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Abstract—This paper proposes a new approach to the analysis
of the steady-state performance of constant modulus algorithms
(CMA), which are among the most popular adaptive schemes
for blind equalization. A major feature of the proposed feedback
approach is that it bypasses the need for working directly with
the weight error covariance matrix. In so doing, approximate
expressions for the steady-state mean-square error of several CM
algorithms are derived, including CMA2-2, CMA1-2, normalized
CMA, and a new normalized CMA variant with less bias. A
comparison among the various algorithms is also performed,
along with several simulation results. The conclusions confirm the
superior performance of CMA2-2.

Index Terms—Adaptive filter, blind equalization, constant mod-
ulus signal, feedback analysis, mean-square error.

I. INTRODUCTION

A MONG the most popular adaptive schemes for blind
equalization are the so-called constant modulus algo-

rithms (CMA’s); see [1]–[3] and the many references therein.
The update equations of these algorithms are nonlinear in
nature, which may explain why only a handful of results
are available in the literature regarding their steady-state
mean-square-error performance. The difficulty arises from the
fact that classical approaches to steady-state performance eval-
uation often require, as an intermediate step, that a recursion
be determined for the covariance matrix of the weight error
vector. This step can become a burden for CM algorithms due
to their inherent nonlinear updates (see, e.g., the analysis of the
constant modulus array algorithm for adaptive beamforming in
[4] and the analysis of the performance of CMA for interference
cancellation in [5, Sec. 3.3]).

The main objective of this paper is to propose a new approach
to the analysis of the steady-state performance of blind adap-
tive algorithms. A major feature of the approach is that it by-
passes the need to work directly with the weight error vector.
In so doing, approximate expressions for the steady-state mean-
square error of several CM algorithms are derived (including
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CMA2-2, CMA1-2, normalized CMA, and a new normalized
CMA variant with less bias). A comparison among the various
algorithms is also performed, along with several simulation re-
sults. Our conclusions will further confirm the superior perfor-
mance of CMA2-2.

The approach in this paper exploits a fundamental energy-
preserving relation that, in fact, holds for a general class of adap-
tive filters and not just CM algorithms [6]. This relation allows
us to avoid working directly with the nonlinear update that is
characteristic of CM algorithms; it focuses instead on the prop-
agation of error energies through a feedback structure that con-
sists of a lossless feedforward block and a feedback path.

A. Earlier Results in the Literature

Some of the earlier results in the literature on the performance
of CM algorithms that are relevant to the discussion in this paper
appear in [9]–[13]. The survey article [3] provides a compre-
hensive list of further additional references on different aspects
of CM algorithms. Shynket al. [10] obtain some of the ear-
liest approximations for the mean-square error of the so-called
CMA2-2 variant, under the assumption of Gaussian regression
vectors. This assumption may not be justified for many commu-
nication channels, and the derivation in this paper will provide
expressions that result in better approximations for generic re-
gression vectors. Bershad and Roy [11] wrote an early work on
the performance of CMA2-2, albeit for a particular class of input
signals that are modeled by Rayleigh fading sinusoids. Zeng and
Tong [12] studied the mean-square-error of the optimal CM re-
ceiver, viz., of the receiver that results by minimizing the CM
cost function. The effects of adaptation and gradient noise are
not considered. By an ingenious use of Lyapunov stability and
averaging analysis, Fijalkowet al. [13] obtain an approximate
expression for the mean-square error of CMA2-2 that is related
to one of our results; though less accurate (see the simulation
and comparison results in Section IV-E).

B. Organization of the Paper

The paper is organized as follows. In the next section, we de-
scribe the fractionally spaced model adopted in this paper in ad-
dition to some of the CM algorithms that we study here. In Sec-
tion III-B, we motivate and derive the energy-preserving relation
and then apply it to CMA2-2. In Sections V and VI, we extend
the analysis to CMA1-2 and to normalized CMA. We also de-
velop a normalized CM algorithm with less bias than known
normalized variants. Throughout the paper, we provide several

1053–587X/00$10.00 © 2000 IEEE
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simulations that compare the theoretical results predicted by our
expressions with experimental values. In the concluding section,
we compare the various algorithms.

II. THE -FRACTIONALLY -SPACED MODEL

Equalization algorithms can be implemented in
symbol-spaced form [also called Baud- or T-spaced equalizer
form (TSE)] or in fractionally spaced form (FSE). In this paper,
we concentrate on fractionally spaced implementaions due to
their inherent advantages (see, e.g., [2], [3], [14]–[16]). Thus,
consider an FIR channelof length and an FIR equalizer

of length . We split the coefficients of the channel into
even- and odd-indexed entries and denote them by

The vectors and are the impulse responses of the two sub-
channel blocks shown in Fig. 1. In a similar way, we define the
two subequalizers

which are the impulse responses of the two subequalizer blocks
shown in the same figure. The system in Fig. 1 then corresponds
to what is called a multichannel model for a -fractionally
spaced equalizer. This model is well motivated and explained in
the survey article [3].

The output of the combined channel-equalizer system
can be expressed in terms of the transmitted signal as
follows. Introduce the prewindowed Toeplitz
matrix

...
...

...
.. .
.. .
.. .

...

and similarly for . Then, define the channel
matrix , the equalizer vector

and the input signal vector

Then, . If we further let and denote the
input signals to the subequalizers and , respectively, and
define therow input vectors

(1)

(2)

Fig. 1. Multichannel model forT=2-FSE.

and

(3)

then we also have and .

A. Perfect Equalization

An important result for such fractionally spaced equalizers
is the following (see, e.g., [3]). Let and denote the
polynomials associated with the even- and odd-indexed sub-
channels

Then, it can be shown that if these polynomials do not have
common zeros, and if , then there exists an equalizer

that leads to an overall channel-equalizer impulse response of
the form

col (4)

for some constant phase shift , and where the unit
entry is in some position , . Equalizers

that result in overall impulse responses of the above form
are calledzero-forcingequalizers and will be denoted by .
Thus, under such conditions, the output of the channel-equalizer
system will be of the form for some .

The multichannel model of Fig. 1 is the model we are going
to study in future sections. For more general -fractionally
spaced equalizers, we end up with a similar model withsub-
channels and subequalizers (see, e.g., [15] and [16]), and the
results in this paper can be readily extended to this context.

B. Constant Modulus Algorithms

We thus see that under a length-and-zero condition, a
finite-length FSE can perfectly equalize a noise-free FIR
channel. A blind adaptive equalizer is one that attempts to
approximate a zero forcing equalizer without knowledge of
the channel impulse response and without direct access to the
transmitted sequence itself. This is achieved by seeking
to minimize certain cost functions that are carefully chosen so
that their global minima occur at zero forcing equalizers.

The most popular adaptive blind algorithms are the so-called
constant modulus algorithms [17], [18]. They are derived as sto-
chastic gradient methods for minimizing the cost function

(5)

where denotes the weight vector to be estimated, and the con-
stant is suitably chosen in order to guarantee that the global
minima of occur at zero forcing solutions (see, e.g.,
[15], [17], and [19]).
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In the next two sections, we study the following two variants:
CMA2-2 and CMA1-2. In a later section, we study other vari-
ants (known as normalized CM algorithms).1

CMA2-2: In this case, we select

(6)

and the update equation for the weight estimates is given by

(7)

with a step-sizeµ and where now, is the output
of the adaptive equalizer. Here, the symboldenotes complex
conjugate transposition.

CMA1-2: In this case, we select

(8)

and the update equation for the weight estimates is given by

(9)

Since these algorithms are based on instantaneous approxi-
mations of the true gradient vector of the cost function ,
the equalizer output need not converge to a zero forcing so-
lution of the form due to the presence of gradient
noise. In the following sections, we derive expressions for the
steady-state mean-square error

for adaptive algorithms of the CM class.

III. A N EW APPROACH FORSTEADY-STATE ANALYSIS

As mentioned in the introduction, and as can be seen from the
above equations, the updates for CM algorithms are nonlinear
in the weight estimates . This may explain why only a few
results are available in the literature regarding the steady-state
performance of this class of algorithms. The difficulty is be-
cause for other adaptive schemes (e.g., of the LMS family), it
is common to compute steady-state results by first determining
recursions for the squared weight error energy measured
relative to some zero-forcing solution, say,
(see, e.g., [20]–[23]). This step is a burden for CM algorithms
as well as for several other adaptive schemes, due to their non-
linear updates.

Our objective is to propose a new approach for evaluating the
steady-state mean-square error of CM algorithms without re-
quiring explicit expressions or recursions for . We moti-
vate our approach by first explaining the conventional method
for evaluating the mean-square error and by showing the diffi-
culty it encounters when dealing with adaptive filters with non-
linear updates.

1In our notation, we use parenthesis to refer to scalar variables, e.g.,s(i) or
y(i) and subscripts to refer to vector quantities, e.g.,w oru . This convention
helps distinguish between scalar and vector quantities.

A. The Mean-Square Error

Let denote the zero forcing solution that gives
for some . This is guaranteed to exist under

some length-and-zero conditions. Now, due to gradient noise,
the adaptive equalizer will yield an output that is distinct
from . Let denote the resulting (a priori) estimation
error as

One measure of filter performance is the steady-state mean-
square error (MSE)

MSE

which is clearly dependent on . It is common in the liter-
ature to evaluate this MSE as follows. We first assume that the
regression vector is independent of .2 Then, under this
assumption, the above expression for the MSE becomes

MSE Trace (10)

where and, assuming stationarity, .3

It is thus customary to determine the steady-state MSE by first
determining the steady-state mean-square deviation (MSD) de-
fined by

Trace Trace (11)

This method of evaluation can become a burden for adaptive al-
gorithms that involve nonlinear updates in, as is the case with
blind adaptive algorithms. We now describe a new approach for
evaluating that bypasses the need for studying
and its limit.

B. A Fundamental Energy-Preserving Relation

The approach is based on a fundamental energy-preserving
relation [cf. (20) further ahead], which actually holds for very
general adaptive schemes and not just CM algorithms, as ex-
plained in [6]. This energy relation was noted and exploited by
Sayed and Rupp in [26]–[29] in studies on the robustness and

-stability of adaptive filters from a deterministic point of view
(see [29]). We review this result below and prepare the notation
for later sections.

Consider a general stochastic algorithm of the form

(12)

where denotes an instantaneous error, anda nonzero
(row) regression vector. CM algorithms are a special case of the

2We are not going to impose this condition in our derivation. We are simply
using it here to demonstrate the common approach in the literature. We may
add that although not true in general, especially for tapped-delay adaptive filter
structures, this condition is actually a part of certain widely used independence
assumptions in adaptive filter theory [20]. It was shown in [24] and [25], for
instance, that for LMS-type scenarios, and for sufficiently small step- sizes, the
conclusions that can be obtained from such independence assumptions tend to
match reasonably well the real filter performance.

3Since we assume in this paper that the input vectoru is a row vector rather
than a column vector, its covariance matrix is therefore defined asEu u rather
thanEu u . Our convention of a row vectoru generally simplifies the notation
and avoids an overburden of conjugation symbols.
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above for different choices of the function . Now, subtract
both sides of (12) from some vector to get the weight error
equation

(13)

where . Define thea priori anda posteriori
estimation errors and . We
now show how to rewrite (13) in terms of the error measures

alone. For this purpose, we note that
if we multiply (13) by from the left, we obtain

(14)

Solving for gives

(15)

so that we can rewrite (13) as

(16)

Rearranging (16) leads to

(17)

If we define

(18)

then by squaring (17), we observe that the following energy re-
lation is obtained:

(19)

Interestingly enough, this relation can be obtained by simply
replacing the terms of (17) by their respective energies; the cross
terms cancel out!. We state this result in the form of a theorem
for later reference.

Theorem 1—Energy Relation [26], [27]:Given a generic
adaptive algorithm of the form (12), it always holds that

(20)

where .
Relation (20) holds forany adaptive algorithm of the form

(12); it relates the energies of the weight error vectors at
two successive time instants with the energies of thea priori
and a posteriori errors. No approximations are involved in
deriving (20). The relation also has an interesting physical
interpretation. It establishes that the mapping from the variables

to the variables is
energy preserving. Combining (20) with (14), we see that both
relations establish the existence of the feedback configuration
shown in Fig. 2, where denotes the lossless map from

to , and where
denotes the unit delay operator. Thus, relation (20) character-
izes the energy-preserving property of the feedforward path,
whereas relation (14) characterizes the feedback path.

Fig. 2. Lossless mapping and a feedback loop.

C. Significance to MSE Evaluation

We now explain the relevance of the energy relation (20) in
the context of MSE evaluation for CM algorithms. (Applications
to other classes of adaptive algorithms, in addition to tracking
analyzes, are given in [6]–[8].) By taking expectations of both
sides of (20), we get

(21)

Now, recall that our objective in this paper is to evaluate the
MSE of CM algorithms in steady state. We arenot studying
conditions under which an algorithm will tend to steady state,
which is a separate and complex issue (especially for nonlinear
and time-variant filters). Instead, we want to evaluate what per-
formance to expect from an algorithm if it reaches steady state.
The convergence to steady state (and, hence, stability) can be
studied by relying on results from averaging analysis and from
so-called ODE methods (e.g., [30]–[32]); these techniques pro-
vide tools that allow one to ascertain, under certain conditions
on the data, that there exist small enough step sizesµ for which
a filter reaches steady state (see, e.g., [13]).

Thus, assuming filter operation in steady state, we can write

for (22)

[Similar considerations are also common in the steady-state
analysis of other classes of adaptive algorithms (see, e.g.,
[33]).]

Now, with (22), the effect of the weight error vector is can-
celed out from (21), and we are reduced to studying only the
equality

This equation provides a relation involving only the desired un-
known since is itself a function of , as evidenced
by (14). Thus, by solving the above equation as , we can
obtain an expression for the MSE.

Theorem 2—Identity for MSE Analysis:Consider a generic
adaptive algorithm of the form (12). In steady state (as ),
when (22) holds, we obtain

(23)
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IV. STEADY-STATE ANALYSIS OF CMA2-2

We now demonstrate how the result of Theorem 2, which
holds for generic adaptive schemes of the form (12), can be ap-
plied to the CMA2-2 recursion (7). In later sections, we consider
other CM algorithms.

The derivation in the sequel relies on some statistical assump-
tions (four in total), the introduction of which simplifies the
analysis. Although these assumptions may not hold in general,
they are realistic for sufficiently small step sizes and, as we shall
see from several simulations, lead to good fits between our the-
oretical results and the simulation results.4 Following each as-
sumption, we will provide a brief motivation and justification
for its use.

A. Two Initial Assumptions

The analysis that follows for CMA2-2 is based on the fol-
lowing two assumptions insteady-state( ).

Assumption I.1:The transmitted signal and the
estimation error are independent in steady state so that

since is assumed zero mean.
This is a reasonable assumption since it essentially re-

quires the estimation error of the equalizer to be
insensitive, in steady-state, to the actual transmitted symbols

. For example, for symbols from a 2-PAM constellation
, this means that we are requiring the behavior

(or distribution) of the error , after the equalizer has
converged to steady state, to be insensitive to whether the
polarity of is 1 or 1.

Assumption I.1 can be replaced by the following two condi-
tions, which also enable us to conclude that
.

i) In steady state, CMA2-2 converges in the mean to a zero
forcing solution, i.e., the mean of the combined channel-
equalizer response converges to
col for some .

ii) and are independent as . That is,
in steady state, the equalizer operates independently of
the transmitted signals. This is a common assumption for
steady-state analysis (see, e.g., [13]).

Assumption I.2:The scaled regressor energy is in-
dependent of in steady state.

This assumption requires the scaled energy of the input vector
and not the input vector itself to be independent of the equalizer
output. The assumption actually becomes realistic for longer
filter lengths and for sufficiently small step sizes. To see this,
assume the input sequence is i.i.d., and note that the vari-
ance of the quantity will be of the order of (the equal-
izer length).5 Hence, if the step-sizeµ is of the order of (or
less), then the variance of is of the order of (or
less), which decreases with increasing filter length. This means

4Similar assumptions are very common in the adaptive filtering literature for
FIR structures, where they are collectively known as the independence assump-
tions. As mentioned in a previous footnote, although the independence assump-
tions do not hold in general, they still lead to realistic conclusions for sufficiently
small step sizes [24], [25], [33].

5This is obvious if the individual entries ofu are i.i.d. Some calculations
will show that a similar conclusion holds, in general, when the entries ofu are
taken as the outputs of an FIR channel with i.i.d. input.

that will eventually tend to a constant and can, there-
fore, be assumed to be independent of . Note that by the
same argument, we can also assume that is indepen-
dent of in steady state. (We may add that an assumption
similar to I.2 is also used in [13].)

B. The Case of Real-Valued Data

We start our analysis with the case of real-valued data
(e.g., data from a PAM constellation). In the

next section, we consider complex-valued data. It turns out that
the expressions for the MSE of CMA2-2 are distinct in both
cases, whereas those for CMA1-2 are not.

For real-valued data, the zero forcing responsethat the
adaptive equalizer attempts to achieve [cf. (4)] can be of ei-
ther form . In the following, we
continue with the choice , which
yields

A similar analysis holds for the case
.

Now, the relation (23) in the CMA2-2 context leads to the
equality, for

(24)
We will write more compactly (here and throughout the paper)

for

so that (24) becomes, after expanding

This implies that the terms and should coincide. From
this equality, we can obtain an approximate expression for the
steady-state MSE as we now verify. (In the argument
below, we assume that when the adaptive filter reaches steady
state, the value of is reasonably small.)

Theorem 3—MSE for Real CMA2-2:Consider the CMA2-2
recursion (7) with real-valued data . Under As-
sumptions I.1 and I.2, it holds that for sufficiently smallµ, the
steady-state MSE can be approximated by

(25)

Proof: We first evaluate . Replacing by , we
obtain
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Using Assumption I.1 and neglecting for small µ and
small leads to the approximation .
We now evaluate

With Assumption I.2, we can rewrite as in (25a), shown at the
bottom of the page. Again, whenµ and are small enough, we
can ignore the term and write

From the equality , we obtain (25).

C. The Case of Complex-Valued Data

The expression for the MSE of CMA2-2 in the complex case
differs from the one we derived above for the real case, as we
shall promptly verify.

In the complex case, as in [17], we study signal constellations
that satisfy the circularity condition

(26)

in addition to the condition , which holds
for most constellations.

Theorem 4—MSE For Complex CMA2-2:Consider the
CMA2-2 recursion (7), and assume complex-valued data

satisfying (26). Under Assumptions I.1 and
I.2, and for sufficiently smallµ, the steady-state MSE can be
approximated by

(27)

Proof: Starting with (23), we now obtain

Substituting by , we get

By using (26) and Assumption I.1, the termcan be simplified
to . Similarly, expanding and
using the same approximations as in the real-valued case, we
obtain

Then, from , we get (27). Note that (27) will not be
negative because of

and .
Comparing the results we get for the real-valued and com-

plex-valued cases, we see that they are similar except for a co-
efficient in the denominator expressions (in the real case it is
equal to 3 and in the complex case it is equal to 2). Moreover,
some useful conclusions can be drawn from these results.

1) The steady-state MSE of CMA2-2 is linearly propor-
tional to the step-sizeµ and to the received signal
variance , which agrees with the asymptotic MSE
result for the symbol-spaced (TSE) CM algorithm in [10]
and [34]. This property is also similar to that of LMS.

2) For constant modulus signals , we get
According to (25) and (27), we then obtain .
This is also the same as LMS in the absence of noise.

3) For nonconstant modulus signals, the MSE will not be
zero, even when there is no system noise. This is be-
cause the instantaneous error for CMA2-2 will be
nonzero, even when . The equalizer
weight vector keeps updating itself by a nonvanishing
term and jitters around the mean solution. This property
is different from LMS, where the instantaneous error will
be equal to zero when the system is perfectly equalized.

D. Simulation Results for CMA2-2

Before proceeding to other CM algorithms, we provide some
simulation results that compare the experimental performance
with the one predicted by the previous theorems. The simula-
tions will show than the theoretical values predicted by the ex-
pressions in Theorems 3 and 4 match reasonably well the ex-
perimental results. The channel considered in this simulation is
given by . A four-tap FIR filter
is used as a -fractionally spaced equalizer.

1) Constant Modulus Signals:A computer simulation was
first done for real and constant modulus signals, i.e., for bi-
nary data. With a step-size , after 10 000 iterations,
CMA2-2 was observed to converge to a zero forcing solution
with MSE as low as−120 dB, i.e. MSE 10−12, which can be
considered zero. This result agrees with our analytical result that
the MSE for constant modulus signals is zero.

(25a)
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TABLE I
MSE OF CMA2-2 VERSUS STEP-SIZE FOR

6-PAM SIGNALS

Fig. 3. Experimental and theoretical curves for the steady-state MSE as
a function of the step-size, for CMA2-2 with input signals from a 6-PAM
constellation.

2) Real and Nonconstant Modulus Signals:In this simu-
lation, the transmitted signal was 6-PAM constellated

with ,
, , and . The value of

is the norm of the received signal vector. The value of
was computed as the average over 3000 realizations of .
The first two lines of Table I show the experimental MSE and
the theoretical MSE from Theorem 3, where the value of ex-
perimental MSE was obtained as the average over 20 repeated
experiments. Fig. 3 is a plot of the experimental MSE and the
theoretical MSE versus the step-sizeµ (it also contains one more
MSE curve to be discussed in Section IV-E).

3) Complex and Nonconstant Modulus Signals:With
the same channel and equalizer, we obtained the MSE for
16-QAM signals. Now, , ,

, and . The results are shown in
Table II and Fig. 4.

E. Comparison with Related Results in the Literature

As mentioned in the introduction, an approximate expression
for the MSE of CMA2-2 was also derived in [13]. The deriva-
tion assumed real-valued data and that
for -fractionally spaced equalization [recall the definition of

from (1)–(3)]. It further led to the result

(28)

TABLE II
MSE OF CMA2-2 VERSUSSTEP-SIZE FOR 16-QAM SIGNALS

Fig. 4. Experimental and theoretical curves for the steady-state MSE as a
function of the step-size for CMA2-2 with input signals from a 16-QAM
constellation.

where , but since we can write

we see that the result in (28) actually coincides with our re-
sult for real-valued data (cf. Theorem 3), except that the term

in our expression is replaced by the term in
the above expression from [13]. In other words, the result of [13]
assumes that the average energy of all input vectors across the
subequalizers are identical, i.e., for equalizers,

. When the input energy across the subequalizers is not
uniform, both expressions will, of course, be different.

Table I and Fig. 3 compare the experimental MSE with (28)
and our result (for the real-valued case since [13] considered
this case only). Our results seem to be more accurate in part
because the input energy across subequalizers is not uniform
in general. We may further remark that the approach in [13],
although complementary, is considerably different from the
approach of this paper. The authors of [13] employ averaging
theory [32], solve a Lyapunov equation to find , and
then calculate . Here, we started from the generic
equality and solved directly for .
In the next sections, we further extend this approach to other
kinds of CM algorithms.

In earlier work [10], an approximate expression was also ob-
tained for the MSE of CMA2-2. However, as mentioned earlier,
the analysis in this reference assumes baud-spaced equalizers
and Gaussian regression vectors.
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Fig. 5. Typical plot of transmitted signalss(�) (denoted by “o”) and equalizer
outputsy(�) (denoted by “�”) for a 16-QAM constellation.

V. STEADY-STATE ANALYSIS OF CMA1-2

We now extend the earlier results to the CMA1-2 recursion
(9). In this case, the expressions for the MSE for both real and
complex-valued data will coincide. For this reason, we shall
consider only the complex-valued case.

A. Two More Assumptions

In addition to Assumptions I.1 and I.2, we need the following
two assumptions (also in steady-state).

Assumption I.3:The output of the equalizer is dis-
tributed symmetrically around the transmitted signal
in steady state so that .

Fig. 5 is a plot of the steady-state output (which is de-
noted by “”) and the transmitted signal (which is denoted
by “o”) in one simulation for a 16-QAM data constellation. We
see that we can reasonably assume that the expected value of

is equal to the expected value of .
Assumption I.4:The a priori error is independent

of sign in steady-state, and sign so that
sign .

This assumption is again reasonable in steady state and for
sufficiently small step sizes. This is because in this situation, we
obtain relatively small estimation errors so that the sign of

is essentially determined by the sign of , which,
as explained in Assumption I.2, can be taken to be independent
of . [We should mention that for complex-valued data, we
define sign .]

B. The Case of Complex-Valued Data

Returning to the CMA1-2 recursion (9), we see that the rela-
tion (23) between and reduces to

sign (29)

Starting again with the basic equation (23) and using (29), we
obtain in steady-state

sign (30)

This equation can be used to establish the following result.

TABLE III
MSE OF CMA1-2 VERSUSSTEP-SIZE FOR 6-PAM SIGNALS

Fig. 6. Experimental and theoretical curves for the steady-state MSE as
a function of the step size for CMA1-2 with input signals from a 6-PAM
constellation.

TABLE IV
MSE OF CMA1-2 VERSUSSTEP-SIZE FOR 16-QAM SIGNALS

Theorem 5—MSE for Complex CMA1-2:Consider the recur-
sion (9) for complex-valued data and Assumptions I.1–I.4. It
then holds, for sufficiently smallµ, that the steady-state MSE
can be approximated by

(31)

Proof: See Appendix A where, as in the CMA2-2 case, we
again invoke the fact that is small in steady state.

C. Simulation Results

We employ the same channel as in the CMA2-2 case. For real-
valued signals, we used a 6-PAM data constellation. Table III
and Fig. 6 showsthe experimental and theoretical values of the
MSE for 6-PAM. Table IV and Fig. 7 show the same values for
16-QAM signals.

From the above simulations, we can see that the theoretical
results matchµ reasonably well the experimental results. The
MSE of CMA1-2 is also seen to be proportional to .

VI. NORMALIZED CM ALGORITHMS

The normalized CM algorithm has been motivated by the de-
sire to speed up the convergence of CMA1-2 [35], [36]. This,
however, leads to a biased estimator for the transmitted
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Fig. 7. Experimental and theoretical curves for the steady-state MSE as
a function of the step size for CMA1-2 with input signals from a 16-QAM
constellation.

signal when the signal constellation is not constant
modulus. In this section, we introduce a variant that leads to
less bias than earlier algorithms.

The recursion for normalized CMA has the general form

sign (32)

where is a design parameter. Compared with the CMA1-2
recursion (9), we see that the constant step size of CMA1-2 is
now replaced by a time-variant step size .

For constant modulus signals , the most reasonable se-
lection for is the magnitude of the transmitted signals

. For nonconstant modulus signals, on the other hand, we
need to choose other values for. In [37], it was suggested that
we choose, for any

For , this leads to the choice

(33)

and for

(34)

For example, 4-PAM signals , we obtain

Fig. 8 demonstrates the bias problem that arises when the
normalized CMA recursion is used with the above choices for

, viz., and . The two left-most plots in the figure show
the equalizer outputs with 4-PAM inputs
for and . (The right-most plot uses a different value

for , which we shall derive further ahead.) The channel
was , and we implemented
a four-tap fractionally spaced equalizer. We can see that
both plots on the left lead to biased steady state solutions.
For example, when , , on
average.

We now propose to select differently by minimizing the
steady-state MSE relative to a zero forcing solution. We focus
here on real-valued data. Using the normalized CM recursion
(32) and relation (23), we find that

sign (35)

so that (23), as , reduces to

sign (36)

As before, we can proceed to evaluate . However, our ear-
lier derivations were all based on Assumption I.1 and, because
of the bias problem, this assumption is no longer satisfied by
the normalized CM algorithm for the above values of(
and ).

Note, however, that the larger the bias the larger the value of
the steady-state MSE. This suggests selectingby minimizing
the MSE. Such a value for would result in reduced bias, in
which case, we could assume that Assumption I.1 is enforced at
least approximately (as is demonstrated by the right-most plot
of Fig. 8 for the value of we will obtain).

In this case, and using Assumptions I.1I.4, we can establish
that for sufficiently small and , the resulting steady-state MSE
would be (see Appendix B)

(37)

We can now seek that value forthat minimizes (37). Setting
the derivative of (37) with respect to equal to zero leads to
the choice , and the corresponding MSE will be

. Therefore, with , we
obtain the variant

sign (38)

The simulation result in Fig. 8 shows that this selection for
leads to a considerably smaller offset and MSE.

Moreover, Table V and Fig. 9 show the values of exper-
imental MSE and theoretical MSE for different step-sizes for
6-PAM signals using (38). We can see that the theoretical MSE
does not match closely the experimental results. The reason is
that our selection for , although close, does not fully result
in unbiased estimation. Thus, the bias problem makes it difficult
to satisfy Assumption I.1.

Finally, as mentioned in the introduction of this section,
normalized CM algorithms are motivated by the desire
to speed up the convergence of CMA1-2. In Fig. 10, we
compare the convergence rate of both these algorithms by
using the above choice for , . The channel is

, and the equalizer is a
two-tap FIR filter. The input constellation is 4-PAM. We use
the step-size for both algorithms. Unlike the case of
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Fig. 8. Equalizer outputsy(i) of normalized CMA for three different choices of the parameterR. (left) R = (Ejs(i)j =Ejs(i)j ) = 8:2. (middle)R =
(Ejs(i)j =Ejs(i)j) = 2:5. (right)R = Ejs(i)j = 2. The horizontal axis denotes iteration time while the vertical axis denotes amplitude.

TABLE V
MSE OF NORMALIZED CMA (38) VERSUSSTEP-SIZE FORSIX-PAM SIGNALS

Fig. 9. Experimental and theoretical curves for the steady-state MSE as a
function of the step size for normalized CMA (38) with input signals from a
6-PAM constellation.

constant modulus signals, the simulation shows that normalized
CMA need not converge faster than CMA1-2. The figure plots
ensemble-average curves for thea priori estimation error
energy in decibels, averaged over ten experiments.
A similar conclusion holds for the other choices ofin (33)
and (34).

Fig. 10. Comparison of the convergence rates of CMA1-2 and normalized
CMA for 4-PAM signals. The figure shows two ensemble-average learning
curves obtained by averaging over several experiments.

VII. CONCLUDING REMARKS

In this paper, we studied the steady-state performance of
several blind adaptive algorithms of the constant modulus type,
namely, CMA2-2, CMA1-2, and normalized CMA. Analytical
expressions for the steady-state mean-square error (MSE) were
calculated and verified by computer simulations. From this
study, we conclude the following.

1) The fundamental energy-preserving relation described
in SectionIII-B is a useful property for the analysis of
the steady-state performance of gradient-based adaptive
algorithms. By using this relation, we could calculate
the MSE of CM algorithms in a simpler way than other
methods.
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2) For nonconstant modulus signals, the MSE of CMA1-2
and CMA2-2 will not converge to zero even when there
is no channel noise. Moreover, the MSE of CMA1-2 and
CMA2-2 are determined by the signal constellation size
and are proportional to the step size of the algorithms and
to the received signal energy (or variance).

3) For constant modulus signals, the MSE of CMA1-2
and CMA2-2 will converge to zero when there is no
channel noise. The step size should be sufficiently small
to guarantee stable operation of the equalizer for both
algorithms. For CMA1-2, because of the existence of
undesired local minima, special care is needed with the
initial condition.

4) Normalized CMA is a faster algorithm than CMA1-2 for
constant-modulus signals. For nonconstant modulus sig-
nals, however, normalized CMA will converge to a biased
solution. We showed in SectionVI how to decrease the
bias by designing a new normalized CM algorithm.

5) Our analysis suggests that CMA2-2 has the best perfor-
mance among the algorithms we discussed in this paper.
When implemented in a fractionally spaced form, it has
no undesired minima, it converges faster than CMA1-2, it
gives an unbiased solution for both constant and noncon-
stant modulus signals, and it requires only simple calcu-
lations.

APPENDIX A
PROOF OFTHEOREM 5

Expanding the right-hand side of (30) leads to /belowdis-
playskip16pt

sign sign

sign

Hence, . Replacing by and using Assump-
tions I.1 and I.4, we get . Using Assumption I.2,
the term becomes

Now, from Assumptions I.1 and I.3, we get and
. Then,

. Ignoring the term µ,
when and are sufficiently small, we get

Using , we are led to (31). Note that the expression for the
MSE cannot be negative because

.

APPENDIX B
DERIVATION OF (37)

From (35) and (36), we get /belowdisplayskip8pt

sign

sign

sign

We consider the case where .
Similar results can be obtained when

. Then, . Let us
first examine the term by replacing with . With
Assumption I.2 (where is independent of and ),
the term can be written as

sign

With Assumptions I.3 and I.4, we get sign
sign In addition, from Assumption I.1, and

because , we get . Hence, the term can
be simplified to

Now, we evaluate the term. From Assumption I.2, can
be written as

sign

Expanding this expression, we get

sign

sign

For small enough , we can write sign sign so that
sign , and

µAgain, when and are sufficiently small, the term
can be ignored, and hence

Then, leads to (37). This expression for the MSE is
non-negative for any because

Equality occurs only for constant modulus signals.
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