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Ability of Adaptive Filters to Track Carrier Offsets
and Channel Nonstationarities

Nabil R. Yousef, Student Member, IEEE,and Ali H. Sayed, Fellow, IEEE

Abstract—This paper studies the tracking performance of adap-
tive filters operating in the presence of two sources of nonstation-
arities: carrier frequency offsets and random channel variations.
Both impairments are common in digital communications due to
mismatches between transmitter and receiver carrier generators
and channel fading. The paper derives expressions for the mean-
square error and shows how filter performance is degraded under
such nonstationary conditions. Selections of step sizes for optimal
tracking performance are derived, different adaptive algorithms
are compared, and supporting simulation results are provided.

Index Terms—Adaptive filter, carrier offsets, mean-square
error, nonstationary environment, tracking analysis.

I. INTRODUCTION

A DAPTIVE filters are often used in nonstationary environ-
ments where they are required to track time variations in

an unknown system or channel [1]–[4]. The ability of adap-
tive filters to track such variations has received considerable
attention in the literature over the last two decades (see, e.g.,
[5]–[10]). Most of the existing works, however, have focused
on the case of random system nonstationarities whereby the
channel is assumed to vary according to a random-walk or Mar-
kovian model (see, e.g., [10]).

A different scenario is very common in communication sys-
tems where mismatches between the transmitter and receiver
carrier generators result in periodic system variations. These
variations can be damaging to the performance of adaptive fil-
ters, even for very small carrier frequency offsets (see, e.g.,
[11], [12]). The ability of adaptive filtering algorithms to track
such periodic system variations is not yet fully understood. A
recent contribution in this regard is the work [11], which per-
formed a first-order analysis of the performance of the least-
mean-squares ( ) algorithm in the presence of a carrier fre-
quency offset only. Another earlier contribution is the work [9].
The effects of such carrier frequency offsets on other adaptive
algorithms, i.e., other than , have not been addressed in the
literature. Furthermore, thecombinedeffects of both cyclic and
random system nonstationarities on the tracking performance of
adaptive algorithms has remained largely an open issue, even for

.
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The purpose of this paper is to present a framework for the
tracking analysis of adaptive algorithms that handles simultane-
ously both cyclic and random system nonstationarities. In par-
ticular, the results will allow us to quantify the degradation in
performance that results, for example, from carrier offsets. The
results will also suggest optimal choices for filter parameters
(e.g., step-sizes) in order to minimize the effect of such offsets
on filter performance. Several supporting simulations are pro-
vided.

In Section II, we motivate the data model that is employed in
Sections III–VI.

A. Model

Let denote a sequence that is transmitted over an un-
known channel of finite impulse response of order . It is
assumed that the channel varies in time according to the rule

(1)

where is a constant vector, and is a random perturbation.
For example, in the case of a fading channel,would represent
the nonfading part of the channel, whereaswould represent
the fading part. In addition, such FIR models are suitable for
modeling multipath components.

In general, we can be more specific about the behavior of.
For example, in the case of a fading channel again, the perturba-
tion can be modeled to a reasonable extent as an autoregres-
sive (AR) process of some order[13]. A widely used approx-
imation of this process is the AR(1) model, which corresponds
to . Furthermore, if the channel components are assumed
to fade independently and following the same statistical model,
the process can be modeled by the following AR(1) model:

(2)

where

(3)

and is a zero-mean stationary random vector process with
a positive-definite covariance matrix . For a
Rayleigh fading channel of maximum Doppler frequency,
one has and , where

Bessel function of first kind and order zero;
sampling period of the digital communication system;
identity matrix (see, e.g., [14]).

If we denote the regressor of the channel by
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then the undisturbed output of the channel is given by the inner
product . However, due to measurement noise and mis-
matches in carrier frequencies at the transmitter and receiver,
the received data is actually modeled by

(4)

where is measurement noise, and the multiplicative term
accounts for the carrier offset [11], [12].1

The term could also be used to model Doppler channel
variations in a wireless scenario, which result from reflections
of the transmitted signal off a remote object moving with con-
stant speed [such as a low flying airplane (airplane flutter) or a
swaying tower or skyscraper [15]]. Actually, many digital com-
munication standards use the ability of digital communication
receivers to track such Doppler shifts as a performance index
for their ability to track time-varying channels (see [15] for
an equalization example in the context of terrestrial television
channels).

In summary, the above discussion motivates us to focus in this
paper on data that arise from a model of the form

(5)

(6)

(7)

This model includes the effects of both cyclic and random
system nonstationarities (throughand ), both of which are
common impairments in communication systems and espe-
cially in applications that involve channel estimation, channel
equalization, and intersymbol-interference cancellation.

B. Adaptive Filtering Algorithms

As stated previously, the purpose of this paper is to study
the ability of -type adaptive filters to estimate and track
such cyclic and random variations in . The family of
algorithms is the most widely used in digital communications
applications due to its simplicity and stability properties. We
therefore consider general adaptive schemes of the form

(8)

where “ ” denotes Hermitian conjugation (complex conjugation
for scalars), is the estimate for at iteration , is the
step size, and is the generic scalar function of the output
estimation error

Different choices for result in different adaptive algo-
rithms. Table I defines for some famous special cases of
(8); see [1], [2].2

1Here, we have neglected carrier phase noise for simplicity. Furthermore, the
offset frequency
 is assumed to be constant over time. A more general model
would include a time-varying term of the forme to account for offset
frequency and phase noise term.

2The list in the table assumes real-valued data. For complex-valued data, we
replacee by ejej , and define sign[a+ jb] by (1=

p
2)(sign[a] + jsign[b]).

TABLE I
EXAMPLES FORf (i)

An important performance measure for an adaptive filter is
its steady-state mean-square-error ( ), which is defined as

where the weight error vector is defined by

(9)

Under the following often-realistic assumption:
The noise sequence is iid, with variance , and

statistically independent of the regressor sequence (see,
e.g., [1]–[4]), we find that the is equivalently given by

(10)

In the sequel, we proceed to derive expressions for the steady-
state excess mean-square-error ( )

for various algorithms, along with values for the optimum al-
gorithm parameters that minimize the . By deriving these
expressions, we arrive at several results on the tracking perfor-
mance of adaptive filters. These results help clarify the effect
of cyclic nonstationarities on the algorithms of Table I. With
the exception of a first-order analysis for in [11], which
was performed in the absence of random nonstationarities (i.e.,
for and ) and a related analysis in [9], such ef-
fects are not yet fully understood. Furthermore, while common
tracking analysis in the literature assume a random-walk model
with , and (see, e.g., [16]–[18]), it
turns out that assuming when cyclic nonstationarities
are present does not lead to practical design expressions.

II. FUNDAMENTAL ENERGY RELATION

In this section, we derive an energy conservation relation
and explain its relevance to mean-square analysis. Thus, using
(7)–(9), we obtain the following recursion for the weight-error
vector:

(11)

where

(12)

We further definea priori anda posterioriestimation errors as

and use the data model (7) to find that
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Moreover, if we multiply (11) by from the left, we also find
that

(13)

Substituting (13) into (11), we obtain, for nonzero

(14)

By evaluating the energies of both sides of this equation, we find
that

(15)
When , it is obviously true that

(16)

Both results (15) and (16) can be grouped together into a single
equation by defining

in terms of the pseudo-inverse of a scalar so that we obtain

(17)
This energy-conservation relation, which was first noted in
[19]–[21], holds forall adaptive algorithms whose recursions
are of the form given by (8); there are no approximations
involved. It shows how the energies of the weight error vectors
at two successive time instants are related to the energies of the
a priori anda posterioriestimation errors.

Relation (17) was used in [22] in the special case ,
to study the mean-square-error performance of adaptive filters.

Some care is required to extend the analysis to the context of this
paper due to the complications introduced by thesimultaneous
presence of cyclic and random nonstationarities.

A. Relevance to the Tracking Analysis

We are interested in using the energy relation (17) to evaluate
the of an adaptive filter once it reaches steady state. Thus,
using (11)–(13) and in steady state, and
taking expectations of both sides, it is shown in Appendix A that
(17) becomes

Re Tr

Tr

Tr

Re

Re

(18)

where

(19)

It is easy to verify from (5) and (6) that

(20)

Equation (18) can now be solved for the steady-state
of various adaptive algorithms from Table I. This requires that
several terms in (18) be evaluated and the resulting expression
solved for

Due to space limitations, we illustrate the procedure for
and list the results for the other algorithms; see also [18], [22],
and [23] for other steady-state and tracking results in the ab-
sence of cyclic nonstationarities.

III. T RACKING ANALYSIS

A. Algorithm

For , we have

(21)

In order to proceed, we need to evaluate the terms

and

which appear in (18). We start with the first term. It turns out that
takes the generic form in steady state for some

. To verify this result, we call on the following steady-state
independence assumption:3

At steady state, is statistically independent of .4

Lemma 1: Consider the recursion

where , and the data is assumed to
satisfy the model (5)–(7). In steady state (i.e., ), it holds
that

where

(22)

and .
Proof: Let . Applying the expectation operator

to both sides of (11) and using (12), (21), , and , we obtain

(23)

To proceed we introduce the eigenvalue decomposition of the
matrix

(24)

3We are only requiring~w to be independent ofu in steady state. This is a
weaker assumption than the usual full-blown independence assumptions [2].

4Of course,~w is not statistically independent ofu , except in very special
cases. However, this assumption is realistic for small step-size�, as well as for
long filters. Intuitively, the update term in (8) is relatively small for small step
sizes, and the statistical dependence of~w onu becomes weak. Furthermore,
in steady state, the errore(i) is also small, which makes the update term in (8)
even smaller.
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where is a unitary matrix, and is a positive-definite diag-
onal matrix with entries

(25)

where is the th eigenvalue of . Multiplying both sides of
(23) by from the left and using (24), we get

where

We can now write the following recurrence relation for theth
element of the vector :

Taking the transform of both sides of this equation, we get

Using partial fractions, we can rewrite the above equation as

where and are constants. Obtaining the inversetrans-
forms of both sides leads to

where

We now impose the condition (which is actually necessary for
algorithm convergence)

(26)

where . Then, we get that in
steady state, , is given by

By using , we conclude that the vector converges,
in steady state, to

(27)

for some time-independent vector. To calculate , we substi-
tute (27) into (23) to get (22).

In a similar vein, we now verify that the matrix

takes the form in steady state for some matrix .
Lemma 2: Consider the same setting of Lemma 1. It then

holds in steady-state that

(28)

where

(29)

and

(30)

Proof: If we substitute (21) into (11), multiply by
from the right, and apply the expectation operator to

both of its sides, we get

(31)

Multiplying both sides by from the left and using (24), we get

where

Using similar arguments to the ones that led to (27), it is straight-
forward to verify that each element of the matrix converges
to a constant times the time-varying exponent when the two
conditions given by (3) and (26) hold. It then follows that (28)
holds. To evaluate , we use (31) to obtain

Solving for yields (29).
With expressions for both and in hand, we can now

proceed to solve (18) for the of . Substituting (21)
into (18) and using , we obtain

Tr Tr

Tr Tr

Re

Re Tr (32)

To solve for , we consider three typical cases.

1) For sufficiently small , we can assume that the term
is negligible so that

Tr small
(33)

where

Re Tr

Re Tr

Re Tr (34)

and and are defined by

(35)

2) For larger values of, (32) can be solved by imposing the
following assumption (which is realistic for longer filter).

At steady state, is statistically independent
of .
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This assumption is not needed in the case of constant-
modulus data that arises in some adaptive filtering appli-
cations (see, e.g., [25]). Using and (32), we obtain

large
(36)

3) For Gaussian white-input signals , (32) can be
more accurately solved by using to yield

Gaussian
(37)

where is the filter length, if the are com-
plex-valued, and if the are real valued. More-
over, is now given by

Tr

Re Tr (38)

To further understand the effect of the different types of
system nonstationarities on the tracking performance of the

algorithm, we specialize the above results to the following
two cases. For simplicity, we consider small values ofand
white input signals.

Carrier Offset Only Tr : In this case, the second
and third terms on the right-hand side of (34) and (38) are equal
to zero. Furthermore, for small values ofand

, which is usually valid in practical cases, (38) can be
approximated by

(39)

Here, it can be seen that unlike the stationary case, the steady-
state is not a monotonically increasing function of the
step size . The is composed of two terms. The first term
increases with , the noise variance , and . The second
term decreases withand increases with the frequency offset.
This term becomes dominant for small values ofand causes
the to increase with the order of when decreasing.
Furthermore, it is clear that there exists a value of the algorithm
step-size that minimizes the . This optimal value
can be obtained by minimizing the 5 in (33) over , i.e.,
finding is equivalent to solving for the positive root of6

(40)

5In general, the optimal step size should be obtained by minimizing theMSE
expressions. Here, we minimize theMSE expression for small step sizes for
simplicity.

6In general, the value of
 is unknown. Still, the value of� could be chosen
based on an estimate for
 or, in a worst-case design, based on the maximum
expected value for
. The results of this paper indicate, among other things,
how the performance of an adaptive filter is affected by
.

where

A roughestimate for in this case is given by

(41)

Here, we can see that the optimum step size increases with the
frequency offset and with and decreases with the noise
variance and the filter length . Furthermore, the corre-
sponding minimum achievable is approximately given
by

(42)

Random Nonstationarity Only : In this case,
(34) reduces to

Tr

Here, the second term of the decreases with and in-
creases with the random nonstationarity term Tr. The op-
timum value of the step size in this case is given by

Tr
Tr

which is the same expression given in [10].
For the more general case, the optimal value ofcan obtained

by minimizing the , which is given by (33), over a dense
grid of all possible values of .

B. , , sign, and Algorithms

We now extend the results to the other adaptive filters in
Table I.

It can be verified that expressions (22) and (29) still hold for
the , , sign, and algorithms. What changes
is the value of the matrix and the condition on for each
algorithm. These values are listed in Table II, where

for

for sign-

and and are the maximum eigenvalues of
and , respectively.
Substituting the expressions forand into (18) and fol-

lowing the same steps used for the algorithm, we obtain in
Appendix B the expressions that are listed in Table III.
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TABLE II
VALUES OF� AND CONDITIONS ON�

TABLE III
EXPRESSIONS FOR THE FOR VARIOUS ADAPTIVE FILTERS

In Table III, is as in (34),7

with and . Note that expressions
for the algorithm can directly be obtained by setting
in the corresponding expressions.

Carrier Offset Only Tr : In this case, expressions
for the can be found by setting Tr in the expres-
sions given in Table III. Furthermore, using the same procedure
used for the algorithm, the value of the algorithm step size

that minimizes the can be found by solving for the
positive root of

where and the values of , , and for each
algorithm are given in Table IV, along with arough estimate
for and the corresponding value of the minimum achievable

; for the sign algorithm, we use the approximation
.

Here, we can see that the optimum step size for each algo-
rithm increases with the frequency offsetand with and
decreases with the noise varianceand the filter length . In
addition, note that the expression for the of the
(which is given in Table III) can be minimized overto arrive
at a value for the optimum step size.

7For complex-valued data, we replace
 with 
 = � + 2��� andb by b =
(� + 8���� + 9�� � ).

IV. COMPARISONSWITH

A. and

We now compare the ability of the and algo-
rithms to track variations in nonstationary environments with
that of the algorithm, which is known to have excellent
tracking properties (see, e.g., [1], [2], and [10]). We focus only
on the cyclic nonstationarity case as the random nonstationarity
case was previously studied in the literature (see, e.g., [18]). We
use the ratio of the minimum achievable steady-state of
each of the algorithms to that of the algorithm as a perfor-
mance measure.

For the algorithm, this ratio is given, from Table III, by

(43)

Here, we can see that the ratio depends only on the statistical
properties of the measurement noise . For the case of the

algorithm, the same ratio is given by

(44)

which is also dependent on the statistical properties of the noise,
as well as on the norm mixing parameter. We specialize these
results for the following noise distributions.

Gaussian Noise:In this case, and .
Then, we can verify from (43) that

dB

This indicates that the minimum achievable value of steady-state
of the algorithm is less than that of the algo-

rithm by approximately 1.5 dB for all values of the noise vari-
ance . For the complex case, this value drops to approximately
0.65 dB. For the case of the algorithm, (44) yields

(45)

Fig. 1 shows a plot of this ratio versus the design parameterfor
various values of . The figure shows that this ratio is always
less than unity for all values ofand . These results reflect the
superiority of the algorithm over both the and
algorithms for tracking nonstationary systems in Gaussian noise
environments.

Uniform Noise: For a uniformly distributed noise in the in-
terval , we have , , and

. Then, we can verify from (43) that

dB

This indicates that the minimum achievable value of steady-state
of the algorithm is less than that of the algo-

rithm by approximately 2.5 dB for uniformly distributed noise.
For the complex case, this value drops to approximately 0.1 dB.



YOUSEF AND SAYED: ABILITY OF ADAPTIVE FILTERS TO TRACK CARRIER OFFSETS 1539

TABLE IV
EXPRESSIONS FORa , a , AND ROUGH ESTIMATES FOR� AND � FOR CARRIER OFFSETSONLY

Fig. 1. Comparison of the tracking performance of and for
Gaussian noise.

Fig. 2 shows a plot of the ratio of the minimum achievable
of the and algorithms versus the design pa-

rameter for various values of . The figure shows that this
ratio is always larger than unity for all values ofand . We
can also see that results in the best tracking performance,
which reflects the superiority of the algorithm in this case.

Mixed Gaussian and Uniform Noise:We now consider the
case where the noise is a mix of Gaussian and uniform distri-
butions (for example, a mix of Gaussian system noise and uni-
formly distributed roundoff errors).8 Fig. 3 shows the ratio of the
minimum achievable of the and algorithms
versus for different values of the system noise variance,
which is a combination of Gaussian and uniformly distributed
noise with variance ratio 1:3. We can see that in this case, the

algorithm will have the best tracking performance.

B. Sign Algorithm

We now compare the ability of the sign algorithm to track
variations in nonstationary environments with that of the
algorithm. We focus only on the cyclic nonstationarity case
since the random nonstationarity case was previously studied
in the literature (see, e.g., [10]), where it was shown that the

is superior to the by approximately 1 dB. The ratio

8In communication systems, the noise is usually Gaussian. However, when
adaptive algorithms are implemented in finite precision, quantization errors
(which are often uniformly distributed) are also added to the system noise,
resulting in a mixed noise distribution.

Fig. 2. Comparison of the tracking performance of and for
uniform noise.

Fig. 3. Comparison of the tracking performance of and for a
mixed Gaussian/uniform noise distribution.

of the minimum achievable steady-state is given, from
Table III, by

dB

This indicates that the minimum achievable value of steady-state
of the algorithm is less than that of the algorithm
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Fig. 4. Unknown system impulse response.

Fig. 5. Theoretical and experimental of the algorithm versus�
for various values of
.

by approximately 0.16 dB for all values of the noise variance
This shows that the ability of the sign algorithm to track

random system nonstationarities is very close to that of the
algorithm.

V. SIMULATION RESULTS

A.

Fig. 5 compares the theoretical and experimental of
the algorithm for a wide range of step sizesand for
three different values of the carrier offset (0.0001, 0.0002,
0.0004). In the simulations, we used a random binary phase
shift keying (BPSK) input signal of unity variance, a ten-tap
unknown system of impulse response shown in Fig. 49 ,

, , . Each simulation point is the
average of 100 runs with 3000 iterations in each run.

It is clear from Fig. 5 that the theoretical results are a very
good match with the simulation results. For , we can
see that the experimental possesses a well-defined min-
imum at , which is a very good match with the solu-
tion of (40) ( ) and close to the estimate provided by
(41) ( ). We can also see that the minimum achiev-
able is degraded by 0.9 and 2.39 dB, respectively, when

9In this figure, the given impulse response represents the constant nonfading
portion of the channel.

Fig. 6. Theoretical and experimental of the algorithm versus�
for various values of� .

is doubled and quadrupled. This reflects that the tracking per-
formance of the algorithm can significantly be affected by the
frequency offset , even for very small values of

Fig. 6 shows the theoretical and experimental versus
for , , , and various values of .
The figure shows that cyclic nonstationarities are dominant for
small values of . For example, for , the varies
within less than 1 dB when is varied from to 4 10 .
However, it varies by more than 7 dB for larger values of. This
can be explained as follows. For small values of, cyclic non-
stationarities are dominant as the cyclic nonstationarity term in
the is inversely proportional to , whereas the random
nonstationarity term is inversely proportional to. Thus, the ef-
fect of random nonstationarities is more significant for relatively
larger values of . Note also that Figs. 5 and 6 show that the ef-
fect of carrier offset nonstationarities can be more damaging to
the tracking performance of the algorithm as it is inversely
proportional to and increases with thesquareof the carries
offset . On the other hand, the effects of random channel non-
stationarities decrease withand increaselinearly with random
nonstationarity power Tr .

Fig. 7(a) and (b) show the real and imaginary parts of the first
adaptive filter weight and the real and imaginary parts of the
corresponding system weight to be tracked versus the
time index . It is clear that the filter weight tracks the system
weight. Fig. 7(c) and (d) show the real and imaginary parts of
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(a)

(b)

(c)

(d)

Fig. 7. Adaptive filter and system weight variations with time.

Fig. 8. Experimental and theoretical versus� for the
algorithm.

the first adaptive filter weight averaged over 100 runs and the
real and imaginary parts of the corresponding system weight.
This verifies that in steady state, the adaptive filter weight vector
converges to the generic form , which was
predicted by the analysis. In this simulation, , and

.

B.

Fig. 8 compares the simulation and theoretical for a
wide range of step sizes and for three different values of
the carrier offset (0.000 06, 0.0002, 0.0004). In the simula-
tions, we used a white Gaussian input signal of unity variance,

Fig. 9. Theoretical and experimental of the algorithm versus
� for various values of
.

a ten-tap unknown system of impulse response shown in Fig. 4,
, and Tr . Each simulation point is

the average of 50 runs with 3000 iterations in each run.
It is clear from Fig. 8 that the theoretical results are a very

good match with the simulation results. For ,
we can see that the experimental possesses a well-defined
minimum at , which is a good match with the ex-
pression from Table IV— . We can also see that the
minimum achievable is degraded by approximately 1 dB
when is increased to 0.0002 and then 0.0004. This reflects
that the tracking performance of the algorithm is also
significantly affected by the frequency offset, even for very
small values of

C.

Fig. 9 compares the theoretical and experimental of the
algorithm for a wide range of the step-size, three dif-

ferent values of the carrier offset (0.0001, 0.0002, 0.0004),
and the same simulation conditions of Fig. 5. We can see that
the theoretical results are a very good match with the simula-
tion results.

VI. CONCLUSIONS

In this paper, we studied the tracking performance of adaptive
filters in the presence of two sources of nonstationarities: car-
rier frequency offsets and random variations. In particular, we
derived expressions for the excess-mean-square error that show
how the performance is degraded by carrier offsets. We also in-
dicated parameter selection (for step-sizes) to achieve optimal
performance.

We may add that the approach can be extended to other sce-
narios as well, such as the study of the tracking performance
of adaptive schemes in finite-precision implementations and the
study of adaptive filters of and Gauss-Newton type as well
as fractionally spaced blind adaptive schemes (see, e.g., [23],
[31]–[33]).
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APPENDIX A

Expanding (17) and applying the expectation operator to both
of its sides, we obtain

Re (46)

In steady state (i.e., as ), we can assume that

(47)

This assumption is equivalent to assuming that the mean square
deviation ( ) converges to a steady-state value. This is a
justifiable assumption since our aim is to study the performance
of gradient based algorithms after steady state is reached. By
imposing (47), we will be able to evaluate the minimum value
that we can expect for the at steady state.10 By imposing
(47), we get

Re

Squaring (12), applying the expectation operator to its sides, and
neglecting zero-mean terms, we obtain

Tr Tr

Tr

Using (11) and (12), we get

Tr

Tr

Tr

Re

Re

Substituting (13) into the above expression, we arrive at

Tr

Tr

Tr

Re

Re

10We may mention that by averaging analysis, and under some conditions,
one can guarantee that there exists a small enough� for which the filter reaches
steady state (see, e.g., [4], [24]); we do not expand on the stability issue here
since the objective of this paper is to evaluate filter performance once steady
state is reached; see [32], [33].

Expanding the first term on the right-hand side and rearranging
terms, (18) will follow.

APPENDIX B

A. and Algorithms

Here, we need only study the tracking performance of the
algorithm and then obtain the algorithm tracking

results as a special case by setting [28]. Introduce, for
compactness of notation

Now, in steady state and whenis small enough, it is reasonable
to assume that . Applying the expectation
operator to both sides of (11) and using (12), and , it
can be shown that if the following condition holds:

(48)

expressions (22) and (29) hold, with . Substituting (22)
and (29) into (18) and using , we obtain

Tr

ReTr

ReTr

Re Tr (49)

where

Solving for , we obtain the expressions given in Table III
for the and .

Here, we may add that for the case of complex-valued data,
we replace by and assume the noise is circular, i.e.,

. Then, repeating the above arguments, we find that
the expressions are still valid but with and replaced
by

B. Sign Algorithm

Using the Price theorem11 [30], we can show that if the fol-
lowing condition holds:

(50)

where

11For two jointly Gaussian real-valued random variablesx andy, we have
E [x sign(y)] = 2=� � (1=� )E [xy].
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expressions (22) and (29) hold with . Substituting (22)
and (29) into (18) and using in steady state, the
Price theorem [30], and , we obtain

Tr Re Tr

Re Tr

Re Tr (51)

Solving for the , we get the expression given in Table III
for the .

C. Algorithm

If the following condition holds:

(52)

where

and is the maximum eigenvalue of , it can be
shown that (22) and (29) hold for the with .
Substituting (22) and (29) into (18) and using – , it can
be verified that

Re Tr

Re Tr

(53)

Solving for the , we get the expression given in Table III
for the .
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