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Abstract—This paper proposes a new approach to the analysis CMA2-2, CMA1-2, normalized CMA, and a new normalized
of the steady-state performance of constant modulus algorithms CMA variant with less bias). A comparison among the various
(CMA), which are among the most popular adaptive schemes g qqithms is also performed, along with several simulation re-

for blind equalization. A major feature of the proposed feedback : . ) .
approach is that it bypasses the need for working directly with sults. Our conclusions will further confirm the superior perfor-

the weight error covariance matrix. In so doing, approximate Mmance of CMA2-2.

expressions for the steady-state mean-square error of several CM  The approach in this paper exploits a fundamental energy-
algorithms are derived, including CMA2-2, CMA1-2, normalized  preserving relation that, in fact, holds for a general class of adap-
CMA, and a new normalized CMA variant with less bias. A = iy filters and not just CM algorithms [6]. This relation allows

comparison among the various algorithms is also performed, . . . . . -
along with several simulation results. The conclusions confirm the us to avoid working directly with the nonlinear update that is

superior performance of CMA2-2. characteristic of CM algorithms; it focuses instead on the prop-
Index Terms—Adaptive filter, blind equalization, constant mod- agation of error energies through a feedback structure that con-
ulus signal, feedback analysis, mean-square error. sists of a lossless feedforward block and a feedback path.

A. Earlier Results in the Literature
. INTRODUCTION

) . Some of the earlier results in the literature on the performance
A MONG the most popular adaptive schemes for blingt cp algorithms that are relevant to the discussion in this paper
. equalization are the so-called constant modulus a'g&ppear in [9]-[13]. The survey article [3] provides a compre-
rithms (CMA's); see [1]-[3] and the many references thereifengiye |ist of further additional references on different aspects
The updatg equations of_ these algorithms are nonlinear jncp algorithms. Shynlet al. [10] obtain some of the ear-
nature, which may explain why only a handful of resultfest pproximations for the mean-square error of the so-called
are available in the literature regarding their steady-staq a2-2 variant, under the assumption of Gaussian regression
mean-square-error performance. The difficulty arises from thg tors. This assumption may not be justified for many commu-
fact that classical approaches to steady-state performance &\@laiion channels, and the derivation in this paper will provide
uation often require, as an intermediate step, that a recursigi,essions that result in better approximations for generic re-
be determined for the covariance matrix of the weight emefression vectors. Bershad and Roy [11] wrote an early work on

vector. This step can become a burden for CM algorithms djg, nerformance of CMA2-2, albeit for a particular class of input

to their inherent nonlinear updates (see, e.g., the analysis Of%alsthat are modeled by Rayleigh fading sinusoids. Zeng and

constant modulu; array algorithm for adaptive begmforming *ﬂ)ng [12] studied the mean-square-error of the optimal CM re-
[4] and the analysis of the performance of CMA for interferencgjver, viz., of the receiver that results by minimizing the CM

cancellation in [S, Sec. 3.3)). _ cost function. The effects of adaptation and gradient noise are
The main objective of this paper is to propose a new approggly considered. By an ingenious use of Lyapunov stability and

tp the anfilysis of the_steady-state performance c_)f b””d_adaa%raging analysis, Fijalkoet al.[13] obtain an approximate
tive algorithms. A major feature of the approach is that it bysypression for the mean-square error of CMA2-2 that is related

passes the need to work directly with the weight error vectqg gne of our results; though less accurate (see the simulation

In so doing, approximate expressions for the steady-state megg comparison results in Section IV-E).

square error of several CM algorithms are derived (including

B. Organization of the Paper
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simulations that compare the theoretical results predicted by «
expressions with experimental values. Inthe concluding sectic
we compare the various algorithms. s(i)

[I. THE T /2-FRACTIONALLY -SPACED MODEL

Fig. 1. Multichannel model fof’/2-FSE.

Equalization algorithms can be implemented in
symbol-spaced form [also called Baud- or T-spaced equalizer
form (TSE)] or in fractionally spaced form (FSE). In this paper",md
we concentrate on fractionally spaced implementaions due to
their inherent advantages (see, e.g., [2], [3], [14]-[16]). Thus,
consider an FIR channelof length2A/ and an FIR equalizer then we also have; = s;C andy(i) = u;w.
w of length2V. We split the coefficients of the channel into

U = [to, i Ue, i) 3

even- and odd-indexed entries and denote them by A. Perfect Equalization
A T An important result for such fractionally spaced equalizers
ce = [c(0), «(2), -+, c(2M — 2)] is the following (see, e.g., [3]). Let (z) andc,(z) denote the
c, 2 [e(1), e(3), -+, e(2M — 1)]". polynomials associated with the even- and odd-indexed sub-
channels

The vectors:. andc, are the impulse responses of the two sub-

A
channel blocks shown in Fig. 1. In a similar way, we define the ce(z) =

c(0) + c(2)z + -+ -+ c(2M — 2)zM 1

two subequalizers co(2) A (1) + ()2 + -+ e(2M — 1)2M L,
we 2 [w(0), W(2), -, W2N — 2)]* Then, it can be shown that if these polynomials do not have
w, A [@(1), W(3), - -, WEN — 1)]T common zeros, andi¥ > M —1, then there exists an equalizer

w that leads to an overall channel-equalizer impulse response of
which are the impulse responses of the two subequalizer blotke form
shown in the same figure. The system in Fig. 1 then corresponds o
to what is called a multichannel model for7g 2-fractionally hp = e”col0, ---, 0,1,0,---, 0] )

spaced equalizer. This model is well motivated and explainedi§f} some constant phase shfte [0, 2], and where the unit

the survey article [3]. . _ entry is in some positio, D < M + N — 1. Equalizers
The output{y(i)} of the combined channel-equalizer systen), that result in overall impulse responses of the above form

can be expressed in terms of the transmitted sigs@l)} as  are calledzero-forcingequalizers and will be denoted by? ¥ .

follows. Introduce th¢ A/ + N —1) x N prewindowed Toeplitz Thys, under such conditions, the output of the channel-equalizer

matrix system will be of the formy(7) = ¢?%s(i — D) for some{ D, 6}.

[ (1) 1 The multichannel model of Fig. 1 is the model we are going

e(3) e(1) to study in future sections. For more genefdlP-fractionally

. spaced equalizers, we end up with a similar model #tbub-

c(3) - channels and” subequalizers (see, e.g., [15] and [16]), and the
c(2M — 1) : (1) results in this paper can be readily extended to this context.

(1L

c(2M —1) . c(3) B. Constant Modulus Algorithms

: We thus see that under a length-and-zero condition, a
c(2M —1) | finite-length FSE can perfectly equalize a noise-free FIR
o ] channel. A blind adaptive equalizer is one that attempts to
and similarly forC. . Then, define théM +N —1) x2N channel  gn5roximate a zero forcing equalizer without knowledge of

matrix ' = [C, C.], the equalizer vector the channel impulse response and without direct access to the
w. transmitted sequendes(+)} itself. This is achieved by seeking
w = [wo} to minimize certain cost functions that are carefully chosen so
that their global minima occur at zero forcing equalizers.
and the input signal vector The most popular adaptive blind algorithms are the so-called
) ) ) constant modulus algorithms [17], [18]. They are derived as sto-
si = [5(0), st = 1), -+, s(1 = M = N +2)]. chastic gradient methods for minimizing the cost function
Then,y(:) = s;Cw. If we further letu, (¢) andu.(¢) denote the Jon(w) = E(jy(i) | — Ry|)? (5)
input signals to the subequalizers andw,, respectively, and
define therow input vectors wherew denotes the weight vector to be estimated, and the con-
stantk, is suitably chosen in order to guarantee that the global
Uo,i = [Uo(i), Uo(i = 1), -+, uo(i =N+ 1] (1) minima of Joy(w) occur at zero forcing solutions (see, e.g.,

Ue i = [e(t), ue(i — 1), «-+, uc(i — N 4+ 1)] (2) [15], [17], and [19]).
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In the next two sections, we study the following two variant®A. The Mean-Square Error
CMA2-2 and CMA1-2. In a later section, we study other vari- | t,,ZF denote the zero forcing solution that givesy? ¥ =

ants (known as normalized CM algorithmis). s(i — D)e® for some{D, 6}. This is guaranteed to exist under
CMA2-2: In this case, we selept= 2 some length-and-zero conditions. Now, due to gradient noise,
E|s(5)[* the adaptive equalizer will yield an outpyf:) that is distinct
Ry = —+ (6) fromu;w?" . Lete, (i) denote the resulting(priori) estimation
Els@)? error as

and the update equation for the weight estimates is given b .
P g g g y a(i) = s(i — D)e?® — y(i) = wyw?F — wsw;_y = wyb;_ ;.

s * 0 — (D)2
wi = wiy o+ puf y(i) (R~ u(D)[] (7) One measure of filter performance is the steady-state mean-
with a step-sizg1 and where nowy(:) = u,;w;_; is the output square error (MSE)
of the adaptive equalizer. Here, the symbalenotes complex MSE = lim E|ce(i)|?
conjugate transposition. i—o0 @
CMAL-2: In this case, we selegt= 1 which is clearly dependent ai;_+. It is common in the liter-
E|s()2 ature to evaluate this MSE as follows. We first assume that the
R = Bl (8) regression vectou; is independent of;_;.2 Then, under this
[5(2)] assumption, the above expression for the MSE becomes
and the update equation for the weight estimates is given by MSE = lim Trace(RF_,) (10)
. i—1
O Z o
Wi = wi—1 + ptty [Rl ()] - ?J(Z)} . (9)  whereF; = Ew;w! and, assuming stationaritf = Eu}u;.3

It is thus customary to determine the steady-state MSE by first

. ) . determining the steady-state mean-square deviation (MSD) de-
Since these algorithms are based on instantaneous approxisq by

mations of the true gradient vector of the cost functies, (w),

the equalizer outpuj(i) need not converge to a zero forcing so-  Trace(F) = lim Trace(F;) = lim Eljxi;]*. (11)
lution of the forms(i — D)e?? due to the presence of gradient ree ree

noise. In the following sections, we derive expressions for tiehis method of evaluation can become a burden for adaptive al-

steady-state mean-square error gorithms that involve nonlinear updatesin, as is the case with
o blind adaptive algorithms. We now describe a new approach for
lim E |y(i) —s(i — D)e’0| evaluatingE|e,(o0)|? that bypasses the need for studyifg
R and its limit.

for adaptive algorithms of the CM class.
B. A Fundamental Energy-Preserving Relation

lll. A NEW APPROACH FORSTEADY-STATE ANALYSIS The approach is based on a fundamental energy-preserving

As mentioned in the introduction, and as can be seen from fifdation [cf. (20) further ahead], which actually holds for very
above equations, the updates for CM algorithms are nonlindgheral adaptive schemes and not just CM algorithms, as ex-
in the weight estimates;;. This may explain why only a few plained in [6]. This energy relation was noted and exploited by
| Saved and Rupp in [26]-[29] in studies on the robustness and

results are available in the literature regarding the steady-st e e o . .
performance of this class of algorithms. The difficulty is pelz-stability of adaptive filters from a deterministic point of view

cause for other adaptive schemes (e.g., of the LMS family),(ﬁee [29]). We review this result below and prepare the notation

is common to compute steady-state results by first determinif‘iﬁclater_ jecuons. | stochastic alaorithm of the f
recursions for the squared weight error end[gy||? measured ~ ~Onsider a general stochastic algorithm of the form
. e : N T .

relative to some zero forcmg sqlunon, say, = w w; w; = wi_y + pate, () (12)
(see, e.g., [20]-[23]). This step is a burden for CM algorithms
as well as for several other adaptive schemes, due to their namerec, (i) denotes an instantaneous error, apdh nonzero
linear updates. (row) regression vector. CM algorithms are a special case of the

Our objective is to propose a new approach for evaluating theZW  coind o1 hi dition i derivation. W -

_ _ . . z € are not going to Impose tnis conaition in our derivation. vwe are simply
Steady State_ _mean squ_are error of C_’M alg?m?ms WIthO_Ut rt?sing it here to demonstrate the common approach in the literature. We may
quiring explicit expressions or recursions fpp;||*. We moti-  add that although not true in general, especially for tapped-delay adaptive filter
vate our approach by first explaining the conventional meth@tuctures, this condition is actually a part of certain widely used independence

- _ - @assumptions in adaptive filter theory [20]. It was shown in [24] and [25], for
for evaluatlng the mean square error and by Showmg the di instance, that for LMS-type scenarios, and for sufficiently small step- sizes, the

culty it encounters when dealing with adaptive filters with norconclusions that can be obtained from such independence assumptions tend to
linear updates. match reasonably well the real filter performance.
3Since we assume in this paper that the input veeids a row vector rather
1in our notation, we use parenthesis to refer to scalar variablessg.ggr  than a column vector, its covariance matrix is therefore defindghga: ; rather
y(¢) and subscripts to refer to vector quantities, eug.pr u;. This convention thanEw;u;. Our convention of arow vecter; generally simplifies the notation
helps distinguish between scalar and vector quantities. and avoids an overburden of conjugation symbols.
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above for different choices of the functiep(s). Now, subtract

both sides of (12) from some vecto’  to get the weight error

equation :
Wi—1 w;
Wi = wi—1 — p eyt (13) - >
(3 Z (2 0( ) __% 60(7:) __ ‘ “T” = 1
wherew; = w?F — w;. Define thea priori anda posteriori VA(i) ep(1) — /A eali)
. . - a
estimation errorss, (i) = ww;—1 ande,(i) = w;w;. We

now show how to rewrite (13) in terms of the error measure
{w;, wi—1, e4(t), e,(i)} alone. For this purpose, we note tha.
if we multiply (13) by«; from the left, we obtain

ep(i) = ea(i) — pilluil e (2). (14)
C. Significance to MSE Evaluation

Fig. 2. Lossless mapping and a feedback loop.

ing f PR . . .
Solving for e, (i) gives We now explain the relevance of the energy relation (20) in

eq (1) — ep(i) the context of MSE evaluation for CM algorithms. (Applications

eo(t) = il ]|2 (15) to other classes of adaptive algorithms, in addition to tracking
analyzes, are given in [6]—[8].) By taking expectations of both
so that we can rewrite (13) as sides of (20), we get
Wi = Wiy — W[Ga(i) = ep(D)]: (16)  Ellwi|l* + Ex()ea(d)]* = Ellwi—1|* + ER(i)]ep(1)]*. (21)
Rearranging (16) leads to Now, recall that our objective in this paper is to evaluate the
. . MSE of CM algorithms in steady state. We aret studying
Wi + Lea(i) = 1+ “_iep(i). (17) conditions under which an algorithm will tend to steady state,
[lwill? [lwsl|? which is a separate and complex issue (especially for nonlinear
If we define and time-variant filters). Instead, we want to evaluate what per-
formance to expect from an algorithm if it reaches steady state.
7i(4) A 1 (18 The convergence to steady state (and, hence, stability) can be
[|i |2 studied by relying on results from averaging analysis and from

then by squaring (17), we observe that the following energy @9—called ODE methods (e.g., [30]_,[32]); these teqhniqueg_pro—
IR Dad- vide tools that allow one to ascertain, under certain conditions
lation is obtained: . : .
on the data, that there exist small enough step siZeswhich
;|12 + 72(2) ] ea ()| = |Jwie1]|? + 7(2)]ep (4)]2. (19) afilter reaches steady state (see, e.g., [13]).
Thus, assuming filter operation in steady state, we can write
Interestingly enough, this relation can be obtained by simply

replacing the terms of (17) by their respective energies; the cross E|ig))? = E||wi—||? fori — oo. (22)
terms cancel out!. We state this result in the form of a theorem
for later reference. [Similar considerations are also common in the steady-state

Theorem 1—Energy Relation [26], [27]Given a generic analysis of other classes of adaptive algorithms (see, e.g.,

adaptive algorithm of the form (12), it always holds that [33]).]
Now, with (22), the effect of the weight error vector is can-

ll@3]|? + 7(@)|ea(@)]? = @izt ||* + F(@)]ep(d)]>  (20) celed out from (21), and we are reduced to studying only the
) equality
wherefi(i) = 1/||u:]|*.
Relation (20) holds foany adaptive algorithm of the form ETi(8)|eq(D))? = Eni)|ep(d)]>.

(12); it relates the energies of the weight error vectors at
two successive time instants with the energies ofah@iori  This equation provides a relation involving only the desired un-
and a posteriori errors. No approximations are involved in knowne, (i) sincee, (¢) is itself a function ot (i), as evidenced
deriving (20). The relation also has an interesting physical, (14). Thus, by solving the above equation as oo, we can
interpretation. It establishes that the mapping from the variablgstain an expression for the MSE.
{wi-1, Vi(i)ep(1)} to the variables{w;, \/fi(i)ea(é)} IS Theorem 2—Identity for MSE Analysi€onsider a generic
energy preserving. Combining (20) with (14), we see that boffyaptive algorithm of the form (12). In steady statei(as ~),
relations establish the existence of the feedback configuratighen (22) holds, we obtain
shown in Fig. 2, wherel denotes the lossless map from

{@i—1, VA()ep()} 1o {;, \/A()ea(i)}, and whereg N N PN b
denotes the unit delay operator. Thus, relation (20) character- Epi(i)]ea(i)]* = ER(i) | ea(d) — 0] co(t)] (23)

izes the energy-preserving property of the feedforward path,
whereas relation (14) characterizes the feedback path. O
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IV. STEADY-STATE ANALYSIS OF CMA2-2 that z2||u])? will eventually tend to a constant and can, there-
gre. be assumed to be independent,(f). Note that by the

me argument, we can also assume R4, ||? is indepen-
ent ofe, (%) in steady state. (We may add that an assumption
similar to 1.2 is also used in [13].)

We now demonstrate how the result of Theorem 2, whi(f
holds for generic adaptive schemes of the form (12), can be
plied to the CMA2-2 recursion (7). In later sections, we consid
other CM algorithms.

The derivation in the sequel relies on some statistical assumBo—
tions (four in total), the introduction of which simplifies theP- The Case of Real-Valued Data
analysis. Although these assumptions may not hold in general\We start our analysis with the case of real-valued data
they are realistic for sufficiently small step sizes and, as we sh@H(¢), y(¢), u;} (e.g., data from a PAM constellation). In the
see from several simulations, lead to good fits between our thext section, we consider complex-valued data. It turns out that
oretical results and the simulation resulBollowing each as- the expressions for the MSE of CMA2-2 are distinct in both
sumption, we will provide a brief motivation and justificationcases, whereas those for CMA1-2 are not.

for its use. For real-valued data, the zero forcing respohgethat the
adaptive equalizer attempts to achieve [cf. (4)] can be of ei-

A. Two Initial Assumptions ther formhp = +[0, ---, 0, 1, 0, ---, 0]. In the following, we
continue with the choicép = [0, ---, 0, 1, 0, - - -, 0], which

The analysis that follows for CMA2-2 is based on the fol-.
lowing two assumptions isteady-statéi — oc). yields
Assumption |.1:The transmitted signad(¢ — D) and the D) = s(i— D) — uli
estimation error, (¢) are independent in steady state so that ca(i) = s(i )=y,

Es*(i — D)eo (i) = 0 sinces(i — D) is assumed zero mean. A similar analysis holds for the cask, = [0, ---,

This is a reasonable assumption since it essentially € _1 0 ... 0]

quires the estimation errofe,(i)} of the equalizer to be Now, the relation (23) in the CMA2-2 context leads to the
insensitive, in steady-state, to the actual transmitted symbgg !

. uality, forz
{s(i)}. For example, for symbols from a 2-PAM constellation ¥ 101 = o0

s(4) € {+1, —1}, this means that we are requiring the behavior ’ 2

(or distribution) of the errore,(i), after the equalizer has ETi(i)|eq(i)|* = ETi(4) |eq(s) — ﬁy(i)(R2 — [y(®)*)
converged to steady state, to be insensitive to whether the i (24)
polarity of s(¢) is +1 or —1. We will write more compactly (here and throughout the paper)

Assumption 1.1 can be replaced by the following two condi-

tions, which also enable us to conclude that (i — D)e, (i) = e A, @), T A i),y A y(@), u AL

0.
A . .
i) In steady state, CMA2-2 converges in the mean to a zero s= s(i - D), fori — oo
forcing solution, i.e., the mean of the combined channel- that (24) b ft di
equalizer responsk; = Cw; converges tthp = /¢ so that (24) becomes, after expanding
col[0, ---0, 1, 0, ---0] for some{D, 6}. 2 e g2 2
ii) s(i — D) andw; are independent as — oc. That is, Efileal” = Elea| _g“Ee”'y(VRQ —v)
in steady state, the equalizer operates independently of A
the transmitted signals. This is a common assumption for + P E|ul*y* (R2 — 7).
steady-state analysis (see, e.g., [13]). 5
Assumption 1.2: The scaled regressor energ3/|u||? is in- o o
dependent of (i) in steady state. This implies that the termst and B should coincide. From

This assumption requires the scaled energy of the input veci3i® €quality, we can obtain an approximate expression for the
and not the input vector itself to be independent of the equaliZ3fady-state MSE|c,|* as we now verify. (In the argument
output. The assumption actually becomes realistic for long@glow, we assume that when the adaptive filter reaches steady
filter lengths and for sufficiently small step sizes. To see thitate, the value of; is reasonably small.)
assume the input sequeniogi)} is i.i.d., and note that the vari-  Theorem 3—MSE for Real CMA2-Zonsider the CMA2-2
ance of the quantitju; |2 will be of the order ofV' (the equal- Fecursion (7) with real-valued dafa(i), u;, y(4)}. Under As-
izer length)s Hence, if the step-sizeis of the order oft /V (or sumptions I.1 and 1.2, it holds thqt for sufficiently smallthe
less), then the variance pf||u;||? is of the order ofl/N (or Steady-state MSE can be approximated by
less), which decreases with increasing filter length. This means B(s2R2 — 2Rys* + 55

Elul?. 25

2
4Similar assumptions are very common in the adaptive filtering literature for E|Ca| ~H
FIR structures, where they are collectively known as the independence assump-
tions. As mentioned in a previous footnote, although the independence assump-
tions do not hold in general, they still lead to realistic conclusions for sufficiently Proof: We first evaluated. Replacingy by s — ¢,, we
small step sizes [24], [25], [33]. obtain

SThis is obvious if the individual entries of; are i.i.d. Some calculations
will show that a similar conclusion holds, in general, when the entries afe
taken as the outputs of an FIR channel with i.i.d. input. A =2uE(seqRy — 2Ry — 53¢, + 3572 — 3s¢ + ¢).
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Using Assumption 1.1 and neglectirgg.Ec® for small g and
smalle? leads to the approximation ~ 2,1 E(3s? — Ry) - Ec?.
We now evaluateB

B=E (u2||u||2(s — o) [Ra — (s — ea)2]2) .

With Assumption 1.2, we can rewritB as in (25a), shown at the

85

By using (26) and Assumption I.1, the tedthcan be simplified

t0 D = 2uE(2|s|? — Ry) - E|e,|?. Similarly, expanding” and
using the same approximations as in the real-valued case, we
obtain

F = 2 E(R3|s|* — 2Ra|s|* + |s[°) - Ellull*.

bottom of the page. Again, whenande2 are small enough, we Then, fromD = I, we get (27). Note that (27) will not be

can ignore the tern®’ and write
B~ 12 B(s*R3 — 2Rys* + 5°) - E||ul®.
From the equalityd = B, we obtain (25). O

C. The Case of Complex-Valued Data

negative because of
E(|s|* RS — 2Ra|s[* + |s|°) = E|s*(R2 — |s[*)* 2 0

andE(2|s|* — R2) > 0. O
Comparing the results we get for the real-valued and com-
plex-valued cases, we see that they are similar except for a co-
efficient in the denominator expressions (in the real case it is

_The expression for the MSE of CMA2-2 in the complex casggual to 3 and in the complex case it is equal to 2). Moreover,
differs from the one we derived above for the real case, as W§me useful conclusions can be drawn from these results.

shall promptly verify.

In the complex case, as in [17], we study signal constellations

that satisfy the circularity condition

Es?(i)=0 (26)
in addition to the conditio®(2|s(4)|? — Ry) > 0, which holds
for most constellations.

Theorem 4—MSE For Complex CMA2-Zonsider the

CMA2-2 recursion (7), and assume complex-valued data
{s(4), y(i), w;} satisfying (26). Under Assumptions |.1 and
1.2, and for sufficiently smalls, the steady-state MSE can be

approximated by

E(|s]"R3 — 2Ry|s* + |s]%)
2B(2]s|” — Ry)

Elea? ~ El?.  (27)

Proof: Starting with (23), we now obtain

Eﬁ|ca|2 :Eﬁ|6a|2
— pEcyy(Ry = y|*) + pBeay” (R — |yl*)

D
+ P2 ElulPly* (B — yl?)? -

-~

F

Substitutingy by se’? — ¢,, we get

D =uRyE (se’®cl + s*e™%,)
— B (|s]’se’el + |s|’s" e %eq)
—3uE (|eq|*s* e ey + |eal*sc??cl)
= 2uE (Raleal® + 4ls|’|cal® +2|cal*)

2 246 2 | 2 26 x2
+ pE (s%e e + s7e™%el?) .

1) The steady-state MSE of CMA2-2 is linearly propor-
tional to the step-size1 and to the received signal
varianceE||ul|?, which agrees with the asymptotic MSE
result for the symbol-spaced (TSE) CM algorithm in [10]
and [34]. This property is also similar to that of LMS.

For constant modulus signafs(-)}, we getR, = 1.
According to (25) and (27), we then obtalfic,|? = 0.
This is also the same as LMS in the absence of noise.
For nonconstant modulus signals, the MSE will not be
zero, even when there is no system noise. This is be-
cause the instantaneous eregf:) for CMA2-2 will be
nonzero, even when(i) = s(i — D)e’?. The equalizer
weight vectorw,; keeps updating itself by a nonvanishing
term and jitters around the mean solution. This property
is different from LMS, where the instantaneous error will
be equal to zero when the system is perfectly equalized.

2)

3)

D. Simulation Results for CMA2-2

Before proceeding to other CM algorithms, we provide some
simulation results that compare the experimental performance
with the one predicted by the previous theorems. The simula-
tions will show than the theoretical values predicted by the ex-
pressions in Theorems 3 and 4 match reasonably well the ex-
perimental results. The channel considered in this simulation is
given byc = [0.1, 0.3, 1, —0.1, 0.5, 0.2]. A four-tap FIR filter
is used as d'/2-fractionally spaced equalizer.

1) Constant Modulus SignalsA computer simulation was
first done for real and constant modulus signals, i.e., for bi-
nary data. With a step-size = 0.01, after 10000 iterations,
CMA2-2 was observed to converge to a zero forcing solution
with MSE as low as-120 dB, i.e. MSE= 10-12, which can be
considered zero. This result agrees with our analytical result that
the MSE for constant modulus signals is zero.

B = PE(s*R} — 2Rys* + s°) - E|u||* + 1*E [(R3 — 12Ry5% + 9s*)c2 + 15s5%c; + ¢5 — 2Rycy| - E|ul)?

(25a)

v

le;
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TABLE | TABLE I
MSE oF CMA2-2 VERSUS STEP-SIZE FOR MSE oF CMA2-2 VERSUS STEP-SIZE FOR 16-QAM SGNALS
6-PAM SGNALS
_ . . step-size x 1x105[2x10%[5%x10°[1x10%[2x1075
step-size p 1x1078%[1x105[2x108[5x105]1x10712 -experimental MSE (dB) 35.9 317 27.9 24.5 21.7
experimental MSE (dB) 33.0 21.9 19.4 15.3 12.1 MSE from Thm. 4 (dB) 33.6 30.6 26.6 23.6 20.6
MSE from Thm. 3 (dB) 31.2 21.2 18.1 14.7 11.2
MSE from [13] (dB) 36.3 26.3 23.2 19.8 16.3

- LB ... |e—© experimental MSE ||
-3 o—=o experimental MSE | : —=  MSE from Thm.4
= MSE from Thm.3 ; -
a&—a  MSE from [13] 38, 2 y .

-5

_40 I i L L x10
0 02 04 0.6 08 1

! x 107 Fig. 4. Experimental and theoretical curves for the steady-state MSE as a

function of the step-size for CMA2-2 with input signals from a 16-QAM

Fig. 3. Experimental and theoretical curves for the steady-state MSE caosnstellatlon.

a function of the step-size, for CMA2-2 with input signals from a 6-PAM
constellation. 4 212 . .
wherep = E|s|*/(E|s|*)=, but since we can write

2) Real and Nonconstant Modulus Signalst this simu- Es|®
lation, the transmitted signal was 6-PAM constellatét) € e E(ls|2R2 4 6
. 5 — 2R
(5.3, 1, 1, -3, -5} with E|s(D)° = 54517, B|s()|* =  EBEY gy o BlsTRs = 2Rafs|" + [s)

2(3-p) 2E(3|s|* — Ry)

235.7, E|s(i)]? = 11.67, and Ry = 20.2. The value off|u;]|?
: . ; )
is the norm of the received signal vector. The valu&iii||® \ve see that the result in (28) actually coincides with our re-

was computed as the average over 3000 realizatiofiadf.  g,it for real-valued data (cf. Theorem 3), except that the term
The first two lines of Table | show the experimental MSE angJHuHQ in our expression is replaced by the ted |2 in
the theoretical MSE from Theorem 3, where the value of e ahove expression from [13]. In other words, the result of [13]

perimental MSE was obtained as the average over 20 repealed mes that the average energy of all input vectors across the
experiments. Fig. 3 is a plot of the experimental MSE and ﬂ%‘?.lbequalizers areidentical, i.e., BY2—equalizersp|u,||2 =

theoretical MSE versus the step-sjzt also contains one more E||u.||?. When the input energy across the subequalizers is not

MSE curve to be discussed in Section IV-E). ~ uniform, both expressions will, of course, be different.

3) Complex and Nonconstant Modulus SignaWith — rpe | and Fig. 3 compare the experimental MSE with (28)
the same channel and quaﬁhzer, we obtam‘eci the MSE 1y our result (for the real-valued case since [13] considered
16'QA';/| signals. Now,E[s(1)|° = 1960, E|s(1)|* = 132, his case only). Our results seem to be more accurate in part
Els()|* = 10, and R, = 13.2. The results are shown inpqcase the input energy across subequalizers is not uniform
Table Il and Fig. 4. in general. We may further remark that the approach in [13],
although complementary, is considerably different from the
approach of this paper. The authors of [13] employ averaging

As mentioned in the introduction, an approximate expressitimeory [32], solve a Lyapunov equation to fid|wi..||%, and
for the MSE of CMA2-2 was also derived in [13]. The derivathen calculateZ|e,(c0)|?. Here, we started from the generic
tion assumed real-valued data and tB#jts. ;||> = E||u,, :||> equality Efile,|* = Efle,|* and solved directly fo|e,|*.
for T'/2-fractionally spaced equalization [recall the definition ofn the next sections, we further extend this approach to other

E. Comparison with Related Results in the Literature

{te. i, 1o, s} from (1)—(3)]. It further led to the result kinds of CM algorithms.
In earlier work [10], an approximate expression was also ob-
Els° 2 tained for the MSE of CMA2-2. However, as mentioned earlier,
Els|?)3 the analysis in this reference assumes baud-spaced equalizers
Blea = L (Bl B2 29) g paced eq

2(3—p) and Gaussian regression vectors.
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¢ TABLE Il
N MSE oF CMA1-2 VERSUSSTEP-SIZE FOR 6-PAM SGNALS
a o%' o Y %
step-size p 5x10° [1x1074|2x 1074 | 5x107% [ 1 x 103
2t . experimental MSE (dB) 28.0 23.0 20.8 15.9 13.8
MSE from Thm. 5 (dB) 25.7 22.6 19.6 15.5 12.6
1 & & s {
z -12
% o
-1 & %5 ’y ) - -4
-2 4 -16
-3t ) % w0 &0 sk
. . A . . . . .
—4 -3 -2 -1 [ 1 2 3 4

real

Fig. 5. Typical plot of transmitted signai$-) (denoted by “0”) and equalizer — _pf......... / U RS SR
outputsy(-) (denoted by ) for a 16-QAM constellation.

V. STEADY-STATE ANALYSIS OF CMA1-2

We now extend the earlier results to the CMA1-2 recursic [ /s {"|e—=o experimental MSE ]

(9). In this case, the expressions for the MSE for both real a : : : . _MSE from Thm.8
. . . . _ 1 L 1 1 1 1 1 1 1
complex-valued data will coincide. For this reason, we she 2% o1 62 o3 04 05 06 07 08 09 1

-3

consider only the complex-valued case. ¥ x10

. Fig. 6. Experimental and theoretical curves for the steady-state MSE as
A. Two More Assumptions a function of the step size for CMA1-2 with input signals from a 6-PAM

In addition to Assumptions 1.1 and 1.2, we need the followinge"stefation-
two assumptions (also in steady-state).

Assumption 1.3:The outputy(i) of the equalizer is dis-
tributed symmetrically around the transmitted sigs@l— D)

TABLE IV
MSE oF CMA1-2 VERSUSSTEP-SIZE FOR 16-QAM SGNALS

in steady state so th&t|y(:)| = E|s(i — D)|. step-size I1x107°[2x107° [5x107° [1x 107" [2x107*
. . - . . experimental MSE (dB) 35.5 33.2 29.0 26.8 23.7
Fig. 5 is a plot of the steady-state outgt) (which is de-  {7crfom Tom & @B) | 379 359 309 779 349

noted by “”) and the transmitted signal-) (which is denoted
by “0") in one simulation for a 16-QAM data constellation. We )
see that we can reasonably assume that the expected value df'€0rem 5—MSE for Complex CMA1-Eonsider the recur-

ly(é)| is equal to the expected valuel|efi — D)|. sion (9) for complex-valued data and Assumptions I.1-1.4. It
Assumption 1.4:The a priori error e,(i) is independent then holds, for sufficiently smalk, that the steady-state MSE
of signy(i) in steady-state, andi'signy(i) = 0 so that Can be approximated by

Ee, (i) signy(i) = 0.
This assumption is again reasonable in steady state and for
sufficiently small step sizes. This is because in this situation, we

obtain relatively small estimation errotg(¢) so that the sign of Proof: See Appendix Awhere, as in the CMA2-2 case, we

y(i) is essentially determined by the signs¢f — D)c’?, which, again invoke the fact thaf is small in steady state. O
as explained in Assumption 1.2, can be taken to be independent

of ¢,(%). [We should mention that for complex-valued data, We_ Simulation Results

define signy(i) = (y(9)/[u(D)]). We employ the same channel asinthe CMA2-2 case. For real-
B. The Case of Complex-Valued Data valued signals, we used a 6-PAM data constellation. Table I1I
and Fig. 6 showsthe experimental and theoretical values of the

Returning to the CMA1-2 recursion (9), we see that the relquE for 6-PAM. Table IV and Fig. 7 show the same values for
tion (23) betweer,(¢) ande,(¢) reduces to 16-QAM signals

[
Eleo)? = 5 (R + E|s|* — 2R, E|s|) - E||u|*. (31)

. . 2 ; . . From the above simulations, we can see that the theoretical
en(t) = e, (1) — pllu; ||“| Ry signy(z) — y(2)]. 29 J :

o) (8) = pllus][* L1 signy(é) = y(9)] (29) results match reasonably well the experimental results. The
Starting again with the basic equation (23) and using (29), W&SE of CMA1-2 is also seen to be proportional to .

obtain in steady-state

9 VI. NORMALIZED CM ALGORITHMS

Efilea]? = Efi- |ea — D[Risign(y) — 4] . (30)  The normalized CM algorithm has been motivated by the de-
H sire to speed up the convergence of CMAL1-2 [35], [36]. This,
This equation can be used to establish the following result. however, leads to a biased estimatdt) for the transmitted
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i : ! : : ! f ! ' for R, which we shall derive further ahead.) The channel

wasc = [0.1,0.3, 1, —0.1, 0.5, 0.2], and we implemented

a four-tap7’/2 fractionally spaced equalizer. We can see that
both plots on the left lead to biased steady state solutions.
For example, wherR = 2.5, (i) € {4, 1.2, —1.2, —4}, on
average.

We now propose to sele@t differently by minimizing the
steady-state MSE relative to a zero forcing solution. We focus
here on real-valued data. Using the normalized CM recursion
(32) and relation (23), we find that

ep(t) = ea(t) — p[Rsigny(é) — y(d)] (39)

so that (23), ag — oo, reduces to

-28

-32

-34

o——o experimental MSE ||

& [*—r MsEfomThms Efileq” = ERilea — p(Rsigny —y)|*.  (36)
38 i i ; j i i N ; .
0 02 0.4 0.6 08 1 12 14 1.8 18 2
n «1w0* Asbefore, we can proceed to evaluale, |>. However, our ear-
lier derivations were all based on Assumption I.1 and, because

Fig. 7. Experimental and theoretical curves for the steady-state MSE @fthe bias problem this assumption is ho Ionger satisfied by
a function of the step size for CMA1-2 with input signals from a 16-QAM '

constellation. the normalized CM algorithm for the above valuesiof(ii,
and Ry).

signals(i — D) when the signal constellation is not ConstanQéNote, however, that the larger the bias the larger the value of

modulus. In this section, we introduce a variant that leads {° steady-state MSE. This suggests sele_oﬂﬂuy minimizing
less bias than earlier algorithms. t e MSE. Such a value foR would result in .reducgd bias, in
The recursion for normalized CMA has the general form which case, we could assume that Assumption .1 is enforced at
least approximately (as is demonstrated by the right-most plot
w; = wij_1 + el [Rsign[y(i)] — y(4)] (32) of Fig. 8 for the value of? we will obtain).
lJuill® In this case, and using Assumptions 1.11.4, we can establish
where R is a design parameter. Compared with the CMAl-tfat for sufficiently smaI_I and,, the resulting steady-state MSE
recursion (9), we see that the constant step size of CMA1-2VYQU|d be (see Appendix B)
now replaced by a time-variant step sjz€) = (p/|u;||?).
For constant modulus signa]s(-)}, the most reasonable se-
lection for R is the magnitude of the transmitted sign&ls—

|s()|. For nonconstant modulus signals, on the other hand, wewe can now seek that value f&rthat minimizes (37). Setting
need to choose other values #drIn [37], it was suggested thatthe derivative of (37) with respect t& equal to zero leads to

Eleg|? ~ g (R? + E|s|* — 2RE|s)) . 37)

we choose, for any > 1 the choiceR,,: = E|s|, and the corresponding MSE will be
o Ec2 = u(E|s|* — (E|s|)?). Therefore, withR = E|s|, we
R==/1 obtain the variant
Els(d)p .
U/Z I. . I. _ I.
Forp = 1, this leads to the choice Wi = wi—1 + a2 [E]s(2)[signy(2) — y(9)]- (38)
R — E|s(i)? (33) The simulation result in Fig. 8 shows that this selection&or
L= E|s(4)] leads to a considerably smaller offset and MSE.
Moreover, Table V and Fig. 9 show the values of exper-
and forp = 2 imental MSE and theoretical MSE for different step-sizes for
E|s(d)[* 6-PAM signals using (38). We can see that the theoretical MSE
Ry = W (34) does not match closely the experimental results. The reason is

that our selection fok,:, although close, does not fully result
For example, 4-PAM signalg) € {—3, —1, 1, 3}, we obtain in unbiased estimation. Thus, the bias problem makes it difficult
2 4 to satisfy Assumption I.1.
Ry = E|3(Z?| —25 Ry— E|3('f)| -89 Finally, as mentioned in the introduction of this section,
Els(4)] Els(1)[? normalized CM algorithms are motivated by the desire
to speed up the convergence of CMA1-2. In Fig. 10, we
Fig. 8 demonstrates the bias problem that arises when twnpare the convergence rate of both these algorithms by
normalized CMA recursion is used with the above choices fasing the above choice faR, R,,» = E|s|. The channel is
R, viz., Ry andR». The two left-most plots in the figure showe = [—0.0901, 0.6853, 0.7170, 0.0901], and the equalizer is a
the equalizer outputs with 4-PAM inpui§&i) € {—3, —1, 1, 3} two-tap FIR filter. The input constellation is 4-PAM. We use
for Ry and R,. (The right-most plot uses a different valuehe step-size. = 0.002 for both algorithms. Unlike the case of
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~15

s -5 s -5 s
(o] 2000 4000 (o] 2000 4000 o] 2000 4000

Fig. 8. Equalizer outputg(i) of normalized CMA for three different choices of the paraméter(left) R = (E|s(i)|*/E|s(i)|?) = 8.2. (middle) R =
(Els()|?/E|s(i)]) = 2.5. (right) R = E|s(¢)| = 2. The horizontal axis denotes iteration time while the vertical axis denotes amplitude.

TABLE V -2 T T T I | T T T - T
MSE oF NORMALIZED CMA (38) VERSUSSTEP-SIZE FORSIX-PAM SGNALS | . S o N T noMmalized CMA |
step-size i - Bx10% [ 1x10% [ Ix10 2 | Ix105[1x10°°
experimental MSE (dB) 18 21 30 48 56
MSE from (37) (dB) 26 3 3 53 63

™ B

8 : Do : : L

2 : T : : 22 L
g -40 o RN el : 0 200 400 800 800 1000 1200 1400 1600 1800 2000
= : : : : iteration i

Fig. 10. Comparison of the convergence rates of CMA1-2 and normalized
CMA for 4-PAM signals. The figure shows two ensemble-average learning
curves obtained by averaging over several experiments.

experimental MSE
: MSE from (37)

-65 N oL N ' P N M RN N T L L.
107 10° 10°° 107

VIl. CONCLUDING REMARKS

In this paper, we studied the steady-state performance of
several blind adaptive algorithms of the constant modulus type,
Fig. 9.  Experimental and theoretical curves for the steady-state MSE apamely, CMA2-2, CMA1-2, and normalized CMA. Analytical
';H';‘:At;ancgg?;;ﬁ)f'ze for normalized CMA (38) with input signals from &, o csions for the steady-state mean-square error (MSE) were
calculated and verified by computer simulations. From this

study, we conclude the following.

constant modulus signals, the simulation shows that normalizedl) The fundamental energy-preserving relation described
CMA need not converge faster than CMAL1-2. The figure plots  in Sectionlll-B is a useful property for the analysis of

ensemble-average curves for tlae priori estimation error the steady-state performance of gradient-based adaptive
energy{|c.(-)|?} in decibels, averaged over ten experiments.  algorithms. By using this relation, we could calculate
A similar conclusion holds for the other choices Bfin (33) the MSE of CM algorithms in a simpler way than other

and (34). methods.
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2) For nonconstant modulus signals, the MSE of CMA1-2 APPENDIX B
and CMA2-2 will not converge to zero even when there DERIVATION OF (37)
is no channel noise. Moreover, the MSE of CMA1-2 and
CMA2-2 are determined by the signal constellation size
and are proportional to the step size of the algorithms ande7i(i)|e, (4)]?

(

From (35) and (36), we get /belowdisplayskip8pt

to the received signal energy (or variance). . p p : p 712
3) For constant modulus signals, the MSE of CMA1-2 =b (“ ) lea(d) — ulItsign(y(?)) — y(D)| )
and CMA2-2 will converge to zero when there is no = E(7i(i)|eo(1)|*) — 2uE [eq (R signy(i) — y(i))] 7(4)

channel noise. The step size should be sufficiently small
to guarantee stable operation of the equalizer for both 5 , ) el
algorithms. For CMA1-2, because of the existence of +tE [(Ragny(z) —y(1)) } ZOR
undesired local minima, special care is needed with the = p
initial condition.

4) Normalized CMA is a faster algorithm than CMA1-2 forwe consider the case whefg, = [0, ---,0, 1,0, ---, 0].
constant-modulus signals. For nonconstant modulus sgimilar results can be obtained when
nals, however, normalized CMA will converge to abiasedp, = [0, ---, 0, —1,0, ---, 0]. Then,e, = s — y. Let us
solution. We showed in SectionVI how to decrease tHest examine the ternH’ by replacingy with s — e,. With
bias by designing a new normalized CM algorithm.  Assumption 1.2 (wherg:?||u||? is independent of; and ¢,),

5) Our analysis suggests that CMA2-2 has the best perféite termH’ can be written as
mance among the algorithms we discussed in this paper. 2
When implemented in a fractionally spaced form, it has H' = GE [REcq, Sign(y) — Ecgs + Ec2).
no undesired minima, it converges faster than CMA1-2, it

gives an unbiased solution for both constant and noncafjith Assumptions 1.3 and 1.4, we gefe,sign(y) =
stant modulus signals, and it requires only simple calc., £ sign(y) = 0. In addition, from Assumption 1.1, and
lations. becausek’'s = 0, we getEe,s = 0. Hence, the ternH’ can

be simplified to

e

H =2—T—Fle,|*.
EII I8
APPENDIX A

PROOF OFTHEOREM 5 ]
Now, we evaluate the terrf{. From Assumption [.2]’ can

Expanding the right-hand side of (30) leads to /belowdig-e written as

playskip16pt p_ I
Elfull?

2

E(Rsign(y) — s+ ¢,)*.

Efilea|* = Efilea|?

. ) ] .. Expanding this expression, we get
— plEeg (R sign(y) — y) + ea(Fy sign(y) —y)"]

2
J I = ﬁ E (R2 + 52 + €2 — 2Rssign(y) — 2se,
+ 2 E|Ry sign(y) — )| - [|ul|®. we
IR sign(s) — o) ] o an).

K

For small enougkh,, we can write sigity) = sign(s) so that

Hence,J = K. Replacingy by s¢’® — ¢, and using Assump- Es - sign(y) — Els, and

tions 1.1 and 1.4, we gef = 2p.E)e,|?. Using Assumption 1.2,
the termK becomes , p?

= _FE(R*+s*+e2-2R|s|).
B & €+ 57 o = 280

K = (2 E|lu|? - E(R] = 2Ri|y| + y[*). _ ) .
pAgain, when ande; are sufficiently small, the term
Now, from Assumptions 1.1 and 1.3, we g&lly| = E|s| and #*/(Ellull”) - Ee; can be ignored, and hence
Ely|? = E|s|®> + Ele.|?. Then, K = p2E||u||? - B(R} — 2
28 5| + |s? +|ea ?). Ignoring the term:?|ulf - Ble, 1% B PO 2D
when and:, are sufficiently small, we get
Then,H' = I’ leads to (37). This expression for the MSE is
K =~ PE||u||® - E(R] — 2Rq|s| + |s[*). non-negative for anyz because
2 2 _ 2
Using./ = K, we are led to (31). Note that the expression for the R+ Els|” — 2RE[s| = E(R — |s])” 2 0.

MSE cannot be negative becaudg+ E|s(4)|? — 2R E =
E(Ry — |s(i)])? >g [s(0)] 1Els(0) O Equality occurs only for constant modulus signals. O
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