 2: Assume i(4)||u;||? is uniformly bounded by 2
and |W_1]| < oc. If {#(:)} has finite energy, then é,(i) — 0.
If {1} is further persistently exciting, then w; — w.

Proof: 1f {(-)} has finite energy, then (18), for N — oo,
implies that {é,(-)} also has finite energy. This is true since
v < 2, and A < 1. We therefore conclude that {é,(-)} is a
Cauchy sequence, and hence, é,(i) — 0.

For the second statement of the theorem, we use (21) to
write

ith—1
W= Wi+ > W) + ()
p=i+1
Multiplying from the left by ;4 for k =1,..., L, we get
it+k—1
W e W, = Ca(i + k) Z 4 110 (€a(p) + 0(p)).
p=i+l

From the finite noise-energy assumption (¢(¢) — 0) and the
fact that é,(i) — 0, we conclude that the right-hand side
vanishes as i — o0, and hence
Uiyg
w; — 0.
Qipr41

From the definition of persistent excitation, it follows that
VNVi — 0. |

Another point of interest is to note that a related limiting

result can be given for finite-power noise sequences {7(-)}
(rather than finite-energy), i.e., for v(-) satisfying

hm NZ/J i)|v(2)

For this purpose, we divide both sides of (18) by VN and
take the limit as N — oo to conclude that

2
P,
hm —Z/L i)|ea(?) ke

SToap
In other words, a bounded noise power leads to a bounded
estimation error power. We may also add that the conclusion of
Theorem 2 is in agreement with the result in [21, pp. 140-143]
for the noiseless and constant step-size case.

2=p, <o

C. Energy Propagation in the Feedback Cascade

More physical insights into the convergence behavior of the
gradient recursion (2) can be obtained by studying the energy
flow through the feedback configuration of Fig. 3.

Indeed, let us ignore the measurement noise (%) and assume
that we have noiseless measurements d(¢) = u;w. It is known
in the stochastic setting that for Gaussian processes [22], as
well as for spherically invariant random processes [23], the
maximal speed of convergence is obtained for (i) = (i),
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v(z)

u; éa(i)

Wi-1

/

Structure of filtered-error gradient algorithms.

Fig. 4.

e., for the so-called projection LMS algorithm. We now
argue that this conclusion is consistent with the feedback
configuration of Fig. 3.

Indeed, for ;i) = ji(7), the feedback loop is disconnected.
This means that there is no energy flowing back into the lower
input of the lossless section from its lower output ¢,(-). The
losslessness of the feedforward path then implies that

Eu(i) =

where E. (i) = fi(i)]eq(i)]?, and E,,(i) = ||W;||?. Expression
(22) implies that the weight-error energy is a nonincreasing
function of time, i.e., B, (i) < E, (i — 1).

However, what if (i) # [(i)? In this case, the feedback
path is active, and the convergence speed will be affected since
the rate of decrease in the energy of the weight-error vector
will be lowered. Indeed, for u(i) # (i), we obtain

Ey(i— 1) = E.(i) 22)

Eu(i) = i = 1) = (1= 1 = (i) /)] )Ee(z‘) 23)

where the coefficient multiplying E.(7) can be seen to be
smaller than one. Hence, the rate of decrease in the energy
of w; is lowered.

V. FILTERED-ERROR GRADIENT ALGORITHMS

The feedback loop concept of the former sections applies
equally well to gradient algorithms that employ filtered ver-
sions of &,(i) = d(i) — u;w;_1. Such algorithms are useful
when the error &,(i) cannot be observed directly but rather a
filtered version of it, as indicated in Fig. 4. The operator F’
denotes the filter that operates on é,(7). It is assumed to be a
finite-impulse response filter of order Mp

Mp-1

Fla™Ye)] = Z fiz(i = j)-

It may also be a time-variant filter, in which case, the coef-
ficients f; will vary with time, say, f;(). Typical applica-
tions arise in the active control of noise (see, e.g., [13] and
[24]1-[27]) and in the context of adaptive IIR filtering (see [20]
and [28] for a discussion along the lines of this paper).

Here, we limit ourselves to three classes of algorithms
that employ filtered error measurements; the filtered-x LMS
(FXLMS), the modified filtered-x LMS (MFXxLMS), and the
filtered error LMS (FELMS).
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A. The Filtered-x LMS Algorithm
The filtered-x LMS algorithm employs an update of the form

W; = W;_1 + ;L(?)F[uz]*F[Ea(Zﬂ 24)

where the input data u; is also processed by F'. The linearity
of F' implies that F'[é,(i)] = Flu,Ww;_1] + F[v(?)].

This algorithm has been analyzed in the literature under a
slow adaptation assumption [13], [24], viz., when the variation
in the weight estimates is slow over the length of the filter F',
Wi R Wi & X Wi, .2 In this case, we can approximate
Flww;_1] by Flu;]w;_1, leading to the approximate update

wi = Wiy + p(0) Fu]"(F[d(i)] — Flu]wi_1)

with F'[d(i)] = F[u;]w + F[v(¢)]. This is of the same form
as the standard LMS update (2) with {u,, d(7),v()} replaced
by their filtered versions { F'[w;], F'[d(¢)], F'[v(i)]}. Hence, our
earlier conclusions concerning robustness conditions hold. In

particular, the robustness condition now requires 0 < u{i) <
2/||F[w]]|>.

B. The Modified Filtered-x LMS Algorithm

Recently, an improvement has been proposed that avoids
the slow adaptation assumption [29], [30]. This is achieved by
adding two terms to the update recursion (24)

wi=wi_1+pu(i) F[w] (Fléa(i)]+ Flaiw; 1] = Flu]wi_1).

It can be easily verified that because of the additional terms,
the above recursion is equivalent to the following:

wi = w1+ p(O) Flw]*( Flv(i)] + Flw)(w — w;_1) ).

This is again of the same form as the LMS update (2) but
with the filtered input sequence ['[u,] and the filtered noise
sequence F'[v(z)]. This time, though, no approximation has
been employed. The results of the previous sections will then
be immediately applicable with the proper change of variables.
For example, the second bound of Theorem 1 will read as
follows: Define e, (1) = Flu;|W;_1, &(i) = 1/[|F[u]||?, and

A(N) = omax [ 1= pu(@)/ai) |,v(N) = omax  u(1)/ ).

If 0 < p(4) < 27a(4), then the map from {W_1., /pu(:) Flv()]}
to {/p(-) es(-)} is lo—stable in the following sense:

Y/2(N)

A W _1]| +~2(N)

We may add that we have used the insights provided
by the above analysis to propose two modifications to the
FXLMS algorithm with improved computational requirements
and convergence performance [27].

2This is often a rcasonable assumption especially when the fength A4y is
considerably smaller than the adaptive filter length M.
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C. The Filtered-Error LMS Algorithm

We now discuss the filtered-error LMS algorithm [31],
which leads to a more involved feedback structure; it forces a
dynamic system in the feedback loop rather than a memoryless
transformation. Its update retains the input vector unchanged
and takes the form

W; =W, + LL(Z)U:F[&;(Z)] (25)

In contrast with the FXLMS algorithm and its modified form,
the error-path filter ' does not need to be known explicitly,
and the algorithm also requires less computation. Similar
update forms arise in the context of IIR modeling, such
as Feintuch’s algorithm [32] and the so-called simplified
hyperstable adaptive recursive filter (SHARF) [33] (see, e.g.,
[28] for a discussion along the lines of this paper).

Before proceeding further, we may remark that the transfer
function description can also be applied to the filtered-error
LMS, thus leading to E,(z)/V(z) =

@F(z)(l — zcos(Q))
2?2 — 2z cos(Q)(l - #F(x)) + (1 - %M—F(z))

where e,(i) = u,W;_;. This can again be described in
terms of an allpass feedforward path and a dynamic feedback
loop given by 1 — %F(z). That is, the feedback loop is not
memoryless anymore. A similar structure also arises for a
generalization of the filtered-x LMS algorithm to the case of
an array of slowly-varying FIR adaptive filters [34].

1) The Feedback Structure for FELMS: Following the dis-
cussion that led to (14), it can be verified that (25) is equivalent

to the following update:
Wi = wisy + (0)uea(s) + (0] 6)

where (1) = 1/[|Jw;l|% e.(4) = u,W,_;, and the modified
“noise” sequence {o(-)} is defined via®

p()8(i) = p(i) Flo(d)] = Ali)ea(d) + u(i)Flea(d)].

Expression (26) is of the same form as (14), which readily
implies that the following relation also holds:

27

N . (2
[Will2 + ai)ea O _
s 12 + @) o(0)
This establishes that the map from {W;_,\/a(i)5(i)} to
{W;. /I(i)eq(4)}, which is denoted by 7, is lossless and
that the map from the original disturbance /f(-)u(-) to

B{-)eq(-) can be expressed in terms of a feedback structure,
as shown in Fig. 5. We remark that the notation

pu(7) 1
- —=—=F[] — =
Vi) V(i)
which appears in the feedback loop, should be interpreted as
follows: We first divide /fi(2) e, (¢) by +/ji(¢), followed by

*This is different from the sequence {©(-)} in (14), but we have opted to
use the same symbol to always denote the modified noise sequence, both for
uniformity of notation and in order to avoid a burden of symbols.

(28)
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Fig. 5. Filtered-error LMS algorithm as a time-variant lossless mapping with dynamic feedback.

the filter F', and then by a subsequent scaling by p(2)/+/ (%)
Likewise, the term +/fi(¢) v(4) is first divided by +/fi(¢), then
filtered by F, and finally scaled by p(¢)/+/[i(%).

The feedback loop now consists of a dynamic system but
we can still proceed to study the [,—stability of the overall
configuration in much the same way as we did in Section
IV. For this purpose, we use the vector and matrix quantities
introduced in (19) and (20) and further define a vector vy
similar to vy but with the entries ¥(:) (of (27)) instead of
v(-).

We also define the lower triangular matrix F  that describes
the action of the filter ' on a sequence at its input. This is
generally a band matrix since Mp < M, as shown below for
the special case Mp = 3

fo
fi fo
Fy= f2 i fo

fa fi fo

It is thus immediate to verify that the successive outputs of
Fle,(-)] can be obtained by simply computing the matrix-
vector product F ye, n. In addition, if the filter /' were time
variant, all that changes is that the matrix Fn will not be
Toeplitz anymore. Instead, its first diagonal will consist of
the values of the first coefficient fo(-) at the successive time
instants, and so on.
Define

1 —_1
A(N) = [[T= My"MyFyMy* |12,ina
— 4 — 1
’Y(N) - HNIN2 1\/[1\/'FN1V[]\/2 HQ,z’nd-
If we now follow the arguments of Section IV, we obtain the
following result, which extends Theorem 1.

Theorem 2: Consider the filtered-error LMS recursion (25)
and define A(N) and y(N) as above. If A(N) < 1, then the

map from {W_1, /Zi(-) v(")} to {\/ii(") ea(-)} is lo—stable,

N
W ol +v(N) | S @) [v(i)f

1=0

Moreover, the map from {w_1, /p(-) v(-)} to {/pu() ea ()}

is [o~—stable with

Yy AN)
[—A(N)

[W_ill + 7 /2(N)

N
S @)
=0

We thus see that the major relquiremcnt is for the feedback
matrix (I — _M—;r% MyF Nﬁ;}) to be strictly contractive.
We denote it by P, which can be easily seen to have the
following triangular form (it also has a band of width Mr):

Py =
1;;_(1%;E8§ o 1 — a0 ©
#AE(();})_L(D " AL(Z,);(1> " w(2)
T Va7 EWa®) o 1=l

We see that the entries of Py depend on three parameters:

1) the step sizes p(i);

2) the energies of the input sequence fi(i);

3) the error filter F.
Several special cases may be of interest. For example, the
special case F' = 1 (i.e., no filter) immediately leads to the
case we encountered earlier in Section IV. Another special
case is F = ¢~ ! (ie., a simple delay). The filtered-error
LMS recursion (25) then collapses to the delayed-error LMS
w; = w;_1+p(i)ufé,(i—1). The corresponding P is given
by (since fo = 0 and f; = 1)

1 O
¢ | 1
Va(0)((1)
Py = R 1¢)) fi1

A

We see that Py cannot be a strictly contractive matrix since
its leading (0,0) entry is not less than one. This is consistent
with results in the literature, where it has been observed that
the delayed-error LMS algorithm usually leads to unstable
behavior. We also see from the general expression for Py
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that a simple gain filter F' = fy with a negative f; leads to
a noncontractive P .

2) The Projection FELMS Algorithm: An important special
case of the FELMS algorithm is one that employs a step
size of the form u(i¢) = o @(i),o > 0. That is, p(7) is a
scaled multiple of the reciprocal input energy. This leads to
the projection FELMS algorithm

*

I z||2

In this case, it can be seen that the contractivity requirement
collapses to requiring the strict contractivity of

l—Ozfo (@)
\/\/%f L—afo
—a B g1 g,

\/ i(2) f? o
\/#(0 VA1)

w; = W1+ ar—— Fle(i)]. 29

If we further assume that the energy of the input sequence
u; does not change very rapidly over the filter length Mp,
e a(i) ~ ...~ (i — Mp), then Py collapses to

PN ~1-— QFN. (30)

In this case, the strict contractivity of (I — oFpx) can be
guaranteed by choosing « such that

mgx|1 —aF (7)) <1 3D
where F(z) is the transfer function of the error filter. This
suggests, according to the energy arguments in Section IV-
C, that for faster convergence (i.e., for smallest feedback
gain), we should choose « optimally by solving the min-max
problem:

(32)

(23

min max ‘1 — aF(ejQ)|.

It the resulting minimum is less than 1, then the corre-
sponding optimum « will result in faster convergence and
l;—stability (or robustness). Simulation results that confirm
these conclusions are discussed in the next section.

Expression (32) provides a criterion for choosing the step-
size parameter in the filtered-error case in order to speed up
the convergence of the PELMS algorithm (for slow-varying
input energy).

VI. SIMULATION RESULTS

The simulations in this section were carried out with the
projection filtered-error algorithm (29) for the error-path filter:

Flg)=1-1.2¢7"

The row vectors u; were taken with shift structure, with the
individual entries (¢) arising from a sinusoidal excitation of
frequency €. In this case, if we assume that the g priori error
signal is dominated by the frequency component {24, then we
can solve for the optimum « via the simpler expression (cf.
(32)) min, |1 — F (e’“)|. This minimization can be solved

+0.72¢7 %
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Elg(i)] ° .
B i
_20 ‘ (b)
: (

Iteratlons P

Fig. 6. Convergence behavior for FELMS algorithm with sinusoidal input
sequence and various step-sizes (a)a = 0.085; (b) 0.15; (¢) 0.18.

explicitly, and we get a,,; = Real(1/F(e~7*%)) to be the step
size that causes faster convergence speed. Following the same
procedure, the step size oy, for which the stability limit is
achieved (cf. (31)) can be calculated t0 be im = 2opt.

To verify these statements, we created an input sequence of
the form (i) = sin[1.27 4 @], where 50 different values for ¢
were uniformly chosen from the interval [—7, 7]. The reason
for adding a random phase ¢ is to obtain smoother learning
curves after averaging. The optimal step size for F', oy, can
be calculated to be oy = 0.085, and the stability bound
is obtained for oy, = 0.17. Fig. 6 shows three runs of the
FELMS for the choices a« = 0.085,« = 0.15 and o« = 0.18. As
expected, the first value of o leads to the fastest convergence
speed. In every simulation, we averaged over 50 trials. The
additive noise v(i) was assumed to be —40 dB below the input
power during the experiments, and the order of the adaptive
filter was set to M = 10. The algorithm was run for N = 5000
iterations. We also see that for the first two values of «, the
sample average of |é,(7)|? decreases with time, whereas for
the last value, it increases.

The second part of our simulations is intended to measure
the impact of the slow-energy variation assumption of the input
sequence on the algorithm performance and, in particular, on
the conditions (31) and (32).

For this purpose, the difference (n~'(i) — (i — 1))2
can be used to measure the extent of variation in the input
energy. This difference collapses to (Ju(7)[* — |u(i — M)|2)2
due the assumed shift structure for u;. Since our data were
generated randomly, the above measure can be approximated
by E([u(i)]? — u(i — AM)]2)2, which can be further reduced
to 2(k—1) E[|u(7)|?]?, if we assume that |u(4)|? is uncorrelated
with |u(i — M)|?. This is a reasonable assumption for M
relatively large. Hence, the kurtosis parameter x gives a
measure of the input energy variations. To describe the impact
of these variations on the FELMS algorithm, we applied
various random input sequences with different kurtosis, as
listed in Table I.

All random sequences were white processes with variance
one. Fig. 7 depicts the simulation results, where we again
averaged over 50 trials. Unlike the previous simulations, the
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TABLE 1
KurTOSIS OF VARIOUS DENSITY FUNCTIONS
Distribution Kurtosis
Bipolar 1
Uniform 1.8
Gaussian 3
K, (Modified Bessel) | 9
Gamma 11.66
10 T T T T L
E[é2(d)] °
[22(0) -
-10}+ I
] \
-2or \ i A Vi | [
|
~30f N \'
M
0 M (b) ]
g My i
_sol ‘
(@)
_700 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iterations ¢
Fig. 7. Learning curves for FELMS algorithm with ¥ and various random

input processes with different pdf («v = 0.3): (a) Bipolar, uniform, Gaussian;
(b) &Ky; (¢) Gamma.

power of the additive noise v(7) was set at —60 dB relative to
the input sequence in order to better observe the effect of the
various kurtosis. As can be seen from the figure, the higher
the kurtosis, the more the variation in the steady-state value.
The convergence speed and the stability bounds, however,
remained practically unchanged.

VII. CONCLUDING REMARKS

We have provided a study of the robustness and conver-
gence performance of gradient adaptive schemes in a purely
deterministic framework by following a time-domain feedback
analysis. In particular, conditions on the step-size parameters
were derived in order to result in overall /5 —stable structures
and faster convergence. No prior statistical assumptions or
independence conditions were employed. Instead, local and
global passivity relations were emphasized along with energy
propagation arguments within a feedback cascade. Simulation
results were included to demonstrate the theoretical find-
ings.

We may add that the analysis of this paper can also be
carried out in a stochastic setting by determining conditions
on the error path filter in order to guarantee an /5 —stable map
between variances of relevant stochastic variables. The details
will be pursued elsewhere.

Moreover, the analysis also extends to other classes of
algorithms, e.g., to block adaptive filters and to updates that
involve nonlinear functionals (such as Perceptron training and
sign algorithms) [35]. The results can also be shown to be
related to developments in H*°—theory and can be extended
to a class of nonlinear robust adaptive filters [20].
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APPENDIX A
DERIVATION OF THE TRANSFER FUNCTION (5)

The kth entry of the vector u; is
w(i — k) = Ccos[Q(i — k)] = %(ej(i‘k)ﬂ + e_j(i"k)g).

Correspondingly, the update for the kth entry of the weight-
error vector (W;)y is given by

. ) Cr i il
(W) = (Wima ) = 57 [0 4 e716-00] g, ().

Ignoring initial conditions and using the z—transform, we
obtain

. C /- A A . o
Wi(z) = = i 7 ~M2— (Ea (ze'm)ff]'SQ + FE, (zem)ejm)
Likewise, using e,(i) = Yo o' u(i — k)(Wi_1),, we obtain
Eo(z) =

C

M-1
¢ X i\ i001—K) | TR 3,50 (k~1)
5 % ,;:0 [Wk(ze Je + Wi (ze’*)e ]

Substituting the expression for Wk(z) and ignoring the effects
of the mixing terms E,(ze%*?) and E,(ze~2?) for large

enough M [13], we can write

o M-—1
~ pC ~ 1 1
Ea(z) = - 4 E(l(z)<ze,jg_l + Z@JQ_‘1> )

W 1 — zcos(f2) -
2 22-2zc08(Q) +1 Ea(2).

However, we know that F,(z) = E,(z) + V (), and conse-
quently, the transfer function from v(-) to e,(-) is approxi-
mately (5).

APPENDIX B
PROOF OF THEOREM 1

If we compute the sum of both sides of (16) and ignore
W |2, we obtain

N N
Y a@leadF < IIWoall+ 4| D A6,

=0 =0

However, it follows from the relation for o(i) = —e,(i) in
(13), and from the triangular inequality of norms, that

N
S <

N

Mo

1=0

p(i)
A()

Combining with the first inequality above and using the
definitions of A(N) and «(N) prior to the statement of

fi(i)ea (9[-
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Theorem 1, we conclude that

w1l +~(NV)

When (1 — A(N)) > 0, we conclude that (17) holds.
As for the second bound, we note that

N N
> u@lead” < v(N) Y ai)ea (D)
i=0

i=0
and use similar arguments to the above to conclude that (18)
holds.

APPENDIX C
DERIVATION OF THE BOUND IN LEMMA 2

Define, for notational convenience, a(7) = u(i)/a(i). If we
substitute 7(i) = a(i)v() — (1 — a(i))e, (i) into (15), we get
the following equality:

(2 = a(i) [IW:l12 + (i) lea() )
den(7)

where the expression for the denominator is

den(i) = (i) (Wi + u(@)[o()[* ) -
(1 = a(@) (D)@ (@)es (i) + v ([eali))] -
(1= @) [19:ll? + -1 2]
We now verify that for 1 < a(i) < 2
~{@Dlo@e (@) + o @eald] = Il — [¥-1]?} 2 0.

Indeed, if we substitute for W,, as given by (3), and use
€a(?) = eq(i) + (i) = w;Wy_1 + v(i), we obtain that the
above inequality is equivalent to verifying the nonnegativity
of the following expression:

- . Wi_1
[Wi—l U(’L)]CL}*(%‘)}
where the central matrix is

o |2 p()(a() = 2)uiw; u(i)(a(i) - Q)HZ‘}
pli) (i) = 2)u; p(i)er(i) '

We now verify that the central matrix is positive semidefinite.

Its top left-corner block is positive semidefinite, and its Schur

complement S can be seen to be

_ 2p(i)ali) (ali) — 1)
2+ afi)(ali) - 2)

which is larger than or equal to zero for a(7) between one and
two. It then follows that we can write

(2= ali) [[IWl1? + (i) ea D) ]

a(@)[[Wial|? + p(i)e(i) (i)
which establishes the result of LLemma 2.

=1
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