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Mean-Square Performance of a Family of Affine
Projection Algorithms

Hyun-Chool Shin and Ali H. Sayed, Fellow, IEEE

Abstract—Affine projection algorithms are useful adaptive fil-
ters whose main purpose is to speed the convergence of LMS-type
filters. Most analytical results on affine projection algorithms as-
sume special regression models or Gaussian regression data. The
available analysis also treat different affine projection filters sepa-
rately. This paper provides a unified treatment of the mean-square
error, tracking, and transient performances of a family of affine
projection algorithms. The treatment relies on energy conservation
arguments and does not restrict the regressors to specific models or
to a Gaussian distribution. Simulation results illustrate the analysis
and the derived performance expressions.

Index Terms—Affine projection algorithm, energy-conservation,
learning-curve, steady-state analysis, tracking analysis, transient
analysis.

I. INTRODUCTION

THE normalized least mean-squares (NLMS) algorithm is
a widely used adaptive algorithm due to its computational

simplicity and ease of implementation. However, colored input
signals can deteriorate its convergence speed appreciably [1],
[2]. To address this problem, Ozeki and Umeda [3] developed
the basic form of an affine projection algorithm (APA) using
affine subspace projections. APA is a useful family of adap-
tive filters whose main purpose is to speed the convergence of
LMS-type filters, especially for correlated data, at a computa-
tional cost that is still comparable to that of LMS. This class
of filters is particularly useful in echo cancellation applications,
e.g., [4]. While NLMS updates the weights based only on the
current input vector, APA updates the weights based on pre-
vious input vectors. Since [3], many variants of APA have been
devised independently from different perspectives such as the
regularized APA (R-APA) [4], the partial rank algorithm (PRA)
[5], the decorrelating algorithm (DA) [6], and NLMS with or-
thogonal correction factors (NLMS-OCF) [7]. We will refer to
all these algorithms as belonging to the APA family (see also
[8] and [9]).
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The transient behavior of affine projection algorithms is not
as widely studied as that of NLMS. The available results have
progressed more for some variations than others, and most
analyses assume particular models for the regression data.
For example, in [10], convergence analyses in the mean and
in the mean-square senses are presented for the binormalized
data-reusing LMS (BNDR-LMS) algorithm. Although the
results show good agreement with simulations, the arguments
are based on a particular model for the input signal and are ap-
plicable only to second-order APA. Likewise, the convergence
results in [9] focus on NLMS-OCF and rely on a special model
for the input signal vector. A convergence analysis of DA is
given in [11], where the theoretical results of [6] are extended
to the evaluation of learning curves assuming a Gaussian
autoregressive input model. All these results provide useful
design guidelines. However, each APA form is usually studied
separately with specific techniques. Such distinct treatments
tend to obscure commonalities that exist among algorithms.

In this paper, we provide a unified treatment of the transient
performance of the APA family. In particular, we derive expres-
sions for the mean-square error and tracking performances, as
well as conditions on the step-size for mean-square stability. Our
derivation relies on energy conservation arguments [12]–[18],
and it does not restrict the regression data to being Gaussian or
white. Extensive simulations at the end of the paper illustrate
the derived results.

Throughout the paper, the following notations are adopted:
Euclidean norm of a vector.

Tr Trace of a matrix.
diag Diagonal matrix of its entries .

Hermitian conjugation (complex conjugation for
scalars).
Transpose of a vector or a matrix.
Determinant of a matrix.
Largest eigenvalue of a matrix.
Set of positive real numbers.

In addition, small boldface letters are used to denote vectors,
and capital letters are used to denote matrices, e.g., and . The
symbol denotes the identity matrix of appropriate dimensions.
All vectors are column vectors except for the input data vector
denoted by , which is taken to be a row vector for convenience
of notation.

The paper is organized as follows. In the next section, the
data model and reviews of the APA family are provided. In
Section III, by examining the mean-square performance of the
APA family, expressions for the steady-state mean-square error
(MSE) are derived. Section IV studies the tracking ability of the
APA family. In Section V, the transient performance is analyzed,
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and then, the learning behavior is characterized. Section VI il-
lustrates the theoretical results by giving several simulation re-
sults.

II. DATA MODELS AND APA FAMILY

Consider reference data that arise from the linear
model

(1)

where is an unknown column vector that we wish to es-
timate, accounts for measurement noise, and denotes
1 row input (regressor) vectors with a positive-definite co-
variance matrix, . In this paper, we focus on a
general class of affine projection algorithms for estimating
of the form

(2)

where , is an estimate for at
iteration , is the step size, and

...
...

Different choices of the parameters result in dif-
ferent affine projection algorithms. Table I defines the param-
eters for some special cases. For example, the choices ,

, and result in the standard APA

For NLMS-OCF, it is further assumed that is orthog-
onal to . For PRA, it is understood that

, for , i.e., the weight vector
is updated once every iterations.

Most algorithms assume . Moreover, although we
focus on (2), our approach can be extended to other APA algo-
rithms such as DA, which is not covered by (2).

III. MEAN SQUARE PERFORMANCE OF APA

Our first objective is to evaluate the steady-state mean-square
error performance of the APA family (2), i.e., to compute

MSE

where

is the output estimation error at time . To do so, we will rely on
energy-conservation arguments.

A. Energy Conservation Relation

Let . Note that for all algorithms
listed in Table I, except PRA. Then, (2) becomes

(3)

TABLE I
APA FAMILY WHERE f�;K;Dg ARE INTEGERS

which can be rewritten in terms of the weight-error vector
as

(4)

If we multiply both sides of (4) by from the left, we find that

(5)

Introduce the a posteriori and a priori error vectors

and

Then, from (5), it holds that

(6)

We can use (6) to solve for , assuming is invertible

and substitute into (4) to get

(7)

which can be rearranged as

(8)

By evaluating the energies of both sides of this equation, we find
that the following energy equality should hold:

(9)

The important fact to emphasize is that no approximations are
used to establish the energy relation (9); it is an exact relation
that shows how the energies of the weight-error vectors at two
successive iterations are related to the weighted energies of the
a priori and a posteriori estimation error vectors. Relation (9) is
the extension to the APA case of the energy-conservation rela-
tion originally derived in [12] and [13] in the context of robust-
ness analysis and subsequently used in [15]–[18] in the context
of steady-state and transient performance analysis. See also [15]

B. Variance Relation for Steady-State Performance

The relevance of (9) to the mean-square analysis of affine pro-
jection algorithms can be seen as follows. Taking expectations
of both sides of (9), we get

(10)
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Taking the limit as , and using the steady-state condition
, we obtain

(11)

Substituting (6) into the right-hand side (RHS) of (11), we get

RHS of (11)

(12)

where we are defining

and

Using (12), equality (11) simplifies to

(13)

as . This equation can now be used to evaluate the mean-
square performance of affine projection algorithms.

C. Mean-Square Performance

Introduce the noise vector

Then, (1) gives

and under the often realistic assumption that

A.1) the noise is i.i.d. and statistically independent of
the regression matrix .

Neglecting the dependency of on past noises, we find that
the variance relation (13) reduces to

(14)

as . This expression can be used to deduce an expression
for the filter MSE or, equivalently, for the filter excess mean
square error (EMSE), which is defined by

EMSE

where . Now, from (1), we get

and therefore, the MSE and EMSE define each other via

MSE EMSE

In order to evaluate the EMSE, we need to deal with the expec-
tations in (14). For this purpose, we shall rely on the following
assumption.

A.2) At steady-state, is statistically independent of
and moreover, where

for small and for large where

Note that since for all algorithms listed in Table I, except
PRA, then, , and is the top entry of .
For PRA, , and therefore, is also
equal to the top entry of . The condition on is
motivated in Appendix A. Using (14) and A.2), the first term on
the left-hand side (LHS) of (14) becomes

Tr

Tr (15)

as . Similar manipulations can be applied to the re-
maining terms in (14). Thus, we get

Tr (16)

and

Tr (17)

as .
If we introduce the quantities (which are solely dependent on

the statistics of the regression data):

Tr and Tr (18)

then (14) becomes

Tr (19)

as , and the EMSE of the filter is therefore given by

EMSE Tr

(20)

and the steady-state MSE is

MSE Tr

(21)

Two simplifications can be made when the regularization pa-
rameter is small.

• If is small enough so that its effect can be ignored, then
, and the definitions of and will coincide.

In this case, (20) reduces to

EMSE
Tr

Tr
(22)

If we use , we obtain

EMSE
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and if we use , we get

EMSE
Tr

• Another approximation assumes is small and is large
and uses

Tr and Tr

to get

EMSE Tr (23)

Note that this expression for the EMSE is proportional to . In
contrast, the expression given in [9] is

EMSE Tr

which does not take into account the effect of . Simulation re-
sults in Section VI (see Figs. 7–12) show that (22) and (23) pro-
vide good approximations for filter performance for relatively
small step-size and order .

IV. TRACKING PERFORMANCE OF APA

A similar analysis can be used to evaluate the performance
of APA in nonstationary environments. Thus, assume that

, where the unknown system is now
time-variant. It is assumed that the variation in is according
to the random-walk model (see, e.g., [1], [2], [15], and [19])

(24)

where is an i.i.d. sequence with autocorrelation matrix
and independent of the initial conditions

of the for all and of the for all . Let
, , and . Then

and

(25)

If we multiply (25) by from the left, we obtain that (6) still
holds for the nonstationary case. Substituting (6) into (25), we
get

(26)

Evaluating the energies of both sides of (26) and taking expec-
tations, we find that

(27)

Using the random-walk model (24), we know that
for , and therefore

Tr

(28)
Substituting into (27), we obtain

Tr (29)

Comparing with (10), we see that the only difference in the non-
stationary case is the appearance of the additional term

Tr . Note that the other terms are identical. Therefore,
similar manipulations to those in Section III lead to

Tr
Tr

(30)
as , and the EMSE is then given by

EMSE Tr Tr

(31)

The two simplifications of Section III can be used to get

Tr
Tr

(32)

or

Tr
Tr (33)

From (32) and (33), we see that for a given , there is an
optimal that minimizes the EMSE, and for a given , there
is an optimal that minimizes the EMSE. Comparisons of
the tracking performance among the APA family are given in
Table II.

V. TRANSIENT ANALYSIS OF APA

We now study the transient (i.e., convergence and stability)
performance of the APA family. This task is more challenging
than mean-square performance. Nevertheless, the same energy
conservation arguments of the previous section can still be used
if we incorporate weighting into the energy relation and into the
definition of the error quantities [14], [17], as we now explain.
We will assume, without loss of generality, that . Then,
(2) becomes

In the following analysis, if we substitute by ,
then the results for would be obtained.

A. Weighted Energy Relation

Let and . If we multiply
both sides of the above recursion by from the left, for any
Hermitian positive-definite matrix , we find that the a priori
and a posteriori estimation errors are related via

(34)
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TABLE II
EMSE OF APA FAMILY IN NONSTATIONARY ENVIRONMENTS WHERE A � (U U )

Similarly to the arguments in Section III, we can get

(35)
On each side of this identity, we have a combination of a priori
and a posteriori errors. If we equate the weighted Euclidean
norms of both sides of (35), we find that

(36)

The special choice reduces to the energy relation (9).
Moreover, since

we also get

(37)

B. Weighted Variance Relation

In transient analysis, we are interested in the time evolution
of for some desirable choices of . For this reason,
rather than eliminate the effect of the weight-error vector, the
contributions of the other error quantities are in-
stead expressed in terms of the weight-error vector itself. In so
doing, the energy relation (36) will lead to a recursion that de-
scribes the evolution of .

Replacing by its equivalent expression in (34), we get

(38)

Using the relation , we can eliminate . Since
most of the factors disappear under A.1) and expectation, we get

(39)

where

In addition, can be expressed in terms of .
Thus, we have

(40)

where

(41)

Recursion (40) provides a compact characterization of the
time evolution of the weight-error variance. However, recursion
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(40) is still hard to propagate due to the presence of the expec-
tation

This expectation is difficult to evaluate due to the dependence of
on and of on prior regressors. One way to overcome

this difficulty is to introduce an independence assumption on the
regressor sequence , namely, to assume the following.

A.3) The matrix sequence is independent and identi-
cally distributed.

This assumption guarantees that is independent of both
and . Clearly, A.3) is a strong assumption (it is actually

stronger than the usual independence assumption, which only
requires the to be i.i.d [1], [2]). Observe, however, from
(41) for that it is sufficient for our purposes to require the
following:

A.3’) is independent of .
This is generally a weaker assumption. In this way, recursion
(40) reduces to

(42)

where now

(43)

with expectations appearing in (43). In addition, taking expec-
tations of both sides of (37) and using assumption A.1), we ob-
tain the following result for the evolution of the mean of the
weight-error vector:

(44)

Relations (42) and (44) can be used to derive conditions for
mean-square stability, as well as expressions for the steady-state
MSE and mean-square deviation (MSD) of the APA family. To
see this, we introduce some notation. The vec notation, e.g.,

vec , allows us to replace an arbitrary matrix
by an 1 column vector whose entries are formed by

stacking the successive columns of the matrix on top of each
other. On the other hand, writing vec for an 1 column
vector results in an matrix whose entries are ob-
tained from . Therefore, we also write vec . The
vec notation is convenient when working with Kronecker
products. The Kronecker product of two matrices and , say
of dimensions and , respectively, is denoted
by [20]. For any matrices of compatible di-
mensions, it holds that

vec vec (45)

Applying (45) to (40), we find that it leads to the vector relation

(46)

where the coefficient matrix is and defined by

(47)

with

We can rewrite the recursion for in (40) by using the
vectors instead of the matrices , say, as

vec vec (48)

where, for the last term, we used the fact that

Tr

where vec . For compactness
of notation, we drop the vec notation from the subscripts and
keep the vectors so that the above is simply rewritten as

(49)

In addition, we obtain the following result for the evolution of
the mean of the weight-error vector:

(50)

Recursion (49) shows that in order to evaluate , we
need to know , with a weighting matrix whose
entries are determined by . Now, the quantity
can be inferred from (49) by writing the recursion for , i.e.,

We again find that in order to evaluate , we need
to know . The natural question is whether this
procedure terminates. Fortunately, as in [14] and [17], this pro-
cedure does terminate. This is because once we write (48) by
substituting by , we get

where the weighting matrix on the RHS is . This term can
be deduced from the prior weighting factors. Indeed, let
denote the characteristic polynomial of ,

It is a polynomial of order in

with coefficients . Now, the Cayley–Hamilton theorem
guarantees that so that

(51)

Theorem 1 [Transient Performance]: Under assumptions
A.1) and A.3’), the transient performance of the APA family
(2) for is described by the state recursion

(52)
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where

...
...

...
. . .

...

... ...

vec , vec ,
, and are coef-

ficients of the characteristic polynomial of .
Observe that the eigenvalues of coincide with those of .

C. Learning Curves

The learning curve of an adaptive filter describes the time
evolution of the variance . Now, if the are assumed
to be i.i.d., then

and the learning curve can be evaluated by computing
for each . This task can be accomplished recur-

sively from (48) by iterating it and setting vec .
This yields

(53)
That is

(54)

where the vector and the scalar satisfy the recursions

D. Mean-Square Stability

From (50), the convergence in the mean of the APA family is
guaranteed for any satisfying

(55)

Moreover, recursion (49) is stable if, and only if, the matrix
is stable. Thus, let and

so that . The following holds.
Theorem 2 [Stability]: The convergence in the mean-square

sense of the APA family is guaranteed for any in the range

where , , and

.

The above condition on is in terms of the largest positive
eigenvalue of when it exists. The theorem is proved Ap-

TABLE III
STABILITY BOUNDS COMPUTED BY THEOREM II (GAUSSIAN INPUT)

TABLE IV
STABILITY BOUNDS COMPUTED BY THEOREM II (UNIFORM INPUT)
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Fig. 1. Simulated MSE of APA as a function of the step size.

pendix B. By combining (55) and Theorem 2, a bound on the
step-size for both mean and mean-square stability is obtained.

Theorem 2 provides an explicit and unified stability bound
for a general class of input signals and various affine projection
algorithms.

E. Steady-State Behavior

In the above, we used the variance relation (49) to charac-
terize the transient behavior of the APA family in terms of a
state recursion. We can use the same variance relation to shed
further light on the mean-square performance of the APA family.
In particular, we shall re-examine the EMSE, as well as study
the mean-square deviation (MSD), which is defined as

MSD

Assuming the step-size is chosen to guarantee filter sta-
bility, recursion (49) becomes in steady-state

(56)
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Fig. 2. Learning curves of the APA family for colored Gaussian input using
� = 1:0 and D = 8. (a) K = 1. (b) K = 2. (c) K = 4. (d) K = 8 [Input:
Gaussian AR(1), pole at 0.9. System: FIR (16)].
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Fig. 3. Learning curves of the APA family for colored uniform input using
� = 1:0 and D = 8. (a) K = 1. (b) K = 2. (c) K = 4. (d) K = 8 [Input:
uniform AR(1), pole at 0.5. System: FIR (16)].

which is equivalent to

(57)

We choose to reduce the weight into the identity matrix. Thus,
it needs to be selected as the solution to the linear system of
equations vec , i.e., vec . In
this case, the weighting quantity that appears in (57) reduces
to the vector of unit entries. Then, the left-hand side of (57)
becomes the filter MSD, and (57) leads to

MSD vec
(58)

In a similar way, let us evaluate the EMSE of the APA family.
Note that since
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(b) From [10] 

(a) Using (54) 
(c) Simulation 

Fig. 4. Comparison of learning curves for colored Gaussian input using K =

2, � = 1:0, and D = 8. (a) Using (54). (b) Using the results of [10]. (c)
Simulation [Input: Gaussian AR(1), pole at 0.9. System: FIR (16)].
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(a) Using (54) (c) Simulation 

(b) From [9] 

Fig. 5. Comparison of learning curves for colored Gaussian input using K =

4, � = 1:0, and D = 8. (a) Using (54). (b) Using the results of [9]. (c)
Simulation [Input: Gaussian AR(1), pole at 0.9. System: FIR (16)].

we need to evaluate , where the weighting factor is
vec . Assume we select as the solution to the linear

system of equations . In this case, the weighting
quantity that appears in (57) reduces to . Then, the LHS of
(57) becomes the filter EMSE, and (57) leads to the desired
result

EMSE vec
(59)

VI. SIMULATION RESULTS

We illustrate the theoretical results presented in this paper
by carrying out computer simulations in a channel estimation
scenario. The unknown channel has 16 taps and is randomly
generated. Two different types of signals, viz., Gaussian and
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Fig. 6. Comparison of learning curves for colored Gaussian input using K =

8, � = 1:0, and D = 8. (a) Using (54). (b) Using the results of [9]. (c)
Simulation [Input: Gaussian AR(1), pole at 0.9. System: FIR (16)].
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Fig. 7. Steady-state MSE curves of the APA family for colored Gaussian input
using D = 1 in stationary environments. (a) K = 1. (b) K = 2. (c) K = 4.
(d) K = 8 [Input: Gaussian AR(1), pole at 0.9. System: FIR (16)].

uniformly distributed signals, are used for the input signal ,
viz.,

which is a first-order autoregressive (AR) process with a pole at
. For the Gaussian case, is a white, zero-mean, Gaussian

random sequence having unit variance, and is set to 0.9. As
a result, a highly colored Gaussian signal is generated. For the
uniform case, is a uniform random sequence between 1.0
and 1.0, and is set to 0.5. In Tables III and IV we evaluate
the bounds in (55) and Theorem 2. These tables indicate that
the stability bound on is approximately for both
Gaussian input (which is consistent with [9] and uniform input
signals). This fact is further verified by simulation in Fig. 1,
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Fig. 8. Steady-state MSE curves of the APA family for colored Gaussian input
using K = 4 in stationary environments. (a) D = 1. (b) D = 4. (c) D = 8

[Input: Gaussian AR(1), pole at 0.9. System: FIR (16)].
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Fig. 9. Comparison of MSE expressions when K = 1 or K = 4 and D = 1

[Input: Gaussian AR(1), pole at 0.9. System: FIR (16)].

where MSE curves are plotted as a function of the step size.
The expectations involved in evaluating and are estimated
via ensemble averaging.

The signal-to-noise ratio (SNR) is calculated by

SNR

where . The measurement noise is added to
such that SNR 30 dB. The adaptive filter and the un-

known channel are assumed to have the same number of taps.
All adaptive filter coefficients are initialized to zero. In addition,
the regularization parameter is set to 0.001. We set . The
simulation results shown are obtained by ensemble averaging
over 200 independent trials.
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Fig. 10. Comparison of MSE when K = 2 and D = 1 [Input: Gaussian
AR(1), pole at 0.9. System: FIR (16)].
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Fig. 11. Steady-state MSE curves of the APA family for colored uniform input
using D = 1 in stationary environments. (a) K = 1. (b) K = 2. (c) K = 4.
(d)K = 8 [Input: uniform AR(1), pole at 0.5. System: FIR (16)].

A. Transient Performance

Figs. 2–6 show the learning curves of the APA family. The
step size is set to , and the delay parameter is set to 8.
Fig. 2 shows how close the simulation results are to the theoret-
ical results (54), where and were evaluated via ensemble
averaging. The theoretical results are very close to the simu-
lated results, although there is some discrepancy when .
In Fig. 3, the colored uniform input signal is used for the sim-
ulation. For generating the input signal, is set to 0.5, unlike
the Gaussian case. In Figs. 4–6, the learning curves in Fig. 2 are
compared with the theoretical results in [9] and [10].

B. Steady-State Performance

Fig. 7 shows the steady-state MSE curves of the APA family
for colored Gaussian input as a function of the step size. The step
size varies from 0.04 to 1.0. This range guarantees stability as
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Fig. 12. Steady-state MSE curves of the APA family for colored uniform input
using K = 4 in stationary environments. (a) D = 1. (b) D = 4. (c) D = 8

[Input: uniform AR(1), pole at 0.5. System: FIR (16)].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-30

-28

-26

-24

-22

-20

-18

-16

-14

-12

Step--size(µ)

M
S

E
 in

 d
B

(a) K=1, D=1
(b) K=2, D=1
(c) K=4, D=1
(d) K=8, D=1
Theory
Simulation

(a) K=1 

(b) K=2 

(d) K=8 

(c) K=4 

Fig. 13. Steady-state MSE curves of the APA family for colored Gaussian
input using D = 1 in nonstationary environments. (a)K = 1. (b)K = 2. (c)
K = 4. (d)K = 8 [Input: Gaussian AR(1), pole at 0.9. System: FIR (16)].

mentioned before. The theoretical results are calculated using
(22), and the simulation results are obtained by averaging more
than 1000 instantaneous square errors in the steady-state and
then averaging 200 independent trials. The simulation results
present good agreement with the theoretical results for small
step size but deviates from the theoretical one for a larger step
sizes and larger . The theoretical MSE in [9] is almost the
same as the curve corresponding to in Fig. 7; the MSE
expression in [9] is independent of and is therefore not able to
predict the variations in MSE as a function of . Fig. 8 shows
the steady state MSE for different delay parameters . As
increases, the MSE decreases. To compare the EMSE expres-
sions in Sections III and V, theoretical MSE curves using (20),
(22), (23), and (59) are plotted in Fig. 9. The EMSE curves using
(20) and (22) show good agreement with the simulation results.
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Fig. 14. Steady-state MSE curves of the APA family for colored Gaussian
inputK = 2 in nonstationary environments. (a)D = 1. (b)D = 2. (c)D = 4

[Input: Gaussian AR(1), pole at 0.9. System: FIR (16)].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-30

-28

-26

-24

-22

-20

-18

-16

-14

-12

Step--size(µ)

M
S

E
 in

 d
B

(a) K=1, D=1
(b) K=2, D=1
(c) K=4, D=1
(d) K=8, D=1
Theory
Simulation

(a) K=1 

(d) K=8 

(c) K=4 

(b) K=2 

Fig. 15. Steady-state MSE curves of the APA family for colored uniform input
usingD = 1 in nonstationary environments. (a)K = 1. (b)K = 2. (c)K = 4.
(d)K = 8 [Input: uniform AR(1), pole at 0.9. System: FIR (16)].

Fig. 10 shows comparison of MSE with [10]. Figs. 11 and 12
present the results for a colored uniform input signal.

C. Tracking Performance

Figs. 13–16 show the steady-state MSE tracking performance
of the APA family in a nonstationary environment. The steady-
state tracking MSE in (31) is not a monotonically increasing
function of . Therefore, there exists an optimal value of step
size that minimizes the MSE in the nonstationary case. To
see this, the range of the step-size is set from 0.04 to 1.0. We
are using an i.i.d. sequence with autocorrelation matrix

, where . Fig. 13 shows the theoretical and sim-
ulated results for colored Gaussian input for the different value
of . For a given , there exists an optimal that minimizes
the MSE, and for a given , there exists an optimal , which
minimizes the MSE. Fig. 14 shows the tracking performance for
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Fig. 16. Steady-state MSE curves of the APA family for colored uniform input
usingK = 2 in nonstationary environments. (a)D = 1. (b)D = 2. (c)D = 4

[Input: uniform AR(1), pole at 0.9. System: FIR (16)].

different values of . The simulation results show the depen-
dence of the tracking performance on . For a given , there
exists an optimal that minimizes the MSE. Figs. 15 and 16
show the theoretical and simulated results for colored uniform
input signal.

VII. CONCLUSIONS

In this paper, we carried out a rather detailed mean-square
performance evaluation of the family of affine projection algo-
rithms under the assumptions A1), A2), and A3’). Using en-
ergy-conservation arguments, we were able to derive expres-
sions for the steady-state mean-square error and mean-square
deviation without restricting the distribution of the input data to
being Gaussian or white and without assuming any particular
model for the input signals. Both stationary and nonstationary
environments were considered. We also characterized the tran-
sient behavior of the filters by means of a first-order state-space
model, whose stability was shown to determine the mean-square
stability of the adaptive filter. Several simulation results were in-
cluded to illustrate the application of the theory. In particular, it
was seen that there is relatively good match between theory and
practice.

APPENDIX A
EVALUATION OF

Recall that the a priori and a posteriori error vectors are de-
fined by

...
...

where we are assuming and without loss of
generality. From (6), we know that
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when is small. Then, the following relations hold:

...

From these relations, we also get

...

but since in steady-state

and neglecting off-diagonal terms in , we find that

(60)

where the diagonal matrices ( , ) are given by

. . .

. . .

Note that when is small, and . In addi-
tion, when is close to 1 and when SNR is high,
and so that (60) agrees with our assumption A.2.
Expression (60) suggests that other choices for and are
possible for assumption A.2). However, simulations show that
the simpler conditions in A.2) lead to good results.

APPENDIX B
PROOF OF THEOREM 2

From properties of Kronecker products, we know that the
eigenvalues of

are all the combinations for all , where
are the eigenvalues of . Since , is positive

definite. Moreover, is non-negative definite.

Now, we want to determine conditions on in order to guarantee
, where

Following the same argument used in [17, App. A], we can es-
tablish the condition
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