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Ability of Adaptive Filters to Track Carrier Offsets
and Channel Nonstationarities

Nabil R. Yousef Student Member, IEEENd Ali H. SayedFellow, IEEE

Abstract—This paper studies the tracking performance of adap- The purpose of this paper is to present a framework for the
tive filters operating in the presence of two sources of nonstation- tracking analysis of adaptive algorithms that handles simultane-
arities: carrier frequency offsets and random channel variations. ously both cyclic and random system nonstationarities. In par-
Both impairments are common in digital communications due to . - . P
mismatches between transmitter and receiver carrier generators ticular, the results will allow us to quantify the d.egradat|0n In
and channel fading. The paper derives expressions for the mean- Performance that results, for example, from carrier offsets. The
square error and shows how filter performance is degraded under results will also suggest optimal choices for filter parameters
such nonstationary conditions. Selections of step sizes for optimal (e.g., step-sizes) in order to minimize the effect of such offsets
tracking performance are derived, different adaptive algorithms o, fijter performance. Several supporting simulations are pro-
are compared, and supporting simulation results are provided. vided

Index Terms—Adaptive filter, carrier offsets, mean-square | Section II, we motivate the data model that is employed in
error, nOnStat|Onary environment, traCkIr‘Ig anaIySIS. Sectlons =VI

. INTRODUCTION A. Model

DAPTIVE filters are often used in nonstationary environ- Let {u(i)} denote a sequence that is transmitted over an un-
ments where they are required to track time variations kfiown channel of finite impulse responsg of order M. Itis
an unknown system or channel [1]-[4]. The ability of adapssumed that the channel varies in time according to the rule
tive filters to track such variations has received considerable
attention in the literature over the last two decades (see, e.g., wi = w46 @)

[5]-[10]). Most of the existing works, however, have focused

on the case of random system nonstationarities whereby fyaerew ISI a.coEstant vecf:tofr, g_rﬂ;l |sha r?zr;ljom ;l)(;arturbatlon.
channel is assumed to vary according to a random-walk or M 2rexampie, In the case ot a fading chanmelwould represent
kovian model (see, e.g., [10]). the nonfading part of the channel, wher@asvould represent

A different scenario is very common in communication sy%—he falc_zllng paI;_t. Ir:hadd|t|on, SutCh FIR models are suitable for
tems where mismatches between the transmitter and recefv&de Ing m:’ Ipa C(E)mponen S ific ab he behaviér.of
carrier generators result in periodic system variations. Thesén general, we can be more speciic about the behavidr.o

variations can be damaging to the performance of adaptive Elgr example, in the case of a fading channel again, the perturba-

ters, even for very small carrier frequency offsets (see, e. on 0; can be modeled to a reasonable extent as an autoregres-

[11], [12]). The ability of adaptive filtering algorithms to track>V€ (AR) process of some orde{13]. A widely used approx-

such periodic system variations is not yet fully understood. Wat?nlolf:th'i process _|fs rt]he ﬁR(l) lmodel, which correspondsd
recent contribution in this regard is the work [11], which pe 0 p = 1. Furthermore, if the channel components are assume

formed a first-order analysis of the performance of the lead ) fade independently and following the same statistical model,

mean-squared.MS) algorithm in the presence of a carrier freIN€ Process can be modeled by the following AR(1) model:

quency offset only. Another earlier contribution is the work [9].

The effects of such carrier frequency offsets on other adaptive Oit1 = abi+ai 2)

algorithms, i.e., other thatMS, have not been addressed in thg ;oo

literature. Furthermore, trmombinecdeffects of both cyclic and

random system nonstationarities on the tracking performance of 0<|a| <1 (3)

adaptive algorithms has remained largely an openissue, even for

LMS. andq, is a zero-mean stationary random vector process with
a positive-definite covariance matri® = £(q;q}). For a
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then the undisturbed output of the channel is given by the inner TABLE |
productu;w?. However, due to measurement noise and mis- EXAMPLES FOR f. (1)
matches in carrier frequencies at the transmitter and receiver,

the received data is actually modeled by ALGORITHM J e@
LMS e()
d(i) = wywie? ¥ 4 u(0) 4) LMF (i)
LMMN de(i) + (1 — 6)e3(4)
wherew (i) is measurement noise, and the multiplicative term SA signfe(7)]
e’*¥ accounts for the carrier offset [11], [12]. NLMS e(i)/lui])?

The terme’** could also be used to model Doppler channel

variations in a wireless scenario, which result from reflections , _ . P
: ) ) : . An important performance measure for an adaptive filter is
of the transmitted signal off a remote object moving with con: L .
. : . Its steady-state mean-square-erfdSE), which is defined as

stant speed [such as a low flying airplane (airplane flutter) or a
swaying tower or skyscraper [15]]. Actually, many digital com- MSE = lim Ele(d)|? = lim E|v(i) + u;w;|?
munication standards use the ability of digital communication e e
receivers to track such Doppler shifts as a performance ind&Rere the weight error vectev; is defined by
for their ability to track time-varying channels (see [15] for
an equalization example in the context of terrestrial television

chlannels). the above di . ivat tof . trl].!nder the following often-realistic assumption:
n summary, the above discussion motivates us to focus inthis, 1 tha noise sequende (i)} is iid, with variances2, and

paper on datdd(:), u; } that arise from a model of the form statistically independent of the regressor sequenge (see,

VNVZ‘ = W;)C]“Z — W;.

©)

WO =w° + 6, (5) €9 [1]-[4]), we find that theASE is equivalently given by
0,01 = 0; +q; (6) MSE = o2 4 lim EJu;w;|>. (10)
d(i) =u;we’" + v(i) (7) In the sequel, we proceed to derive expressions for the steady-
0<]al<1 state excess mean-square-erfviGE)
E (qij) =Qé;;. ¢ = lim Elu;w;|? = lim Ele,(¢)]?

This model includes the effects of both cyclic and randof@r various algorithms, along with values for the optimum al-
system nonstationarities (throughandgq;), both of which are gorithm parameters that minimize tB®SE. By deriving these
common impairments in communication systems and es@(pressions, we arrive at several results on the tracking perfor-
cially in applications that involve channel estimation, channg&lance of adaptive filters. These results help clarify the effect

equalization, and intersymbol-interference cancellation.  ©f cyclic nonstationarities on the algorithms of Table I. With
the exception of a first-order analysis fbMS in [11], which
B. Adaptive Filtering Algorithms was performed in the absence of random nonstationarities (i.e.,

As stated previously, the purpose of this paper is to stuffff @ = 0 andq; = 0) and a related analysis in [9], such ef-
the ability of LMS-type adaptive filters to estimate and track€Cts are notyet fully understood. Furthermore, while common
such cyclic and random variations #?. The LMS family of trgckmg analysis in the literature assume a random-walk rr_10de|
algorithms is the most widely used in digital communicationdith € = 0, w? = 0 anda = 1 (see, e.g,, [16]-{18]), it
applications due to its simplicity and stability properties. WS out that assuming = 1 when cyclic nonstationarities
therefore consider general adaptive schemes of the form ~ &re present does not lead to practical design expressions.

Wir1 = W, + puf fo(4) (8) Il. FUNDAMENTAL ENERGY RELATION

where %" denotes Hermitian conjugation (complex conjugation !N this section, we derive an energy conservation relation
for scalars),w; is the estimate fow? at iterationi, 1« is the and explain its relevance to mean-square analysis. Thus, using

step size, and. (i) is the generic scalar function of the outpu{7)_(9)_’ we obtain the following recursion for the weight-error
estimation error vector:

o(s) = d(i) — wwi. Wips = Wy — o} fo(6) + ci? (11)

Different choices forf.(i) result in different adaptive algo- Where
rithms. Table | defined.(z) for some famous special cases of ciéWO(@iQ — 1) +0; (e’ — 1) + q;e’%. (12)

(8); see [1], [2] We further definea priori anda posterioriestimation errors as

IHere, we have neglected carrier phase noise for simplicity. Furthermore, the

N N N Y
offset frequency? is assumed to be constant over time. A more general model Ga(L) = w;wy, Gp(L) =u; (W7‘,+1 —c;e’ Z)
would include a time-varying term of the fored(?i++(#)) to account for offset

frequency and phase noise term. and use the data model (7) to find that

2The list in the table assumes real-valued data. For complex-valued data, we
replace=® by e|e|2, and define sig + jb] by (1/v/2)(sigra] + jsigrb]). e(d) = eq (1) + v(%).
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Moreover, if we multiply (11) byu; from the left, we also find It is easy to verify from (5) and (6) that

that Q
ep(i) = eali) — s |[2£ D). (13) , o

o . _ Equation (18) can now be solved for the steady-SEMSE
Substituting (13) into (11), we obtain, for nonzerp of various adaptive algorithms from Table I. This requires that

Wit1 = Wi — u; [ea(i) — e, ()] + ;e (14) several terms in (18) be evaluated and the resulting expression

[l solved for
By evaluating the energies of both sides of this equation, we find
that ¢ =limy oo Eea(i) .
s 1
w; 1—Cie]QZ 2+ ealt 2= w; 2+—6 D2,

[[wit | ||ui||2| @ = [lwill ||ui||2| »(0)]

(15) Due fto space limitations, we iIIustratg the procedurelfdts
Whenu; = 0, it is obviously true that and list the results for the other algonthmg; see also [18], [22],
R 2 (e (12 and [23] for other steady-state and tracking results in the ab-
[Wit1 = cie”™ |7 = [|wi|". (16)  sence of cyclic nonstationarities.
Both results (15) and (16) can be grouped together into a single
equation by defining ll. TRACKING ANALYSIS

o i .
(i) = ([lwl?) A. LMS Algorithm
in terms of the pseudo-inverse of a scalar so that we obtain  For LMS, we have

i1 — i@ 2 4 f@lea(i)[? = [[Wil12 4+ (i) |en(0) 2. £.00) = ei) = eali) + v(3). 1)

(17) Inorder to proceed, we need to evaluate the terms
This energy-conservation relation, which was first noted in - -
[19]-[21], holds forall adaptive algorithms whose recursions E(wi) and & (w;6;)
are of the form given by (8); there are no approximationghich appear in (18). We start with the first term. It turns out that
involved. It shows how the energies of the weight error vectofs(w;) takes the generic forme’* in steady state for some
at two successive time instants are related to the energies ofthdo verify this result, we call on the following steady-state
a priori anda posterioriestimation errors. independence assumptién:

Relation (17) was used in [22] in the special c&se 0, =  A.2 At steady statew; is statistically independent af;.*

1 to study the mean-square-error performance of adaptive filtersLemma 1: Consider theeMS recursion
Some care is required to extend the analysis to the context of this
paper due to the complications introduced bysheultaneous

Wir1 = W; + pufe(?)

presence of cyclic and random nonstationarities. wheree(i) = d(i) —u;w;, and the datdd(¢), u; } is assumed to
satisfy the model (5)—(7). In steady state (iie-; ), it holds
A. Relevance to the Tracking Analysis that

We are interested in using the energy relation (17) to evaluate
theEMSE of an adaptive filter once it reaches steady state. Thus,
using (11)—(13) and’||w; 41 ||*> = E||w;||? in steady state, and
taking expectations of both sides, it is shown in Appendix A thathere
(17) becomes

E (w;) = velt¥

v = [I—ul — /] 7w (1 — ¢i®)

2uR€E (c3(D)/.(0)) =B ([l |£o()]*) +Tr(Q) (22)
+ |1 = IPPTr (W) andT’' = R £ Fu,u}.
1 — @ PTH®) Proof: Letv, = Ew;. Applying the expectation operator
- to both sides of (11) and using (12), (24)1, andA.2, we obtain
G2 O : o
_2Re_(1—e J )W Vip1 = (I—/JR)Vi—i-WO(C]Q _1)6391. (23)
< E ((Vvi—uu’{fe(i)) e—jQi):| ;oatp;ir)(();({eed we introduce the eigenvalue decomposition of the
—2Re| (1 - a*e™’®) R = U"AU (24)

% E (0* ( L . f ()) _jm) SWe are only requiringv. to be independent ai; in steady state. This is a
i \Wi — [, Jelt)) € weaker assumption than the usual full-blown independence assumptions [2].

40f coursew; is not statistically independent of;, except in very special
(18) cases. However, this assumption is realistic for small stepgsias well as for
where long filters. Intuitively, the update term in (8) is relatively small for small step
sizes, and the statistical dependencevgfon u; becomes weak. Furthermore,
in steady state, the erre(:) is also small, which makes the update term in (8)
even smaller.

W 2 wow’, @2 lim E(0;6)). (19)

=00
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whereU is a unitary matrix, and\ is a positive-definite diag- and
onal matrix with entries

A =diag {\;, A, ..., Ay} (25)

where),, is thenth eigenvalue oR.. Multiplying both sides of
(23) by U from the left and using (24), we get

C=u (1 — ocejQ) e — Q.

(30)

Proof: If we substitute (21) into (11), multiply by
e —J%% from the right, and apply the expectation operator to
Vi, = (I = pA)vi+ e/ both of its sides, we get

where Wit = " (T— yR) W, — CeI%. (31)

A . ;A or g&i
=Uvi, o =Uwe L. Multiplying both sides byU from the left and using (24), we get

We can now write the following recurrence relation for tité
element of the vectov:

V(4 1) = (1 — pr) vl () + e, n=1,...,M.  where
Taking thez transform of both sides of this equation, we get W/ 2UWwW,; C 2UcC.

#on(2) = (L= pAn) vn(2) + — edf? Using similar arguments to the ones thatled to (27), itis straight-
Using partial fractions, we can rewrite the above equation asforward to verify that each element of the mati; converges
to a constant times the time-varying exponeiit’ when the two
conditions given by (3) and (26) hold. It then follows that (28)
holds. To evaluatdV, we use (31) to obtain

Wi =a"(I—pA) W, - C'e/¥

zZ

vl (2) = fn + bn
P (M= ph,) oz — e
wherea,, andb,, are constants. Obtaining the inversérans-
forms of both sides leads to W = a* (I - pR)W — C.

U0) = dly (1= o) + 8,

n

Solving forW yields (29). ]
where With expressions for botlty and W in hand, we can now

, _ja proceed to solve (18) for thlEMSE of LMS. Substituting (21)
s by = bpe™ into (18) and using.1, we obtain

We now impose the condition (which is actually necessary for

LMS _, 2 2 2 N2 1. (a2
algorithm convergence) 2 =t o THR) + 4 B (HuZ” [ea(?)] ) + Q)

2 + 1 = T (WO) + |1 — ac?®?Tr(®)
H < (26) —5Q ox
)\ma.x —2Re[(1 —ecJ )W (I—/JR) V]
where \pax = max [)\1,)\2, ..., Axm]. Then, we get that in — 2Re Tr[(l — a*e—m) (T—uR) W] . (32

steady state(i — oo), v/, (¢) is glven by

ol (1) = b eI,

To solve for¢*MS, we consider three typical cases.

o 1) For sufficiently smalli;, we can assume that the term
By usingv; = Uv;, we conclude that the vecter, converges, 12E (|Jwi|?]ea(i)]?) is negligible so that

in steady state, to

v; = vl (27) (M = 262Tr(R) + &5 /3 (small )
‘ (33)
for some time-independent vecter To calculatev, we substi- here
tute (27) into (23) to get (22). [ | w
In a similar vein, we now verify that the matrix B =|1 — &%2Re TIW? (I — 2X)]
W, 2 E(%,07) + 1 — ac?’Re Tr[® (I — 2a*X,,)]
. +ReTr[Q(I-2(a" — /) X, )] (34)
takes the fornWe’*” in steady state for some mati’.
Lemma 2: Consider the same setting of Lemma 1. It then andX andX, are defined by
holds in steady-state that o
X 2T - ull) (I— pl — 1)
£ (W;) = We/t 28) X, 21— ) [0 (I-uT) - %1 . (35)

2) For larger values qf, (32) can be solved by imposing the
following assumption (which is realistic for longer filter).
" . —1 25
W = [o* (I— ) — 217" C 29) of'|A\e3(A)t| s.teady statey||u,||? is statistically independent

where
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This assumption is not needed in the case of constanthere
modulus data that arises in some adaptive filtering appli-
cations (see, e.g., [25]). Usirfg3 and (32), we obtain 402 ||we||2

( g [ ]) d'g ( ) a; = MO,ZU,%, as = Q2||Wo||2, as = M

o;
CLlVlS — % (|argeu)
(36) A roughestimate for, in this case is given by
3) For Gaussian white-input signdR. = o21), (32) can be U3
. " 492||WO||2 /
more accurately solved by usirg?2 to yield LMS 41
Mo -~ MO'%O% M ( )

LMS _ uMoZol4p=13 .
¢ = T ES Y- (Gaussiah

(37) Here, we can see that the optimum step size increases with the
frequency offsef2 and with||w?||* and decreases with the noise

whereM is the filter length A = 1 if the {u;} are com- varianceo? and the filter lengthAZ. Furthermore, the corre-

plex-valued, and. = 2 if the {u;} are real valued. More- sponding minimum achievablEMSE is approximately given

over, 3 is now given by by
_ 2 2 [1— 2P o112 3 oo 1/3
B =po, (2 - poy) m”w | min = 1 (Moo W) . (42)

2 242 |1_OéCjQ|2 . . _ _ . .
+ (1 — |af? (1 - po?) ) o2y eiQPTr(@) Random Nonstationarity On[{2 = 0, « = 1]: In this case,

(34) reduces to

S PR ol G “»”i)] Q. (39

a* (1 — po2) — i

A=TrQ).

To further understand the effect of the different types dfiere, the second term of tHeMISE decreases witl and in-
system nonstationarities on the tracking performance of tbheeases with the random nonstationarity terriJy. The op-
LMS algorithm, we specialize the above results to the followingmum value of the step size in this case is given by
two cases. For simplicity, we consider small values:odnd
white input signals.

Carrier Offset Only[Tr(Q) = 0]: In this case, the second s _ 1 Tr(Q)
and third terms on the right-hand side of (34) and (38) are equal ’ o, | Tr(R)
to zero. Furthermore, for small values @fand jio? > (1 —
cos(2), which is usually valid in practical cases, (38) can b@hich is the same expression given in [10].

approximated by For the more general case, the optimal valug cén obtained
) ) by minimizing theEMSE, which is given by (33), over a dense
8~ 0% (2 — poy) w2, (39) grid of all possible values gf.
pog

Here, it can be seen that unlike the stationary case, the steddlyLMF, LMNN, sign, andNLMS Algorithms
stateEMSE is not a monotonically increasing function of the L :
step sizq:. TheEMSE is composed of two terms. The first termra\é)\llg Inow extend the results to the other adaptive filters in
increases withu, the noise variance?, ands2. The second : ) b ified th , 22) and (29) still hold f
term decreases wiflhand increases with the frequency off@et h tlj\?lr; fl\)lﬂli/::\lle _t at exg"\ﬁi/ls'sonls( _t%an \(Nh) tStIh old for
This term becomes dominant for small values.adind causes € ' ,» Sign, an aigorithms. at changes

the EMSE to increase with the order @f? when decreasing. IS the_ value of the matrbl ar_1d the_ condition o for each
Furthermore, itis clear that there exists a value of the algorithwgor'thm' These values are listed in Table II, where
step-size(y,) that minimizes theEMSE. This optimal value B B

can be obtained by minimizing tHeMSES in (33) overy, i.e., v=6+3602, 6=1-6 (for LMMN)

finding p,, is equivalent to solving for the positive rootof

2 . *u,
n=y/———= (forsigniMs), Ry 2 E < uzu2>
aypl + agpi, — a3 =0 (40) m(oi+¢) il

5In general, the optimal step size should be obtained by minimizinyIBiE& . .
expressions. Here, we minimize tMSE expression for small step sizes for @NdAmax(R) and Ay (Ry) are the maximum eigenvalues of

simplicity. R andRp, respectively.

8In general, the value d® is unknown. Still, the value of could be chosen Substituting the expressions ferand W into (18) and fol-
based on an estimate for or, in a worst-case design, based on the maximu . h d for 1S al ith btain i
expected value fof2. The results of this paper indicate, among other thingéOWINg theé same steps used for algorithm, we obtain in

3

how the performance of an adaptive filter is affected hy Appendix B theEMSE expressions that are listed in Table IlI.
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TABLE 1l IV. COMPARISONSWITH LMS
VALUES OFI' AND CONDITIONS ON gt
A. LMMN and LMF

ALGoriTEM | T H We now compare the ability of theMF and LMMN algo-

LMS R u< #AR) rithms to track variations in nonstationary environments with
LMF 30,R | 1< gy that of theLMS algorithm, which is known to have excellent
LMMN R | b<5m tracking properties (see, e.g., [1], [2], and [10]). We focus only
SA R | p<—"my on the cyclic nonstationarity case as the random nonstationarity
NLMS Ry | p< #(RN) case was previously studied in the literature (see, e.g., [18]). We

use the ratio of the minimum achievable steady-std&E of
each of the algorithms to that of th&1S algorithm as a perfor-
mance measure.

TABLE IlI For theLMF algorithm, this ratio is given, from Table IIl, by
ExPRESSIONS FOR THEVISE FOR VARIOUS ADAPTIVE FILTERS

LMS , [ 308 1/3
min __ v

ALGORITHM EMSE _ ciwr = Ko <(£6)2> . (43)
LMS (small u) Lo2Tr(R) + 48 i v

2 = ) . . .
LMS (larger 1) e DR & Here, we can see that the ratio depends only on the statistical
LMS (Gaussian) gﬂ%ﬁ%‘;ﬁ properties of the measurement noigg). For the case of the

—p a5 . .. .
LMMN (small 2) uam};)ﬂ—lg LMMN algorithm, the same ratio is given by

Tr(R)+p"18
LN (oger ) | Bt we _ (het)?
LMMN (Gaussian) |  goMeiti 5 i =7 | "2 (44)
SA u’I‘r(R2)+u‘16

— which is also dependent on the statistical properties of the noise,

uol+pu 1ﬂ/E(W) .. -
NLMS _T“ as well as on the norm mixing paramefeiNVe specialize these
results for the following noise distributions.
Gaussian Noise:In this case£y = 30t and& = 1508,
In Table Il 3 is as in (34Y, Then, we can verify from (43) that
2 2 cod €26 2 c 2 2 4 LS 31 1/
a= (6207 +2668; + 6%8)), b= (8 + 12860, + 156°¢;) min <22r> ~ —1.5dB.
. o]
min

with & = Elu(i)|* and& = Elu(7)|°. Note that expressions This indicates that the minimum achievable value of steady-state

for theLMF algorithm can directly be obtained by settifig- 0 MSE of the LMS algorithm is less than that of tHeMF algo-

in the correspondingMMN expressions. rithm by approximately 1.5 dB for all values of the noise vari-
Carrier Offset Only[Tr(Q) = 0]: In this case, expressionsance,2. For the complex case, this value drops to approximately

for theEMSE can be found by setting T®) = 0 in the expres- .65 dB. For the case of tHVIMN algorithm, (44) yields
sions given in Table IIl. Furthermore, using the same procedure

used for the_MS algorithm, the value of the algorithm step size LMS oy 1/3
(11,) that minimizes th&MSE can be found by solving for the T = < S i 2) (45)
positive root of min (620 + 68607 + 158%07)

5 Fig. 1 shows a plot of this ratio versus the design paranadtar
aipl, + azpo —az =0 various values of2. The figure shows that this ratio is always
less than unity for all values éfando2. These results reflect the
wherea; = Q?||w?||? and the values of;, a2, andas for each  superiority of theLMS algorithm over both theMF andLMMN
algorithm are given in Table IV, along with ugh estimate algorithms for tracking nonstationary systems in Gaussian noise
for 11, and the corresponding value of the minimum achievabigwironments.
EMSE (Cmin); for the sign algorithm, we use the approximation Uniform Noise: For a uniformly distributed noise in the in-
n =~ \/2/(ro2). terval [—-A, A], we haves? = A?/3, &7 = A*/5, and¢y =
Here, we can see that the optimum step size for each algpﬁ/z Then, we can verify from (43) that
rithm increases with the frequency offéand with||w°||> and

decreases with the noise varianceand the filter lengthiZ. In LMS 49\ /3 _
addition, note that the expression for thMSE of the NLMS LMF — <§) ~ 2.5 dB.
(which is given in Table Ill) can be minimized ovgrto arrive -
at a value for the optimum step size. This indicates that the minimum achievable value of steady-state
MSE of the LMF algorithm is less than that of tHeMS algo-
7For complex-valued data, we replagavith 1/ = & + 2502 andb by v’ =  Tithm by approximately 2.5 dB for uniformly distributed noise.

(82 + 86602 4 962¢%). For the complex case, this value drops to approximately 0.1 dB.
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EXPRESSIONS FORt1, @3, AND ROUGH ESTIMATES FOR{t, AND (min FOR CARRIER OFFSETSONLY

ALGORITHM ay as Cmin
/3
2 2 2 27 2 | (497 ||w)? 3 2 4 2002 2\1/3
LMS Mo2o? | 402 |wo|2/o2 (W— 3 (4M2040202||lwOlj?)
1/3 20125202 |wol2 \ 1/3
2 4023 jw°||? 402 ||lwe)|? 3 (4a?M2a20%||w°||
LMMN MoZa i b 2 (LMool
173 173
LMF Mo2eS | 420wl sor wp \ 13 1 5 (aed)?mioawel? )Y
uSv 30202 3Mo:t802 1202 302
SA Mo2 402 |jwo |12 407 fwoj2 \ 173 3 (amPa20?wel? ) /3
u nog nMog 4n n
T T T T = 18 T T T T T T T T
/‘ t -
// !
: , i
095k -/ . Sl AP ]
: Y 1
2 i
7 !
v {
4 t
/ !
e '
z ./ i
2c R i
4,{,\50' L . )-./ [
Le : s /
35 : o !
N s !
: ’./' /
: <
- »
L S o§=1o
- -
. e c¥=101
0751 - . R .
: i P - o
P o edem =TT - 05=1o
e . . Y
07 ; ; ; ; ; ;
0 04 0.6

Fig. 1. Comparison of the tracking performanceld1S and LMMN for
Gaussian noise.

Fig. 2. Comparison of the tracking performanceld1S and LMMN for
uniform noise.

Fig. 2 shows a plot of the ratio of the minimum achievabl
EMSE of theLMS andLMMN algorithms versus the design pa-
rameters for various values of2. The figure shows that this
ratio is always larger than unity for all values ®and«?2. We
can also see that= 0 results in the best tracking performance
which reflects the superiority of tHeMF algorithm in this case.
Mixed Gaussian and Uniform NoiseiVe now consider the g
case where the noise is a mix of Gaussian and uniform d|s1”
butions (for example, a mix of Gaussian system noise and yhosr
formly distributed roundoff error$) Fig. 3 shows the ratio of the

1.16

142

1aF

mln

194

Ay

1.06

minimum achievabl&MSE of theLMS andLMMN algorithms
versusé for different values of the system noise variange
which is a combination of Gaussian and uniformly distribute

noise with variance ratio 1:3. We can see that in this case, 1 "®

) O e et ot

LMMN algorithm will have the best tracking performance.

B. Sign Algorithm

We now compare the ability of the sign algorithm to tracg]
variations in nonstationary environments with that of théS

ig. 3. Comparison of the tracking performancdd1S andLMMN for a
ixed Gaussian/uniform noise distribution.

algorithm. We focus only on the cyclic nonstationarity casgf the minimum achievable steady-st&®ISE is given, from

since the random nonstationarity case was previously studigghle 111, by

in the literature (see, e.g., [10]), where it was shown that the
LMS is superior to théSA by approximately 1 dB. The ratio

8In communication systems, the noise is usually Gaussian. However, when
adaptive algorithms are implemented in finite precision, quantization err

resulting in a mixed noise distribution.

LMS

mm _

Cnl m

2

1/3 5/6
o) ? = <;> ~ —0.16 dB.

(which are often uniformly distributed) are also added to the system no?ﬁ“'s indicates that the minimum achievable value of steady-state

EMSE of theLMS algorithm is less than that of tI$é\ algorithm
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Fig. 5. Theoretical and experimenfsISE of the LMS algorithm versug: ~ Fig. 6. Theoretical and experimenffl SE of the LMS algorithm versug:
for various values of?. for various values of,,.

by approximately 0.16 dB for all values of the noise variand§ doubled and quadrgpled. This_ re_fl_ects that the tracking per-
o2. This shows that the ability of the sign algorithm to trackormance of the algorithm can significantly be affected by the

random system nonstationarities is very close to that dffg ~ Teduency offse?, even for very small values Gt!
algorithm. Fig. 6 shows the theoretical and experime&fsllSE versus.

for @ = 0.001, o, = 1072, & = 0.9, and various values af,.
The figure shows that cyclic nonstationarities are dominant for
small values of.:. For example, fo, = 0.01, theEMSE varies
A. LMS within less than 1 dB whea, is varied from10—* to 4 x 10~°.

Fig. 5 compares the theoretical and experimeMSE of However, itvaries by more than 7 dB for larger valueg.of his
the LMS algorithm for a wide range of step sizgsand for Can be explained as follows. For small valueg:ptyclic non-
three different values of the carrier offs@t(0.0001, 0.0002, Stationarities are dominant as the cyclic nonstationarity term in
0.0004). In the simulations, we used a random binary phd&€ EMSE is inversely proportional ta?, whereas the random
shift keying (BPSK) input signal of unity variance, a ten_taﬁonstatlonarlty term is inversely proportionaltoThus, the ef-

V. SIMULATION RESULTS

unknown system of impulse response shown in Fig.o, = fect of random nonstationarities is more significant for relatively
3% 1072, o = 0.9, 0, = 10~*. Each simulation point is the larger values of:. Note also that Figs. 5 and 6 show that the ef-
average of 100 runs with 3000 iterations in each run. fect of carrier offset nonstationarities can be more damaging to

It is clear from Fig. 5 that the theoretical results are a veff§€ tracking perf;)rmance of theMS algorithm as itis inversely
good match with the simulation results. Ede= 0.0001, we can proportional top“ and increases with thequareof the carries
see that the experimentMSE possesses a well-defined min-Offsetf2. On the other hand, the effects of random channel non-
imum atu = 0.035, which is a very good match with the soly-Stationarities decrease withand increasénearly with random
tion of (40) (x = 0.0351) and close to the estimate provided by*onstationarity power T£). o _
(41) (u, = 0.0381). We can also see that the minimum achiev- F|g.. 7(a) and (b_) show the real and imaginary parts of the first
ableMSE is degraded by 0.9 and 2.39 dB, respectively, witen adaptive filter weight and the real and imaginary parts of the

corresponding system weight to be trackegle’* versus the

9n this figure, the given impulse response represents the constant nonfac;iiﬁa_e inde?(i- Itis clear that the filter weight t.raCij the system
portion of the channel. weight. Fig. 7(c) and (d) show the real and imaginary parts of
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a ten-tap unknown system of impulse response shown in Fig. 4,
o, = 5x 1073, and T(Q) = 10~". Each simulation point is

the average of 50 runs with 3000 iterations in each run.

It is clear from Fig. 8 that the theoretical results are a very
good match with the simulation results. F@r = 0.000 06,
we can see that the experiment#E possesses a well-defined
minimum aty. = 0.0175, which is a good match with the ex-
pression from Table IV—, = 0.0164. We can also see that the
minimum achievabléSE is degraded by approximately 1 dB
when$2 is increased to 0.0002 and then 0.0004. This reflects
that the tracking performance of théAMN algorithm is also
significantly affected by the frequency offs@t even for very
small values of2!

Theory
Simulation

EMSE (dB)

C. NLMS

Fig. 9 compares the theoretical and experimeMaE of the
NLMS algorithm for a wide range of the step-sizethree dif-
ferent values of the carrier offs€ (0.0001, 0.0002, 0.0004),
and the same simulation conditions of Fig. 5. We can see that
the theoretical results are a very good match with the simula-
tion results.

[ 0.005 0.01 0.015 0.02 0.025 0.03
n

Fig. 8. Experimental and theoreticdlSE versusp for the LMMN
algorithm.
VI. CONCLUSIONS

the first adaptive filter weight averaged over 100 runs and the!" this paper, we studied the tracking performance of adaptive
real and imaginary parts of the corresponding system weigfilers in the presence of two sources of nonstationarities: car-
This verifies that in steady state, the adaptive filter weight vectd" frequency offsets and random variations. In particular, we
converges to the generic ford (%;) = ve’s¥, which was derived expressions for the excess-mean-square error that show

predicted by the analysis. In this simulatid®, = 0.01, and how the performance is degraded by carrier offsets. We also in-

1= 0.1. dicated parameter selection (for step-sizes) to achieve optimal
performance.
B. LMMN We may add that the approach can be extended to other sce-

narios as well, such as the study of the tracking performance
Fig. 8 compares the simulation and theoreti#E for a of adaptive schemes in finite-precision implementations and the
wide range of step sizeg and for three different values of study of adaptive filters dRLS and Gauss-Newton type as well
the carrier offset2 (0.000 06, 0.0002, 0.0004). In the simulaas fractionally spaced blind adaptive schemes (see, e.g., [23],
tions, we used a white Gaussian input signal of unity variand&1]—[33]).
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APPENDIX A Expanding the first term on the right-hand side and rearranging

Expanding (17) and applying the expectation operator to botﬁ{ms’ (18) will follow.
of its sides, we obtain

El[Wiy1|l* + Biilea(@)|” = Bllwill* + Ba(i)len(i)]®
+2Re Eci w1 e /% — E|jc;||>. (46) A. LMF andLMMN Algorithms

In steady state (i.e., @s— oo), we can assume that Here, we need only study the tracking performance of the

Ell¥isi|2 = E|lwi|? (47) LMMN algorithm gnd then obtain tHaMF algorithm tracking

ol L results as a special case by settthg= 0 [28]. Introduce, for

This assumption is equivalent to assuming that the mean squewmepactness of notation
deviation MSD) converges to a steady-state value. This is a
justifiable assumption since our aim is to study the performance
of gradient based algorithms after steady state is reached. By
imposing (47), we will be able to evaluate the minimum value
that we can expect for thBISE at steady stat®By imposing Now, in steady state and wheris small enough, it is reasonable

APPENDIX B

& =Eu()[*,
§=1-24,

& = Ep@)°
v =6+ 3802,

(47), we get
E (a(0)|ea(®)?) = E (1(@)]ep(9)[)

+2Re E (c;Wiy1e /) — E (|lci]|?) .
Squaring (12), applying the expectation operator to its sides, and <

neglecting zero-mean terms, we obtain
E (Jleil|?) = Tr(Q) + |1 — /P Tr(W?)

+|1 - aejQ|2Tr(®).

Using (11) and (12), we get

E (a(0)lca(DI?) = (a(@D)lep(6)]?) + TH(Q)
+ |1 = T (We)
+[1 - e PTr(®)
—2Re[ (1 — /) wo*

B (5 = (9) )

— 2Re (1 — oc*e_jQ)

xE@Hw—uwﬂww”mﬂ

Substituting (13) into the above expression, we arrive at
2

B (ilead) =BRG) |cald) = = (0] +TH(Q)
+]1 — PP Tr(W®)
+ 1 — ac’Tr(®)

—2Re| (1 — ™) wo*
X.E(<ﬁn—-uu:ﬁxn>e‘jgﬂ}

— 2Re (1 — oz*cfjg)

to assume thale,(i)|> < |v(4)|?. Applying the expectation

operator to both sides of (11) and using (12)1 andA.2, it

can be shown that if the following condition holds:
2

)\Illa.X’y

expressions (22) and (29) hold, wkh= yR.. Substituting (22)
and (29) into (18) and using.1, we obtain

(48)

2p9¢™MYN =2 aTH(R) + 0B (||w*ea(D)]?)
+ 1 — ¢PReTI{W* (I — 2X)]
+ 1 — ac???ReTr[® (I - 2a*X,,)]
+Re Tr[Q(I-2(a* — ) X,)] (49)

where

a=(8%02 +266€% + 62¢0)
b= (67 + 126602 + 156%¢2) .

Solving for¢"MMN '\we obtain the expressions given in Table I1I
for the LMMN andLMF.

Here, we may add that for the case of complex-valued data,
we replacee® by ¢|e|? and assume the noise is circular, i.e.,
Ev?(i) = 0. Then, repeating the above arguments, we find that
the EMSE expressions are still valid but with andb replaced

by
v =642602, ¥V =64 8560% +98¢Y.
B. Sign Algorithm
Using the Price theore¥h [30], we can show that if the fol-
lowing condition holds:
2

<
a )\Inaxn

(50)

KB (07 (W, = [0 ¢ %) here

10we may mention that by averaging analysis, and under some conditions, n=
one can guarantee that there exists a small engughwhich the filter reaches

_z
(o} +0)

steady state (see, e.g., [4], [24]); we do not expand on the stability issue here
since the objective of this paper is to evaluate filter performance once steady'For two jointly Gaussian real-valued random variableandy, we have

state is reached; see [32], [33].

Elxsigny)] = 2/ - (1/a,)E [ry].
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expressions (22) and (29) hold with= nR.. Substituting (22)
and (29) into (18) and using,(i)|?> < o2 in steady state, the
Price theorem [30], and.1, we obtain

20N = *Tr(R) + |1 — ¢/%?Re Tr{W* (I - 2X)]
+]1 — ac’’Re Tr[© (I — 20 X,,)]

+ReTr[Q(I-2(a* — ) X,)].  (51)

Solving for theEMSE, we get the expression given in Table 11|
for the SA.

C. NLMS Algorithm
If the following condition holds:

2

< -
s )\max (RN)

(52)

where

uu;
Ry £ E(
. <||ui||2>

and A, (Ry) is the maximum eigenvalue &y, it can be
shown that (22) and (29) hold for tHeLMS with I' = Ry.
Substituting (22) and (29) into (18) and usiAdgl-A.3, it can
be verified that

1 1
oIk LMS _ 2 2E o
. <||ui||2>< WoE Tl

+N2E< 1 )CNLMS
[[wil|?
+ |1 — ac’®’Re TI[© (I - 2a*X,,)]

+Re TF[Q (I -2 (a* — e_jQ) Xa)] .
(53)

Solving for theEMSE, we get the expression given in Table Ill
for the NLMS.
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