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Diffusion Least-Mean Squares Over Adaptive
Networks: Formulation and Performance Analysis

Cassio G. Lopes, Student Member, IEEE, and Ali H. Sayed, Fellow, IEEE

Abstract—We formulate and study distributed estimation
algorithms based on diffusion protocols to implement coopera-
tion among individual adaptive nodes. The individual nodes are
equipped with local learning abilities. They derive local estimates
for the parameter of interest and share information with their
neighbors only, giving rise to peer-to-peer protocols. The resulting
algorithm is distributed, cooperative and able to respond in real
time to changes in the environment. It improves performance
in terms of transient and steady-state mean-square error, as
compared with traditional noncooperative schemes. Closed-form
expressions that describe the network performance in terms of
mean-square error quantities are derived, presenting a very good
match with simulations.

Index Terms—Adaptive networks, consensus, cooperation, dif-
fusion algorithm, distributed processing, distributed estimation.

I. INTRODUCTION

CONSIDER a network of nodes observing temporal data
arising from different spatial sources with possibly dif-

ferent statistical profiles. The objective is to enable the nodes
to estimate a vector of parameters of interest from the observed
data. In a centralized approach, the data or local estimates from
all nodes would be conveyed to a central processor where they
would be fused and the vector of parameters estimated. Such
an approach calls for sufficient communications resources to
transmit the data back and forth between the nodes and the cen-
tral processor, which limits the autonomy of the network, be-
sides adding a critical point of failure in the network due to the
presence of a central node. In addition, a centralized solution
may limit the ability of the nodes to adapt in real-time to time
varying statistical profiles. In other words, tracking performance
is degraded.

Alternatively, each node in the network could function as an
individual adaptive filter whose aim is to estimate the parameter
of interest through local observations [1]–[3]. These individual
estimates across the nodes could then be locally fused with their
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neighboring estimates in the network in order to obtain an es-
timate that is influenced by the data at the nearby nodes; for
instance, by resorting to consensus implementations. However,
the several intermediate averaging iterations used to fuse the
local estimates are generally performed at a different time scale
than the local adaptive processing, and after sufficient conver-
gence has been attained. Such procedures drain substantial en-
ergy and communication resources and also tend to limit the
tracking ability of the network to respond in real time to statis-
tical changes in the data. In a solution along these lines, the in-
dividual filters at the nodes are responding mainly to local tem-
poral data. Their ability to exploit and respond in real-time to
the spatial profile of the data across the nodes is decreased.

This paper proposes and studies a cooperation strategy that
adopts a peer-to-peer diffusion protocol, in which nodes from
the same neighborhood are allowed to communicate with each
other at every iteration. At each node, estimates exchanged with
neighboring nodes are fused and promptly fed into the local
adaptive filter. In other words, information is diffused among
neighboring nodes so that the estimate at each node is a func-
tion of both its temporal data as well as the spatial data across the
neighbors. In doing so, an adaptive network structure is obtained
where the structure as a whole is able to respond in real-time to
the temporal and spatial variations in the statistical profile of the
data [4]–[6]. Different adaptation or learning rules at the nodes,
allied with different cooperation protocols, give rise to adaptive
networks of various complexities and potential. Our formulation
is useful in several problems involving estimation and event de-
tection from multiple nodes collecting space–time data [7]–[13].

The subsequent sections in the paper detail the mathemat-
ical model and study the performance of the resulting adap-
tive network. Explicit expressions are derived for the mean-
square performance. Some interesting questions that arise are,
Can individual adaptive nodes benefit from cooperation? And
how to ally cooperation with adaptation? It should be noted that
studying the performance of such networks of adaptive nodes
is rather challenging in comparison to the study of the perfor-
mance of single stand-alone adaptive filters. This is because,
in the networked case, the adaptive nodes influence each other.
Moreover, the data spatial profile varies across nodes. The con-
tributions of this work are therefore to motivate and propose a
diffusion adaptive network, and to study its performance by de-
riving closed-form expressions for both local (at the node level)
and global (at the network level) learning curves and mean-
square deviations and errors for Gaussian data and sufficiently
small step sizes. In addition, the paper indicates how to add an
additional layer of adaptation to the network where nodes are
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able to learn which nodes are more or less reliable and to assign
different weights to information received from them.

The paper is organized as follows. In Sections II and III, we
formulate a global estimation problem and derive a distributed
adaptive solution that relies on cooperative diffusion protocols
[11]. Sections IV–VI analyze the transient performance of the
diffusion protocol, deriving closed form expressions for the net-
work global and local learning behavior. In Section VII, we ad-
dress the problem of network stability and show the stabilizing
effect of the cooperative diffusion protocol. Section VIII deals
with the steady-state performance of the adaptive network. We
provide closed form expressions for the mean-square deviation
(MSD) and the excess mean-square error (EMSE). Finally, in
Section IX we propose an adaptive variant of the diffusion pro-
tocol inspired by recent work in convex combination of adaptive
filters [14]–[17]; Section X closes the work and points directions
for future extensions.

II. THE ESTIMATION PROBLEM

We would like to estimate an 1 unknown vector
from measurements collected at nodes spread over a net-
work (see Fig. 1). Each node has access to time realizations

, , of zero-mean random data
, with a scalar measurement and a 1

regression row vector; both at time . The estimation problem
can be formulated as follows. We collect the regression and
measurement data across all nodes into two global matrices

(1a)

(1b)

and then seek the 1 vector that solves

(2)

where is the expectation operator. The optimal solution
of (2) satisfies the orthogonality condition [3]

(3)

so that is the solution to the normal equations

(4)

which are defined in terms of the correlation and cross-correla-
tion quantities

and (5)

For later reference, we also introduce the block diagonal matrix

(6)

which is related to as

(7)

where

(8)

is , with the identity matrix.

III. DIFFUSION LMS

Our objective is to develop an adaptive distributed procedure
that approximates the solution of (4) and delivers a good es-
timate of that vector to every node in the network. To design
the adaptive estimation protocol we first need to choose a co-
operation strategy [4]. In several scenarios, nodes in a network
have access only to their peer neighbors; therefore, peer-to-peer
protocols are often preferred [7]; they lead to savings in commu-
nications and energy resources. We resort to diffusion protocols
where every node in the network continuously combines es-
timates from its neighborhood. Specifically, at any given time

, we assume that node has access to a set of unbiased
estimates from its neighborhood , which is
defined as the set of all nodes linking to it, including itself. The
estimates are generally noisy versions of , say

(9)

for some error . These local estimates are fused at node
, yielding

(10)

for some local combiner function . Observe that we are al-
lowing the neighborhood to be time dependent as well. In
this work, we shall employ linear combiners, and replace by
some weighted combination, say

(11)

for some combination coefficients to be determined.
The aggregate estimate at node can be interpreted as
some weighted least-squares estimate of given the estimates

at the neighbors of node . Thus, note that if we collect
the estimates into a column vector

(12)

we may formulate a local weighted least-squares problem of the
form

(13)

where is given by (8) and the weighting matrix is

Then the solution to (13) is easily found to be

(14)
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Fig. 1. Distributed network with N nodes.

The coefficients give rise to a combination matrix
that carries information about the network topology: a nonzero
entry means that nodes and are connected. If we redefine
the combining coefficients as

(15)

then (11) is obtained with

(16)

Because of (16), we shall assume that is a stochastic matrix
hereafter. Note that the aggregation step helps fuse information
from nodes across the network (and not just from the neighbor-
hood ) into node . This is because generally every node in

will have a different neighborhood for connected topolo-
gies—see Fig. 1.

Once we have an aggregate estimate for , and in
order to foster adaptivity, we subsequently fuse the resulting
estimate into the local adaptive process, so that it can
rapidly respond to changes in its neighborhood and update it
to (see Fig. 2). Analysis and simulation will show that
this scheme leads to a robust distributed adaptive system that
achieves smaller error levels in steady-state than its noncooper-
ative counterpart (where each node in the network adapts inde-
pendently of other nodes and of aggregation).

The proposed diffusion strategy can therefore be described in
general terms as follows:

(17)

(18)

for local step sizes . As mentioned before, the combiners
may be nonlinear, or even time-variant, to reflect changing
topologies or to respond more efficiently to nonstationary
conditions. For instance, in Section IX, we propose an adap-
tive protocol inspired by earlier work on convex combination
of filters [14]–[17], which we extend to the multiple data
sources case. The neighborhoods may also be time-variant.
The resulting adaptive network is a peer-to-peer estimation
framework that is robust to node and link failures and exploits
network connectivity.

Fig. 2. Network with a diffusion cooperation strategy.

In order to illustrate the technique, we explore a linear com-
biner model allied with an LMS-type local adaptive rule. The
strategy is summarized as follows:

(19a)

(19b)

for a set of local combiners satisfying (16).

IV. NETWORK GLOBAL MODEL

Algorithm (19) embeds the combined effect of several in-
terconnected adaptive filter updates, in addition to the network
topology. Hence, performance analysis tends to be challenging.
The derivations and analysis in the remainder of the paper will
reveal some interesting insights on the role of cooperation and
network topology on system performance.

We resort to state-space representations. We introduce the
global quantities

in terms of the stochastic quantities whose realizations appear
in (19). Let

(20)

be a diagonal matrix collecting the local step sizes. The mea-
surements are assumed to obey a traditional model of the form
[1], [3], [18], [19],

(21)

where is background noise, assumed independent over
time and space and with variance . Linear models of the
form (21) are able to capture or approximate well many input-
output relations for estimation purposes [3], [18]. Using (21),
we can write

(22)

where and
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With these relations, expressions (19) admit the following
global representation:

(23)

or, in a more compact state-space form:

(24)

where is the transition matrix and
is the diffusion combination matrix with entries .
Recall that satisfies , where .
Possible choices for the combiner are the Metropolis,
the Laplacian and the nearest neighbor rules [20]–[22]. The
Metropolis rule is defined as follows. Let and denote the
degree for nodes and , i.e., , and choose

if are linked
for and not linked
for

(25)

The Laplacian rule is given by

(26)

where , with ,
and is the network adjacent matrix formed as

if and are linked
otherwise.

(27)

By definition, a node is linked to itself, i.e., . For the
nearest neighbor rule, the combiner matrix is defined as

otherwise.

V. MEAN TRANSIENT ANALYSIS

We are interested in studying the transient behavior of coop-
erative systems governed by equations of the form (24). As is
well known, it is rather challenging to study the performance
of single stand-alone adaptive filters. Several simplifying as-
sumptions have been traditionally adopted in the literature to
gain insight into the performance of such adaptive algorithms.
The challenges are compounded in the adaptive network case
because we now face a dynamic and interconnected collection
of nodes that influence each other’s behavior. To proceed with
the analysis we shall therefore introduce similar assumptions to
what has been used before in the adaptive literature, and rely on
them to derive useful performance measures. Simulations will
show that the results obtained in this manner match well with
real performance for sufficiently small step sizes.

We study initially the mean behavior of the network and show
how cooperation has a stabilizing effect on the network. Thus,
introduce the global weight error vector

(28)

Noting that , using the global data model (22) and
subtracting from the left side and from the right side
of (24), we get

(29)

or, equivalently

(30)

Assuming temporal and spatial independence of the regression
data and taking expectations of both sides of (30) leads
to

(31)

where is block diagonal and
. Henceforth, for stability in the mean we

must have

(32)

with . In other words, the spectrum of
must be strictly inside the unit disc. In the ab-

sence of cooperation (i.e., when the nodes evolve independently
of each other and therefore ), the mean error vector
would evolve according to

Thus, we find that in the adaptive network case (31), conver-
gence in the mean will effectively depend on space-time data
statistics (represented by ) and network topology (represented
by ). Using matrix 2-norms1 we have

(33)

Note that due to the block structure of , is Hermitian; and
recall that . Hence, we have

(34)

That is, the network stability on the mean depends on the local
statistics (represented by ) and on the cooperation strategy
(represented by ). Whenever a combiner rule is picked so that

, the cooperative scheme will enforce robustness over
the noncooperative scheme (in which case ). For com-
biners that render stochastic and symmetric matrices , we have
that . As a result, we conclude that

(35)

In other words, the spectral radius of is generally smaller
than the spectral radius of . Hence, cooperation under the dif-

1The 2-norm of a matrix A is defined as the largest singular value of A.
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Fig. 3. Network topology (left) and network statistical settings for Example 1.

Fig. 4. Example 1: network modes for N = 7, M = 5, � = 0:1, and
� = 10 . The symbol � denotes the spectral radius (maximum eigenvalue
norm) of the coefficient matrices BG (diffusion) and B (no cooperation).

fusion protocol (19) has a stabilizing effect on the network.
Fig. 3 presents the settings of a typical network (Example 1):
the plot on the left depicts the network topology. The plot on
the right presents the statistics of the regression data, generated
via Gaussian 1–Markov sources with local correlation functions
of the form , where is the correlation index.
Note in Fig. 4 how cooperation decreases the eigenmodes of the
mean weight error evolution, as compared with the noncooper-
ative scheme.

Naturally, convergence in the mean is only a necessary con-
dition for convergence in the mean-square sense, which will be
addressed in the next section.

VI. MEAN-SQUARE TRANSIENT ANALYSIS

We now proceed to perform a detailed transient analysis of the
adaptive network and characterize the evolution of its learning
curves [refer to (68)–(69), (72), and (82)], as well as derive
expressions for the mean-square-deviation (MSD) and excess
mean-square-error (EMSE) [see (73), (74), (89), and (91)]. We
also derive conditions and present a design strategy to ensure
network mean-square stability [see (68)–(69) and (97)].

A. Weighted Energy and Variance Relations

We start by defining the local output estimation error at node
as

(36)

and collect the errors across the network into the global vector
, so that

(37)

where

(38)

and recall that

(39)

Introduce further the global a priori and a posteriori weighted
estimation errors:

and (40)

for some arbitrary matrix . The freedom
in selecting will enable us later to characterize the MSD
and EMSE performance of the network—see (72)–(74) and
(88)–(91) further ahead. Substituting (38) into (39), performing
weighted energy balance on both sides, and taking expectations
gives

(41)

Substituting the error definitions (38) and (40) into (41) yields

(42)

(43)

Note that no assumptions are needed to arrive at (42)–(43).
However, the weighting matrix is data dependent and, as
such, it is a random quantity. This makes the analysis very chal-
lenging, so that some assumptions need to be introduced for the
sake of mathematical tractability. Once more, we proceed by
assuming temporal and spatial independence of the regression

data, so that is independent of , as is common in the
analysis of traditional adaptive schemes [3], [18]. In this way,
the random weighting matrix can be replaced by its mean
value (a deterministic matrix ) [3], [23], which
reduces (42)–(43) to the following variance relation:

(44)

(45)

Although unrealistic in general, the temporal independence as-
sumption is frequently adopted in the adaptive filtering litera-
ture, and leads to a good match between theory and simulations
for sufficiently small step sizes. Moreover, spatial independence
is more likely to hold in the distributed domain. It is important to
remark though, that these assumptions do not compromise the
spatial–temporal nature of the problem, neither its distributive-
ness [4].
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B. Gaussian Data

In order to evaluate the network mean-square behavior,
(44)–(45) require the calculation of certain data moments. In
particular, the last term in (45) is difficult to evaluate in closed
form for arbitrary data distributions. We illustrate the analysis
here for Gaussian data. Thus, assume that the regressors arise
from circular Gaussian sources [3]. Introduce the eigendecom-
position , where ,
and diagonal, and define the transformed quantities

where follows from (20). We then rewrite the variance
relation (44)–(45) in the equivalent form in terms of transformed
variables

(46)

(47)

We now exploit the block diagonal structure of several quantities
in these relations in order to express them in a more compact
manner by using a convenient vector notation [3], [23]. To do so,
we first define the block vector operator , which converts
a block matrix into a single column vector in two steps as
follows. Let be an block matrix

...
...

...
. . .

...
(48)

where each block is . First, the block columns

are stacked on top of each other, yielding the matrix

...
(49)

Subsequently, we move along and vectorize each individual
block via the standard operator, so that for each
stacked block column , we get

with (50)

the final vectorized matrix is obtained from

(51)

We thus write to denote the conversion of into
a single column. We also write to recover the

original block matrix form of the column vector . We further
define the block Kronecker product of two block matrices and

, which is denoted by . Its -block is defined as

...
. . .

... (52)

for . The block vector operator (51) and the
block Kronecker product (52) are related via [24], [25]

(53)

We now use these notations to evaluate the required data mo-
ments in (46)–(47), namely

and
(54)

The first moment is trivial and given by . By using
(53) and after vectorization, the second and third terms on the
right-hand side of (47) are given by

and

The second term in (54) can be verified to be

(55)

where is a diagonal matrix given by

The entry of is given by

for
for

where and , so that (55) gives

(56)

with , and .
The fourth-order moment in (54) is challenging, but it can be

handled by appealing to the Gaussian factorization theorem [3].
To begin with

Now both and are block diagonal, so that

(57)
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which gives (58), shown at the bottom of the page, where

(59)

The -block of is given by [3]

(60)

where for complex data and for real data. Now
express as

(61)

where is the block column of :

(62)

It follows that

(63)

where

(64)

and

.

Hence

(65)

where

and . We thus find that

(66)

where

and (67)

In summary, grouping the results and substituting into (46), we
conclude that the mean-square behavior of the adaptive network
is described by the following recursion for Gaussian sources:

(68)

(69)

In the above we are using the compact notation to refer
to , with the weighting matrix replaced by its vector
representation . Iteration (68)–(69) captures the
essence of the global dynamic behavior of the adaptive network.
We now illustrate how it can be used to extract useful informa-
tion about the learning, convergence, and stability behavior of
the network.

C. Learning Behavior

Iterating (68)–(69), we get

...

(70)

where and the last equality in (70) follows from
the fact that the local adaptive filters are initialized with zeros.
Relations (70) lead to the result

(71)

which in turn motivates the following useful recursion:

(72)

This recursion describes the evolution of the variance of the
transformed weight error vector . By iterating this recursion,
we are able to obtain the global learning curve, , for
the adaptive network. We define the global mean-square devia-
tion as the average of the global quantity , i.e.,

. Therefore, choosing
in (72) leads to

(73)

(58)
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Fig. 5. Network topology and statistics for Example 2.

with initial condition . In a similar
vein, choosing leads to
the global learning curve for the excess mean-square
error , where

, so that

(74)

with initial condition .
Fig. 5 presents the network settings of Example 2: an example

of an adaptive network operating with the diffusion protocol
(19), with the respective performance depicted in Figs. 6 and
7. Note that an expressive improvement in terms of speed of
convergence and steady-state performance is achieved over the
noncooperative scheme.

The result (72) can also be rewritten in the form of a linear
first order state-space model. To see this, we use (70) to write

(75)

(76)

(77)

...

(78)

These relations express the variances of the transformed weight
error vector in terms of increasing powers of . The recursion
can be halted, leading to a closed form solution that describes
the global network transient behavior. To do so, we appeal to
the Cayley-Hamilton theorem. It states that any matrix satisfies
its characteristic polynomial . That is

(79)

in terms of the coefficients of the characteristic polynomial
of . It follows that

(80)

Fig. 6. Example 2: Global mean-square deviation (MSD) curve. This curve

was obtained by averaging Ek   k across all nodes and over several ex-
periments.

Fig. 7. Example 2: Global excess mean-square error (EMSE) curve. This curve

was obtained by averaging Ejeee (i)j , where eee (i) = uuu    , across
all nodes and over several experiments.

Substituting (80) into (78) gives

(81)

We can now group (75)–(77) with (81) into the state-space form

(82)

where the state vector is defined by

(83)
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and the feedback matrix is given by

...
...

(84)

Moreover

(85)

The linear state-space model (82) describes the global network
mean-square behavior in a fundamental way, stating that the
adaptive network indeed behaves as a global adaptive entity on
its own right. The network mean-square learning behavior may
be retrieved by observing the leading entry of the network state
vector .

D. Local Node Performance

The global quantity aggregates the contributions of
the individual nodes’ errors. As a result, by filtering out the other
nodes’ components we may retrieve the local node component
from the global error . We do so by exploiting the degree
of freedom in selecting the weighting matrix , and
define the following spatial filtering matrices whose purpose is
to extract the local quantities from the global expressions:

MSD (86a)

EMSE (86b)

where is the diagonal matrix with the eigenvalues corre-
sponding to node and is a block of zeros. For con-
venience of notation, let us further define the vectors

and (87)

Selecting as the filtering vectors (87) in the global learning
recursion (72) yields the local MSD at node [compare with
expression (73)]:

(88)

(89)

with initial condition . Similarly, for the
EMSE at node we have [compare with expression (74)]:

(90)

(91)

with initial condition .

Fig. 8. Local MSD evolution at nodes 1 and 5 for Example 2, simulation and
theory (89). We depicted the curves corresponding to the nodes whose perfor-
mance deviated the most from each other, the other nodes presented practically
the same performance.

Fig. 9. Local EMSE evolution at nodes 1, 4 and 5 for Example 2, simulation
and theory (91).

The plots in Figs. 8 and 9 illustrate the local transient per-
formance for a few nodes in the same network as that of
Fig. 5 (Example 2). Note the good matching between theory
and simulations. Moreover, a very interesting effect may be
noted in those pictures: despite the diversity of network sta-
tistics and relatively low connectivity of the topology consid-
ered, an equalization effect takes place at the node level: all
the nodes learn practically at the same rate and experience
an equal learning behavior, in both transient and steady-state
(see, particularly, Fig. 8). In other words, the analytical model
and simulations suggest that no consensus iterations are nec-
essary to drive all the agents in the network to a reasonable
agreement [4].
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We now summarize the main results of the mean-square per-
formance of the adaptive network in the following theorem

Theorem 1: Consider an adaptive network operating under
the diffusion protocol (19) with space-time data
satisfying (21). Assume further that the regressors are
circularly Gaussian and independent over time and space. The
network mean-square deviation and excess mean-square error
evolve as follows:

MSD

EMSE

with initial conditions and
, respectively. Matrix is given by (69),

, and
collects the regressors eigenmodes and it is obtained from

. Similarly, the local mean-square performance
at any node evolves as

MSD

and

EMSE

with , , and filtering
matrices and given by (86).

E. To Cooperate or Not to Cooperate?

In this section, we compare the diffusion cooperative scheme
with the two noncooperative strategies mentioned in the intro-
duction, which run independent adaptive filters at each node:

(92)

In the first case, the local estimates are fused at a central node
and a global estimate is generated, which is sent back to
the nodes. In the second case, each node fuses its local estimate
and the estimates received from the neighborhood into ,
following the same rule as (19a). The noncooperative fusion rules
are

global (93a)

local (93b)

Note that in the noncooperative schemes the adaptive process
does not take advantage of the fusion step. For comparison pur-
poses, the mean-square deviation is calculated as

global (94a)

local (94b)

Fig. 10. Network topology and data statistics for Example 3.

Fig. 11. MSD comparison for Example 3. The step size employed was � =

0:042 and the background noise power was � = 10 .

Fig. 12. Network topology and data statistics for Example 4.

Examples 3 and 4 are depicted in Figs. 10–13 and present
comparisons in terms of MSD evolution for the diffusion pro-
tocol (19) and the noncooperative schemes (92)–(93). In Ex-
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Fig. 13. MSD comparison for Example 4. Note the robustness of the diffusion
algorithm (19). The step size employed was � = 0:042 and the background
noise power was � = 10 .

ample 3, depicted in Figs. 10 and 11, the diffusion scheme out-
performed both noncooperative schemes; moreover, it achieved
practically the same steady-state performance as the centralized
fusion scheme, which could be also implemented approximately
by running a consensus algorithm. Example 4 is captured in
Fig. 13, which shows the robustness and superior performance
of our cooperative scheme. Fig. 12 plots the corresponding net-
work settings.

Compared to the local noncooperative fusion technique
(93b), our scheme has the same computational and communi-
cation complexity, but it is more robust and superior in terms
of estimation performance. The global fusion scheme (93a)
implies the existence of a fusion center, which for general
networks may generate considerable communication overheads
and drains valuable energy resources to be implemented. It
is fundamentally not distributed and outperformed by the
diffusion cooperative protocol (19).

VII. MEAN-SQUARE STABILITY

Let us rewrite in (69) as

(95)

in terms of the symmetric matrix

(96)

For stability in the mean-square sense, we must ensure through
the selection of and the cooperation protocol (i.e., ) that
all eigenvalues of satisfy

(97)

so that stability in the mean and mean-square senses require
that the must satisfy (32) and (97). We will present here
a simple procedure that is sufficient to ensure global stability.
Resorting once more to matrix 2-norms allows us to write

(98)

Fig. 14. The N M modes of the coefficient matrix F for Example 2. �
stands for the spectral radius of the diffusion metropolis protocol. � is the
spectral radius of the noncooperative counterpart.

which can be expressed in terms of the standard Kronecker
product [26]

(99)

for some (orthogonal) permutation matrix . The transforma-
tion is unitary, thus we have . In addition, re-
call that is symmetric and , hence

(100)

Equation (100) reveals a fundamental property of the adaptive
network: stability of the overall system is governed by the de-
sign of the individual adaptive nodes (represented by ) and by
the chosen cooperation protocol (represented by ). For com-
biners that render stochastic and symmetric matrices , as the
Metropolis and the Laplacian rules, we conclude from (100) that

(101)

That is, the spectral radius of , which represents
the cooperative system, is generally smaller than the spectral
radius of , which may be interpreted as the noncooperative
scheme, implemented by individual adaptive filters. Choosing
a cooperation protocol that ensures is sufficient to
enforce stability on the network level, because of (100). Variable
step size strategies may also be employed by following
similar guidelines. We thus conclude that cooperation under the
diffusion protocol (19) has a stabilizing effect on the network
also in the mean-square sense.

Fig. 14 depicts the eigenmodes for the example whose set-
tings and curves were depicted in Figs. 5–7. Note how coopera-
tion radically decreases the learning modes of the global system,
confirming what was observed in Figs. 6 and 7.
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VIII. STEADY-STATE PERFORMANCE

A. Global Network Performance

We now examine how the network stabilizes after the cooper-
ative learning process reaches steady-state. The global steady-
state quantities MSD and EMSE are defined as

MSD (102a)

EMSE (102b)

as . In steady-state, (68) leads to

(103)

so that to calculate the MSD and the EMSE we need to eval-
uate the weighted norms and , where

and . We are free to select in (103).
Thus, consider two possibilities for defined by

and (104)

They lead to

MSD
(105a)

EMSE
(105b)

which describe the global network performance in steady-state.

B. Local Node Performance

Steady-state performance at the node level may also be re-
trieved from the global expressions by exploiting again the de-
gree of freedom in selecting in (103). To begin with, note that
the local mean-square performance of node is defined as

and (106)

in terms of the local stationary vectors and where
. Now, inspecting the global steady-state

quantities (102) and considering the block diagonal structure
of we have

(107a)

(107b)

Thus the global mean-square performance is the average of the
individual node contributions. We want to retrieve the individual
node component from the global summation. Once more, we re-
sort to the filtering matrices (86) and rewrite the local quantities
(106) in terms of the global quantities and the filtering matrices:

Thus we select the in (103) as the solution to the linear systems
of equations

MSD (108a)

EMSE (108b)

Fig. 15. Network topology and statistics for Example 5.

Fig. 16. Global MSD performances for Example 5.

Fig. 17. Global EMSE performances for Example 5.

so that

MSD
(109a)

EMSE
(109b)

which describe the steady-state performance attained at node .
Figs. 15–19 depict Example 5, which is an example of an

adaptive network operating in steady-state. The network pro-
file is given in Fig. 15. Figs. 16 and 17 present the network
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Fig. 18. Local MSD performance for Example 5.

Fig. 19. Local EMSE performance for Example 5.

global performance, and Figs. 18 and 19 show the network per-
formance at the individual nodes. One may observe the close
match between simulation and theory, as well as the improve-
ment in performance over the noncooperative case.

IX. ADAPTIVE DIFFUSION

We have assumed so far static combination of nearby estimates
through the use of constant combination coefficients . How-
ever, in some instances, a particular node may be performing
better estimation than its neighbors. As a consequence, a “blind”
aggregation that assigns equal weights to every node in the neigh-
borhood may not be the best policy. An alternative to this ap-
proach is to let the network adjust these weights as well. In this
way, we end up adding another layer of adaptation to the network.

There are many ways to design the combiner function in
(17) and make it adaptive. We will illustrate the idea by resorting
to the adaptive convex combination studied in [14], [27].

The strategy dynamically generates the aggregate estimate
as follows (see Fig. 20):

(110)

Fig. 20. Adaptive diffusion strategy.

where is a local dynamic combiner and is
obtained via [compare with (11)]

(111)

The resulting is then presented to the local adaptive node

(112)

(113)

The combiner is defined as a real function of a time-
varying parameter in order to enforce convexity. We select
a sigmoidal function relating to due to its good perfor-
mance [27], [28] yielding

(114)

At each node, is adapted indirectly via in order to min-
imize the local mean-square error, say as

(115)

Adopting the gradient-descent rule (115) and using (110)–(113)
lead to the following adaptation rule for :

where is a nonnegative exponent introduced to control conver-
gence. In summary, the adaptive diffusion protocol is described
by the following equations:

(116)

The operation of the adaptive diffusion scheme (116) is il-
lustrated in Example 6, which is captured in Figs. 21–24. For
this example, , , and 150 200
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Fig. 21. Network topology and statistical profile for Example 6.

Fig. 22. Example 6: Transient EMSE curve.

Fig. 23. Example 6: transient MSE curve.

and respectively. Note in Fig. 22 that adaptive dif-
fusion is faster than the standard diffusion protocol, but with
slightly larger error (7 dB @ 60 dB) due to the extra adaptive
layer (gradient noise). However this effect can be balanced by
designing , although convergence gets slightly slower. Fig. 24
shows the adaptive weights for a few nodes. A weight close
to one means that the corresponding node is performing better
than its neighborhood’s average estimates, e.g., nodes 1 and 3.
Likewise, nodes 5 and 10 were assigned small weights, meaning
they are performing worse than the aggregated neighbors’ esti-
mates. Note how nodes with higher SNR, e.g., nodes 1, 3, and 4,

Fig. 24. Adaptive combiners for Example 6.

were assigned larger weights and nodes with lower SNR, e.g.,
nodes 2, 5, 8, and 10 were assigned smaller weights.

An important remark arises from the equalization effect pro-
duced by the diffusion protocol: it may limit the impact of the
adaptive layer because all the nodes may be performing nearly
the same. In the framework proposed here, it is mostly effective
to combat pathological cases, or node/link failures. However,
other arrangements that further enhance the adaptive layer per-
formance are possible and are currently under study.

X. CONCLUDING REMARKS

One of the main results of this work is to show that cooper-
ation improves performance from the estimation point of view,
not only in terms of saving computation and communication re-
sources. Particularly, cooperation has a stabilizing effect on the
network. One can design the individual filters using local infor-
mation only in order to achieve (local) stability and implement
diffusion protocols to improve global performance.

Closed-form expressions for global and local mean and
mean-square performance have been derived, matching very
well the simulations that have been carried out. As a natural
evolution of the (static) diffusion protocol, an adaptive imple-
mentation has been proposed, which in many cases improves
the network learning process when there is an imbalance among
the nodes in terms of learning rates.

In this work, we studied the LMS implementation operating
with Gaussian signals. Other strategies can be studied using
the formulation presented here, such as the distributed normal-
ized LMS (dNLMS), the distributed affine projection algorithms
(dAPA) and distributed RLS implementations [6]. Analysis for
these algorithms operating in networks with changing topolo-
gies and observing non-Gaussian data is available and it will be
treated in future publications.
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