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Abstract—We consider a wireless network with distributed
processing capabilities for estimation or detection applications.
Due to limited communication resources, the network selects only
a subset of sensor measurements for estimation or detection as
long as the resulting fidelity is tolerable. We present a distributed
sampling scheme based on the concept of innovations diffusion to
select the sensor nodes. In the proposed scheme, sensor selection is
accomplished through local communication and signal processing.
In order to conserve energy and prolong system lifetime, the
proposed algorithm selects a nearly minimum number of active
sensors to ensure a desired fidelity for each working period.
Extensive simulations illustrate the effectiveness of the proposed
sampling scheme.

Index Terms—Diffusion, distributed processing, estimation and
detection, innovations, sampling, wireless networks.

1. INTRODUCTION

large class of wireless sensor networks (WSNs) is

concerned with estimating or detecting an underlying
physical phenomenon over time and space in a noisy environ-
ment. The network consolidates data collected by sensor nodes
in order to reconstruct the state of nature such as estimating
or detecting a field variable given the sensor observations.
Such sensor networks are typically designed for applications
including environmental monitoring, military surveillance, and
space exploration [2]. Two key issues in these settings are the
fidelity at which the field variable can be estimated or detected
and the cost of operating the sensor network.

Because wireless sensor devices are usually battery-powered
and battery replacement is difficult, energy efficiency becomes
important for sensor networks and has a direct influence on the
system lifetime. For sensor networks with dense deployment,
it is necessary to select a group of sensors that are more infor-
mative for data fusion purposes and to set other nodes inactive
(or sleeping) to save energy. While there might not always exist
a direct relation between energy efficiency and the number of
active sensors, reducing the number of active sensors generally
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leads to less energy consumption [3]. In addition, energy effi-
ciency is related to distributed processing through local commu-
nication and computation. The goal of this paper is to propose
a methodology to select a nearly minimum number of sensor
nodes for distributed inference applications with some desired
fidelity.

A. Parameter Estimation

Consider a network of N sensor nodes estimating an un-
known deterministic parameter § € R™. For sensor 4, which
has a vector of n; measurements, its observation is assumed to
be distorted by a matrix H; € R™ *™ and corrupted by additive
noise, i.e.

yvi=H;0+v,, i=1,2... N. (1)
Equation (1) can be written compactly as
y=Hl+v 2)

where y = col{y1,...,yn}, H = col{H;,...,Hy}, and

v = col{vy,...,vy}. The measurement noise v is zero mean
and has covariance matrix C = E (vv”'). Linear models of the
form (1) are adopted in many sensing applications due to their
mathematical tractability.

The objective is to estimate the parameter # in (2) from a
subset of the measurements {y;}¥,. At the beginning of each
estimation period, the network selects a subset of the sensor
measurements, indexed by A,, = {i1,12,...,%,}, for estima-
tion as long as some desired estimation fidelity can be guar-
anteed. We use the notation Hy, = col{H;,,H;,,... , H; }
andy 4, = col{yi,,¥i,,---,¥i,} todenote the corresponding
data matrices and observation vectors, respectively. Let C 4, be
the partial matrix selected from C with rows and columns cor-
responding to {i1, 42, ..., }. With the data model in (1), the
linear minimum-variance-unbiased-estimator (m.v.u.e.) [4] of 8
using the observations in y 4, is given by

A _ —1 _
0(ya,)=(HY C'Hy,) HLY Cllya,

and the resulting minimum mean-squared error (MMSE) is

D (ya) =5 ([6- 8] [0 630)] )
= (H} C3'H4,)” “)

where it is assumed that all inverses exist, whenever necessary.
It is desired that the MMSE of the estimator be less than or equal

1053-587X/$25.00 © 2008 IEEE

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on May 15, 2009 at 13:24 from IEEE Xplore. Restrictions apply.



QUAN et al.: INNOVATIONS DIFFUSION

to some desired distortion Dy. In other words, we would like to
select the sensors {i1,...,%,} to meet the following accuracy
requirement

D4, =Tr[D(ya,)] < Do. Q)

We shall proceed in Section III to develop a method to select
the subset y 4 of the sensors to estimate the unknown param-
eter 8 according to (5) in a distributed way. The method will
require each sensor to locally compute the m.v.u.e. of  under
a certain distortion constraint by communicating only with its
nearby nodes. The spatial sampling problem is also relevant in
the context of signal detection, as we now explain.

B. Signal Detection

To detect a signal of interest, we consider a simple binary
hypothesis test of the form

Hy:y=v(0=0)
Hy:y=Hf+v (0+#£0) (6)
where y = col{y1,y2,...,yn} are the sensor observations,
v = col{vy, vs,..., vy} are the observation noises, and H =
col{H1,Hs, ..., Hy} are the distortion matrices. It is assumed
that the noise is Gaussian distributed with zero mean and co-
variance matrix C = E (va). Then, the probability density
functions of y under different hypotheses are expressed as

L L 11 )
e (-Lyc 7
J@nNdetc P ( ey 0

and [see (8) at the bottom of the page], where s = H. The
optimal detector derived from the Neyman-Pearson formulation
checks the log-likelihood ratio test [5]:

H
a f(y[H1) 21
MY =08 i) 57

f(y|Ho) =

C))

where +y is the test threshold. It can be verified that the log-
likelihood ratio can be expressed as
1
Ly)=sTCly - ischls (10)
and that L(y) is also Gaussian distributed under different hy-
potheses, namely

Hy: L(y) ~N (—%STC—IS,STC*S) (11)

Hy:Ly)~N (%STC_I&STC_ls) . (12)
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Consequently, the probabilities of false alarm and detection have
the following forms:

+3s"C!
1Tl
7—38'C S) 4

VsTC-1g

To evaluate the detection performance, we adopt the deflec-
tion coefficient [5], which is defined as

[E (L (y|H1)) - E (L (y|Ho))”
Var [L(y)|Ho]

and

Pp =Pr{L(y) >~|H:1} =Q <

d(y) =
=sTC™1s
=¢TH'C 'Hf (15)

where Var(-) means the variance. The deflection coefficient
provides a good measure for the detection performance when
the observations are Gaussian distributed; the detection per-
formance improves as the value of the deflection coefficient
increases. This is illustrated by representing the probability of
detection in terms of any given probability of false alarm as

Pp=0Q [Qfl (Prpa) — \/m]

=Q[Q7" (Pra)—d]. (16)
Given a fixed probability of false alarm, if the deflection coeffi-
cient is greater than a certain constraint, i.e., d? > d%, then we
have
Pp(d?) > Pp(dp). (17)
Our second objective in this paper is to select a subset of the
observations A, such that the resulting deflection coefficient is
larger than or equal to d3. In other words, the detector should
guarantee at least a certain probability of detection Pp(d3) for a
given probability of false alarm. The target deflection coefficient
d2 is determined by the application requirement.

C. Overview and Main Results

Distributed algorithms are attractive in large-scale networks
where a centralized solution is infeasible, nonscalable, or too
costly. A number of distributed solutions have been proposed for
detection, estimation, and inference purposes [6]-[12]. In these
solutions, each node does not require access to global informa-
tion and can deliver performance by communicating solely with
nearby nodes. The major advantage of distributed algorithms is

f (ylHy) = ——

Xp [—%(y —s)'C7(y —s)

J/(2r)NdetC

®)
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that they save the significant cost of transmitting all data to a fu-
sion center and each sensor can operate as a data sink to achieve
robustness.

Motivated by these observations, we develop in this paper
a distributed sensor selection strategy. We consider a wireless
sensor network with many redundant nodes, each of which can
observe a physical phenomenon in the field. For each work pe-
riod, the network selects a subset of sensor measurements, A,,,
to achieve a desired fidelity. We refer to the procedure of se-
lecting these sensor measurements as sensor sampling. Intu-
itively, if the noise level is low, a small number of sensors is
sufficient to achieve the desired fidelity; however, if the noise
condition is severe, more sensors should be activated for accu-
rate inference. We develop a sampling scheme that exploits what
we call innovations diffusion. Innovation refers to the new infor-
mation that a sensor measurement contributes to the reduction
of the inference error relative to prior measurements, and dif-
fusion refers to the process by which the innovation is commu-
nicated across the network. The proposed sampling procedure
will be accomplished in a distributed manner whereby each ac-
tive sensor will locally compute a m.v.u.e. @ or detector based
on local measurements, and the algorithm will activate a nearly
minimum number of sensors to ensure a desired fidelity (e.g.,
Dy or d%) for each work period.

D. Related Work and Comparisons

The problem of sensor selection has been investigated for var-
ious purposes in the literature. Reference [13] proposed an in-
formation driven sensor query (IDSQ) algorithm for tracking
applications, where only a single sensor (leader) is active at a
given time. After obtaining a measurement, the leader passes
its measurement to the most informative sensor in the network,
which will become the next leader. This work was extended in
[14] by selecting the sensor measurement with the maximum
mutual information. Reference [15] used a local greedy strategy
to select the next most informative sensor node to reduce infor-
mation entropy for target location with the assumption that the
probability distribution of target location estimation is known a
priori. The work in [16] addressed the sensor selection problem
for the bounded uncertainty sensing model in order to minimize
the error in estimating the target position. While these works
focus on sensor selection for target tracking applications, this
paper distinguishes itself from these works by using innovation,
a new information measure, to activate a subset of sensors for
estimation or detection applications.

There are several works addressing energy efficiency for
sensor selection in sensor networks. In [3], a sensor selection
algorithm was proposed to reconstruct the data image of a
spatially bandlimited physical phenomenon based on blue
noise masking. In such an application, spatial resolution can be
traded for energy efficiency by reducing the number of sensors
used to observe the area. Reference [17] proposed an adaptive
sensor control scheme to minimize the number of active sensors
assuming that all sensors are identical and the quality-of-service
(QoS) can be expressed as a function of the sensor number.
In [18], an innovations-based scheme was proposed to select
sensor measurements to estimate an unknown parameter under
a desired distortion constraint. In [19], a power scheduling
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scheme was proposed to minimize the total transmit power
while satisfying a given estimation requirement. The result
implied that sensors with bad channels and bad observation
qualities should be turned off in order to conserve energy.
While these prior works considered a centralized network in
which there is a fusion center responsible for the network
management and global computation, a new class of distributed
processing structures and protocols would be desirable to de-
centralize these sensor selection schemes. These works suggest
that reducing the number of active sensors would lead to energy
efficiency. Sharing this idea with previous works, our proposed
algorithm presents a completely distributed sampling scheme,
through which innovations can propagate effectively across the
network for estimation or detection purposes.

The paper is organized as follows. Section II describes the
system model for innovations diffusion sampling in sensor net-
works. The proposed sampling scheme for estimation and de-
tection is presented in Section III. Section IV provides perfor-
mance analysis for the innovations diffusion sampling algorithm
and Section V discusses some important issues of its practical
implementation. Simulation results illustrating the effectiveness
of the proposed algorithm are given in Section VI. Section VII
concludes the paper.

II. SYSTEM MODEL

Consider a wireless network with N sensor nodes spatially
distributed in the field. The network wishes to select a subset
of sensor measurements to estimate an unknown parameter or
detect a known deterministic signal in a distributed manner by
relying on local computations and inter-sensor communications.

A. Network Graph

The sensor network is represented as an undirected graph
G(\V,€), where V = {1,2,..., N} denotes the set of vertices
(sensor nodes) and £ C {(4,7) | 7, € V} is the edge set. A
graph is connected if there exists a path in £ for any two ver-
tices ¢ and j. In this paper, we assume that each sensor trans-
mits at a constant power level P and the receiver has an ambient
noise power level Ny. Let X (7) represent the position of sensor
1. Then, the transmission from sensor ¢ is successfully received
by sensor j if

>p 18
Nodg, = £ (18)
where d;; = |X (i) — X(j)| is the distance between sensors 4

and j, and a(2 < a < 6) is the associated pathloss coefficient.
Equation (18) models a situation where a minimum signal-to-
noise ratio (SNR) is necessary for successful receptions and the
signal power decays with distance r according to the rule 1/7.
Thus, the receiver should be within a distance of

(19)

from the transmitter in order for a reliable wireless link to be
ensured. In this way, the edge set is defined by

EE{(i,5) | dij < g} (20)
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O Sleeping Node
@ Active Node
[] signal Source

Fig. 1. A schematic representation of distributed sampling in wireless sensor
networks.

and the neighbor set of sensor 7 is defined as

N(@) £ {51 .g) € €}

so that sensors ¢ and j are termed neighbors if their distance is
less than or equal to 7g. As illustrated in Fig. 1, sensors within
the connectivity radius rg are directly connected and are neigh-
bors of each other.

For any sampling decision A,, = {71,142, ..,y }, the active
and inactive neighbors of sensor i, (45, € A,) are given by

2n

Na(ir) = N(i) N A, (22)

and

Ni(ir) = N (i) \ A 23)
The local knowledge of each sensor ¢ contains not only its own
distortion matrix H; and noise covariance Ev, , but also its
neighbors’ distortion matrices, noise covarlances, and correla-
tions. Let N’(7) = {N(i),4}. Then, each sensor 4 is assumed
to have access to the information {H yr/(;), Car(;)} at the stage

of deployment.

B. Spatial Correlation Models

The computation of the linear m.v.u.e. of # as in (3) and the
optimal detector from the noisy measurements as in (9), can be
facilitated if the network has a priori knowledge of the covari-
ance structure C. In practice, the matrix C can be estimated
from repeated measurements at all sensors. Nevertheless, this
approach is not efficient if the number of sensors NV is large.
Therefore, a model that characterizes the correlation between
sensors will be useful. In this paper, we consider three different
correlation models as follows.

1) Uncorrelated Noise (UN): The measurement noise at
each sensor is uncorrelated with other sensors. If the noises are
Gaussian, then they are independent with each other as well.

2) Near Correlation (NC): In this model, each sensor is
only correlated with its neighboring nodes and is independent of
other sensors beyond the distance g, i.e., C;; = 0if j ¢ N (4).
This is motivated by the fact that the correlation decays with
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the distance between sensors and approaches zero if the corre-
sponding sensors are far apart [20].

3) Far Correlation (FC): The measurement noise at each
sensor is not only correlated with its own neighbors, but also
with other sensors far away. The correlation is assumed to be a
decreasing function of the Euclidean distance between the cor-
responding nodes [20], [21], i.e.

C;; =F(Cy;,Cjj,dij) (24)
where F : R™%™ x R %" x R — R™ X",

These correlation models will be used to test our distributed

sampling algorithms.

III. INNOVATIONS DIFFUSION SAMPLING

In this section, we present a distributed sampling scheme for
estimation and detection under a certain distortion constraint.
Starting with an initial sensor, the set of active sensors collab-
oratively activates one sleeping sensor at each time. The proce-
dure continues until the set of active sensors achieves the de-
sired estimation or detection fidelity. Although there is no di-
rect relation between the system lifetime and the number of ac-
tive sensors, reducing the number of active sensors generally
leads to energy efficiency. In general, finding the exact min-
imum number of measurements to achieve a desired fidelity be-
longs to a class of combinatorial optimization problems [22] and
is typically NP-hard. Thus, the proposed approach will pursue
a greedy heuristic that provides useful suboptimal approxima-
tions with polynomial complexity. Assuming that each inactive
sensor can listen to the control channel for the awakening mes-
sage, at each time the sampling algorithm should select the most
informative sensor with respect to the previous selected ones
in order for the fidelity to be satisfied with a nearly minimum
number of active sensors. The resulting procedure will exhibit
good performance at reasonable cost and will be tractable for
both analysis and implementation.

A. Uncorrelated Noise

Consider a selected group of sensor observations y 4, , where

A, = {i1,42,...,4, }. If the noises are spatially uncorrelated,
i.e., Cg; = 0 for k # [, then (4) becomes

D' (ya,) ZHT C, ! H, (25)
and, from (15), the deflection coefficient is

d*(ya,)=6" Z H! C;! H;, | 6. (26)

These expressions decouple the contribution of each sensor to
the total inference ﬁdelity (MMSE or the deflection coefficient).
Each term HZ sz H;, has the essential properties of an in-
formation measure in that it is

1) nonnegative definite,

2) and additive for independent observations.
Intuitively, the more information sensor ¢, has (i.e., the larger

HT C H“ is), the smaller the MMSE and the larger the

ik ik
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deflection coefficient. This suggests that at each time the net-
work should choose the most informative sensor in order to
maximally reduce the MMSE or increase the deflection coef-
ficient. Specifically, assume that the nodes .A,,_1 have been se-
lected. Then, at time n we would choose from the coverage of
A,,_1 a sensor ¢,, whose information measure HZT C:1H7 is

the largest. In this way, the resulting inference fidelity will be
the best compared with other possible choices.

B. Correlated Noise

However, the noises are generally spatially correlated in prac-
tice. In this case, the contributions of the individual sensors are
coupled with each other in the MMSE expression D(A,,) in (4)
and in the deflection coefficient (15). In other words, it is not
sufficient to examine the term H C;- llH,L-n and seek the one
with the largest value as in the case of uncorrelated noise. We
thus need to develop a procedure to find the most informative
sensor with respect to the previous selected ones. To achieve
this goal, we start by whitening the observation data subject to
the order dictated by the choice of sensors, and then obtain a set
of transformed measurements with uncorrelated noises.

Suppose that we have already selected n — 1 sensors, i.e.,
A, 1 ={i1,42,...,in_1}. For every possible i, ¢ A, 1, we

’

define its innovation [4], [23] as

A A

€i, = Yin = ¥Yi,| A s @7
where y; |4, _, denotes the linear least-mean-squares estimator
(I.Lm.s.e. or projection) of y; given the previously selected
measurements {y;,,¥i,, - - -, Yi,_, }- It is straightforward to see
that

Vilauoy = Hi 0+ i 14, _, (28)
where V; |4,_, represents the projection of v; onto the same
linear space L£{yi,,¥i,,---,Y¥i,_, |- The quantity e; in (27)
possesses the new information contained in sensor ¢, and not
in any of the previously selected measurements. Now note that
Vi.|A,_, is given by [4]:

Vil =Bi 4, Cal va,_, (29)
where
Bija., =(Ci.ii Ciis Cii,\)- (30)
Combining (1), (27), (28), and (29) gives
€, =Vi, = Vi |A,_,
= (-Bj,ju, . C3 T) <"j— > . 6D

It can be verified that e; Lv; for any j € A,_q, that is,
E (e;,v]) = 0. Fig. 2 illustrates a geometric interpretation of
the projection relationship between e;, ¥; |4, _,,and v;. Let

o, I

P4, =(-Bija._.Ca _, (32)
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€;

n

‘C{Yim Yigs - - 7Y’in71}
Fig. 2. A geometric interpretation of the relation between vectors v, , €;,,,
and ¥;, |4, , with respect to the affine space L{y:,,¥i,, -, ¥i, ,}-

Lemma 1 (Innovations): Given a sampling decision A,,, the
corresponding innovation process {e;, }7¥_; has the important
property
ik 7 il

otherwise

E (ee;) = { OQ, (33)

where Q;, is the covariance matrix of e;, and is given by
Qi, = Ciyi,

Proof: Refer to Appendix I. |
We now introduce a transformed form of y; with respect to

- B’iklAk—lc;iqBilAka' (34)

¥, Yis--s¥i,_ . as follows:
zi, 2P |a,_, <y;;‘l> (35)
which can be written as
zi, = G |a,_,0 +e, (36)
where
a Hau,_
Gin\An—1 = PinlAn—l < Hi,, ! > . (37)
Note in particular that for all iy € .A,,_1, it holds that

E [(zin —Fz )T (yi, — Eyik,)} = 0. That is,

ZinJ— [’{yi17yi27"'7yi7171}' (38)

Moreover, the main fact to note is that now the linear m.v. u.e.
of 8 given {z;,,%;,,...,%;, } coincides with the m.v.u.e. of 8
using {yi,,¥i,»- - -,¥i, }- This result is stated as follows.
Theorem 1 (Equivalent Estimation): Consider the linear
model in (1). For a given set of sensor measurements
{¥Yi,,¥iss---,¥i,}, the minimum-variance-unbiased linear
estimator of @ is equivalent to the estimator obtained by using

the transformed measurements {z;,,%;,,...,%;, },i.e.
0(ya,)=0(z4,)
n —1
_ T -1
B Z G’iklAkﬂQik G’ik\Ak—1
k=1

XD Gy, Q3 2 (39)
k=1
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Moreover, the resulting MMSE:s are identical, i.e.,

D(ya,)

(HL CilH4) ™'

n -1
<Z G3;|A“Qn.1GikA“> . (40)
k=1

Proof: See Appendix II. [ ]

The key advantage of working with the transformed quanti-
ties {z;, }77_, over the original measurements {y;, }7_; is that
the noises {e;, }¥_,; in the model (36) are now uncorrelated
and the contributions of the individual sensors to the MMSE
can be decoupled, as was the case with uncorrelated noise in
Section III-A. We can also obtain a similar result for the op-
timal detector, as stated in the following theorem.

Theorem 2 (Equivalent Detection): Consider the binary
hypothesis test in (6). For a given set of sensor measurements
{¥iy»¥ips---,¥i,}, the optimal detector is equivalent to the
detector obtained by using the transformed measurements
{2i,,%iy,---,2i, }, L€

L(ya,) =L(za,) = 20TG% Q3'za,
—0"G] Q!G40

41)
Moreover, the resulting deflection coefficients are identical, i.e.
d*(ya,) = d*(za,).

Proof: See Appendix III. [ |

(42)

C. lIterative Diffusion Sampling

Diffusion is the means by which innovations become avail-
able by communications throughout the current active sensors.
The sampling algorithm assumes an active node at the begin-
ning, i.e., A; = {41}, which serves as the seed to activate other
sensors. Sensor 1 chooses within its inactive neighbors a sensor
and then activates it. At the nth step, the current set of active
sensors A,_1 = {71,492, ...,%,-1} makes a connected network
and collaboratively activates one sleeping sensor that is within
the coverage of A,,_1. To meet the fidelity requirement with a
nearly minimum number of measurements, the sampling algo-
rithm should choose the sensor that is most informative with
respect to the previous sensors .4,,_1. Before we proceed to de-
scribe the algorithm, we need to define a utility function that
measures the innovation of the sensor measurement.

1) Estimation: Motivated by (40), we define a utility matrix
as

A T -1
Uin‘Anfl = Gi,,|.A,,,1 Qin Gin‘-Anfl (43)
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which has the essential properties of an information measure.
Recall that the set of sensor observations .4,,_; has an MMSE
Dy, , = Tr [D (YAWA)]~ From (40) and for any 4,, the
MMSE with measurements {.A,,_1, i, } can be written as

Da, =Te[(D7 (ya, )+ Usa )] @)
Then, we can define a utility function as the difference between
Dy, _,and D4 ,i.e.,[see (45) at the bottom of the page], where
the last equality follows from the matrix inversion lemma.! Al-
though the definition of the utility function is not unique, it can
be seen that u(i,|.A,—1) in (45) indicates a good measure of the
new information provided by sensor %,,.

2) Detection: For detection of a deterministic parameter 6,
we define the utility function as

n?

w(in]A,_1) = 87 GF (46)

—1
in|An_1 Q'in G

'inI-Anflo

according to (26).

The basic strategy of diffusion sampling is to successively
choose one sensor with maximum utility from among the
sleeping nodes within the coverage of A,,_1, i.e.
w(jlAn-1) (47)

in = arg max

gelJrZ) Nitin)
by local computation and message exchange between neigh-
boring sensors. The procedure continues until the desired fi-
delity (Dg or d3) is achieved. The details of the sampling al-
gorithm are presented in Algorithm 1.

Algorithm 1 Innovations Diffusion Sampling

0: Start withn = 1 and A; = {é1}.

1: while D 4,1 > Dy [or d*(y.4,_,) < d2] do
2: For each i, € A,_1, find i} =

arg max;en, (i) 4(j|An—1)

3:repeat

4: Each active node 75, sends a message M;, including the

index i;"** and the associated utility u(i}"**|.A,_1) to its

active neighbors N4 (ix).

5: Upon receiving the messages from neighboring

nodes, each sensor i, in A,,_; updates i7** : i** =
arg max;en, (i) w(17*|A,—1) and stores the associated
utility.

(A+BCD) '=A"'-A'B(C'+DA'B)"' DA~ [4].

w(in|An_1) 2 D4, _, — Dy

n

=Tr [D (Ya,_) = (D" (ya,._,) + Uin\AH)_l}

1
=Tr |:D (YAnfl) (D (yAn—l) + Uq',_nl|An,1) D (YAHI):|

(45)
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6:until all the active sensors reach consensus.

7: Let ,,

— ,max
= 1 .

8: Sensor 1, is activated by its closest active neighbor and
inherits the necessary information related to A,, 1.

9: Each active sensor adds ¢,, into the set of active sensors, i.€.,
An = {i17i2,...,in} and n = n+ 1.

10: end while

D. Recursive Algorithm

When the number of active nodes n increases, the compu-
tational complexity of inverting the correlation matrix C 4, in
(32) can become prohibitively high, e.g., O(m?), where m =
>, ni. Nevertheless, the computational complexity can be re-
duced by relating C4, to C 4, _,.

The correlation of the nodes A,, can be recursively repre-
sented as follows:

T
CAn = < CAn_l BinlAn_1> . (48)
Bi, 4. inin
Then
, c;t 0 -Cc;' BT
1 k2 —1
C_An — < .An_(l) 0) + < An—l nl.An I>
x Q' (-Bi,4,.,C%,, I) (49)

where Q,;, = C; i, — B'in\An—lC;lylllezj,an is a small
n;, X n,;, matrix and its inversion is generally straightforward.
With this recursion, the computational complexity of matrix in-
version can be reduced by exploiting the previous result, and
each sensor is able to efficiently compute the estimator or de-
tector and the associated inference error.

E. Diffusion Protocol

The communication protocols for innovation diffusion can be
implemented in a couple of ways.

1) Global Knowledge: Assume that each node has full
knowledge of the distortion matrices {Hj} and the noise
covariance matrices {Cy;} of its neighbors. Then each active
sensor can locally compute (1) without communicating with
other sensors. The messages exchanged between sensors only
need to contain the index and the associated utility function, i.e.

M, = {ig™ u(iy™ | An 1) }- (50)

2) Local Knowledge: In the case where each sensor has only
local knowledge about its neighbors, the diffusion sampling al-
gorithm can be implemented by adding necessary information
into the messages that are exchanged among active nodes. For
example, the message sent by sensor iy, in line 4 could contain

the distortion matrix and noise covariance of sensor ¢;;'** in ad-
dition to {#}*™*, u(i**|A,—1)}, ie.
M;, = {7, u(iy™ [ An—1), Himax, Cimaximax}. (51)

‘When sensor 7,, is activated in line &, it inherits the information
of {H4, ,,C_4, _,}fromits closestactive neighbor and locally
constructs its own {H 4, ,C 4, }.

n—1
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To avoid transmitting redundant information, in line 4 each
active sensor sends the message M;, to its neighbors only if
the message content has been updated; otherwise, it turns off
radio to save energy. That is, the innovations computation of a
candidate node is performed locally by its neighbors and there
is no need to transmit its distortion and correlation matrices.
Only when a new node is activated, its distortion and correlation
information will be shared by the set of active nodes.

3) Location-Aware Diffusion: As the noise correlation be-
tween sensors can be modeled as a function of their locations
(or distances) as in (24), the correlation information is not trans-
mitted in the message exchanged among nodes, i.e.

M, = {2, w(i™ [ An—1), Himax }. (52)
For the UN and NC models, constructing C 4, is straightfor-
ward. If sensor noises are characterized by the FC model, then
each active sensor can locally construct C 4, using (24).

Within the set of active nodes, each examines its neighbors
and finds the best local candidate. The computation of inno-
vations is only performed locally without invoking any mes-
sage exchange. Each node then exchanges the information of
its candidate such that the most informative node can be identi-
fied in a distributed way. Meanwhile, each sensor does not have
to transmit the information of its candidate every time unless
its candidate has been updated by its active neighboring nodes.
This simple mechanism can avoid unnecessary transmission and
save a significant amount of energy. Since only the information
of the newly selected node is shared among the current set of
active nodes, the diffusion procedure does not cause much over-
head.

Since the number of active nodes is finite, consensus can be
reached in line 6 within a finite number of iterations. Then, each
sensor can locally construct the matrices H 4, and C 4, , which
will be used for activating the next sensor if D4, > Dj or
d*(ya,) < di. After the sampling stage is completed, H 4,
and C 4, are used for data fusion. In brief, the algorithm suc-
cessively adds the sensor that has the maximum utility into the
set of selected sensors until the desired inference fidelity is sat-
isfied. This scheme ensures that the set of selected nodes make
a connected graph at any time and the number of active sensors
is no more than necessary.

IV. ENERGY PERFORMANCE ANALYSIS

It is useful to analyze the proposed innovations diffusion al-
gorithm from a probabilistic perspective. Recall that the inno-
vations diffusion algorithm, starting with an initial node, repeat-
edly activates one node at a time until a certain inference fidelity
is satisfied. As such, the number of active sensors is a random
number that determines the amount of energy consumed for
computation and communication. That is, the less active sen-
sors we have, the more energy will be saved. We estimate the
expected number of active sensors in the sequel.

For simplicity, we consider the scalar observation y; = H;0+
v;, 1 = 1,2,..., N, where y;, H;0, and v; are scalars. The
innovation utility derived from (43) is a scalar with the form

A AT -1
UinlAn—l - Gin\An_lQin Gin|An,1 (53)
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where G |4, , and @Q; are the corresponding scalar forms
derived from (37) and (34). Thus, the inverse of the MMSE can
be expressed as

D;le = Z Uik‘Ak—l' (54
k=1
The algorithm will stop if, and only if, D;l,lv > Dy v

where N, is the stopping rule for a set of random variables
{Ui,|A,_,;n > 1}. Thus, we can define an indicator function
of the event {N, > k} as

L,

Considering that the sensors are randomly deployed in a net-
work with a large number of sensors, we can model innovation
diffusion as a renewal process for which the {U; |4, _,;n > 1}
are independent identically distributed (i.i.d.) random variables.
Let 1, = E [U;, 4, _, |- From Wald’s equality [24]

Ny, > k

N, < k. (53)

E |:D-:‘11V,,:| =E ZUiHAkflIk
k=1

= lby, Z E(I)
k=1

=, E (Na)
= Ny,

where N, = E (N,). Consequently, the expected number of
active sensors can be estimated as

7 1
N, =
LUDJ

where [2] denotes the smallest integer greater than or equal to .

We can now approximate the energy consumption of the dis-
tributed algorithm. Suppose that each node spends an amount of
energy F°°™™ on message passing and F°°™P on computation
at each time. Specifically, E°°™™ is proportional to the power
function of the radio range, i.e., E“°™™(rg) ~ r%, and E°™P
is proportional to the expected number of neighbors |A/| of a
single node, i.e., E°™P(JN/|) ~ |A]. In the worst case where
the topology of the active nodes is a straight line, the amount of
energy needed to accomplish the sampling requirement can be
estimated as?

(56)

Etotal (Na)
N,—1
=E“"(rg) | D k(k—1)
k=1

N,—1
+ BN (D b
k=1

Na(No — 1)(N, - 2)

— ECOmm
(r8) 3
N2 _— N,
+ BT (N ) —5—
= O(N?).

2The notation y = O(g(N)) denotes that there exits a constant « such that
limy — o y/9(N) < K.
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Sampling Sampling

Stage Work Stage Stage Work Stage
Ts Tw Ts Tw
A Period

Fig. 3. The sampling operation is shown along the time scale. Once a subset
of sensors has been activated at the end of the sampling stage, the sensors are
used to compute the linear m.v.u.e. or the detector in the work stage. In general,
the duration of the work stage is much longer than that of the sampling stage,
ie, Ts > T,, so that the cost caused by sampling does not result in much
overhead.

Namely, the expected energy consumption is of the order of N2.
The analysis suggests that by choosing the most informative
sensors and reducing the number of active sensors, the innova-
tions diffusion algorithm can save a significant amount of energy
that might be unnecessarily used otherwise.

V. IMPLEMENTATION ISSUES

In this section, we address some practical implementation is-
sues of the proposed sampling algorithm and compare it with
some related work in the literature.

A. Continuous Sampling

The network operation is divided into periods. As shown in
Fig. 3, each work period begins with a sampling stage when a
group of sensors is activated using the sampling algorithm. Fol-
lowing the sampling stage is the work stage, during which the
active sensors are used to jointly estimate the unknown param-
eter # or detect the signal of interest and will be powered off at
the end of the work period. Without loss of generality, the du-
ration of the work stage is assumed to be much longer than that
of the sampling stage such that the sampling cost accounts for
only a small fraction of sensor energy. For example, the sam-
pling stage can be completed in a few seconds or minutes while
the work stage will last up to hours or days.

The sampling algorithm supports the continued operation
mode. In this mode, given a seed node at the beginning of
each work period, the network selects a subset of sensors for
estimation or detection. At the end of the work period, these
active sensors A, collaboratively find a sensor within their
neighborhood J;¢ 4 - N1(i), as the seed node for the next sam-
pling stage according to a certain criterion. The active sensors
activate the new seed node and turn themselves off afterwards.
Then, a new work period starts and a new group of sensors will
be activated using the same mechanism. The procedure repeats
as the sensor network operates.

There are many options to choose the seed node according
to different application requirements. For example, the network
would like to avoid the hot spot problem (i.e., some sensors are
more active than others and thus would die at an early stage) and
maintain its connectivity as long as possible. A simple strategy
would be to choose the sensor with the maximum leftover en-
ergy so that the energy load can be evenly distributed over all the
sensors in the network. For a system that wishes to use a smaller
number of sensors for estimation or detection during some pe-
riod, it may want to start with a sensor with better observation
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quality. These options would provide system designers with a
deal of flexibility for practical network deployment.

B. Asynchronous Implementation

The proposed sampling algorithm can be implemented in an
asynchronous manner such that the synchronization penalty can
be substantially reduced [25]. During the sampling stage, each
active node can compute the innovations of its neighbors inde-
pendently, and the computations can vary widely in time with an
attendant effect on the final computed results. In the work stage,
the active sensors can also compute the estimator or detector in-
dependently and asynchronously with whatever data they have
and they do not have to wait for all the measurements to become
available if the requirement on the resulting fidelity is not strin-
gent. With asynchronous implementation, the networked sen-
sors neither need any global clock to time the operations, nor
have to wait for predetermined data to become available.

C. Scalability and Robustness

Network expansion, shrinkage or sensor replacement cause
no disturbance in the proposed distributed scheme. In practice,
it is quite possible that some sensors will fail or be blocked due
to lack of energy, physical damage, or environmental interfer-
ence. Thus, the network may shrink due to sensor failure, or
may expand with newly deployed sensors. By updating the data
of the neighbors, the newly arriving sensors can be transpar-
ently incorporated into the network and the failed sensors can
be easily replaced. The network scalability is related to the con-
vergence rate of consensus. For example, if the sensor network
adapts CSMA/CD in the medium access control (MAC) layer,
then the collision probability will increase as the number of ac-
tive sensors grows, thus taking more time for the algorithm to
reach consensus.

VI. NUMERICAL STUDIES

This section presents numerical results that illustrate the ef-
fectiveness of the proposed sampling scheme. We are particu-
larly interested in the inference error and the operational system
lifetime of the network.

A. Simulation Setup

We randomly generate NV sensor nodes in the unit square [0, 1]
by [0, 1]. Consider a simple linear model y; = 6 + v;, i =
1,2,..., N, where 6 as a scalar. The noise covariance matrix C
is randomly generated according to the spatial correlation model

o? 1=
Cij = {Jidj exp (—nd?j) 1£ ] 57
where 02,7 = 1,2,..., N, are randomly generated with a uni-
form distribution in (0, 1]. The correlation is characterized as a
decreasing function of the distance between the corresponding
nodes. 7 > 0 is a parameter that measures the degree of cor-
relation between nodes. If 7 is small, the correlation is high;
otherwise, the correlation is weak.

B. Inference Error Analysis

1) Estimation: The fidelity of computing the estimator 6 is
influenced by the choice of the correlation model. Suppose that
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MSE

MSE

MSE

20
# Sensors

Fig. 4. The MSE’s of the UN, NC, and FC models (5 = 0.15). For the
scenarios of strong, medium, and weak correlation, we let = 5, 10, and 50,
respectively. The plots are results averaged over 2000 simulations.

C 4, is the actual noise covariance matrix and C A, 1s the es-
timated noise covariance matrix used to compute the estimator.
Then, the estimator based on measurements y 4, using C A, 18
given by

~

o -1 o
6= (B4, G HL, ) HE Clya,

N -1 N
0+(H£WCZHAW) HY Cilva,  (58)

and the corresponding MSE is

R AT
D, =E [(0—01) (a - 01) }
A -1 o
—p| (5 0 HL) T G C3lvavh,
. . -1
x €3 Ha, (HY C7'Hy, ) }
o -1 N N
= (B4, C3'H4,) HE €7C4 CRlHY,
. -1
x (Y ClHL,) .
The MSE of the FC model is actually the MMSE of the m.v.u.e.
Fig. 4 shows how the MSEs of the UN and NC models differ

from the MMSE of the m.v.u.e. with respect to the number of
sensors under various degrees of correlation.

-1

A, (59)
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Strong Correlation:

0.01¢ ; J

0.001 i i i i i i
1 2 3 4 5 6 7 8

# Sensors
Fig. 5. The probabilities of missed detection (Py;p = 1 — Pp) of UN, NC,
and FC models for a given probability of false alarm Pr4 = 0.1 (r5 = 0.15).

For the scenarios of strong, medium, and weak correlation, we let = 5, 10,
and 50, respectively. The plots are results averaged over 2000 simulations.

It can be shown that the performance of the UN and NC
models approximates that of the FC model when the correla-
tion between the nodes is not strong. Therefore, the condition
of weak correlation may relax the requirement of sensor loca-
tion for accurately estimating the covariance matrix C 4,, .

2) Detection: The modeling error on the correlation between
sensor observations also influences the detection performance.
According to (16), the probability of detection from an esti-
mated noise covariance matrix C 4, is given by

Pp,(ya,)=Q |:Q1(PFA) —\/sh, CA,ISA,I] . (60)

The probabilities of missed detection for a given probability
of false alarm under different covariance models are plotted in
Fig. 5. If the UN and NC models are used to approximate the
FC case, then the results would be overoptimistic. It can be ob-
served that the difference between the UN, NC, and FC models
is negligible when correlation between nodes becomes small.

C. Operational Lifetime

In this paper, we consider a network of N = 200 sensors
with connectivity depending on the radio range 73 as shown
in Fig. 6. Let the degree of correlation be 7 = 5.0. The sen-
sors are assumed to have a unit of initial energy after deploy-
ment. Each work period starts with a sampling stage and ends
with a work stage, where the duration of the work stage is as-
sumed to be much longer than that of the sampling stage such

747

(a) Unconnected Sensor Nodes (b) Radio Range =0.12

N £ >

.5 fsom

0 0.5 1
(d) Radio Range =0.15

Fig. 6. The connected network of N = 200 randomly distributed sensors with
different radio ranges. (a) rg = 0. (b) rg = 0.12.(¢c) rzg = 0.15. (d) v =
0.18.

that the cost caused by sampling does not result in significant
overhead. During the sampling stage starting with a seed node
that has maximum leftover energy, a group of sensors are ac-
tivated for inference (estimation or detection) later in the work
stage, and then are powered off at the end of the period. When
the next period starts, a new group of sensors will be activated
and the procedure repeats until the sensors deplete their energy.
We neglect the energy consumed by sensors during the inac-
tive duration, assuming the amount of energy required for lis-
tening to the awakening signal is much less than the amount re-
quired for computation and communication. It is assumed that
each sensor has an omnidirectional radio antenna at its trans-
mitter, with which the sensor can transmit a common message
to its neighbors simultaneously with a single broadcast. In the
sequel, we will compare the energy efficiency performance of
the proposed innovations diffusion (ID) algorithm with that of a
randomized selection (RS) scheme, which randomly adds a new
sensor from the neighboring nodes without using innovations.

1) Constant Transmit Power: In this scenario, the transmitter
at each sensor has a constant transmit power level P(rg) for
a given radio range rg. We assume that during the sampling
stage the computational energy of (1) expended by sensor ¢
is E{°"™ = K, and the internode communication energy ex-
pended by sensor ¢ in each iteration is proportional to

KsP
E;:omrn(,rﬁ) — 1 2 (Tﬁ) (61)
ogy (1 + )
where P(rg) = rgNO[)’, K, and K, are certain constants.

During the work stage, the total energy expended by sensor 4
is assumed to be

o (rg) = oD 00) (62)

logy (14 08)°

In our simulations, we set E;°™? = 0.00001, Efo™™(0.12) =
0.0001, E°™%(0.12) = 0.01, and o = 3.5.

Fig. 7 illustrates the operational lifetime of an estimation net-
work with different radio ranges against the MSE constraint Dy.
As seen from the plots, the network lifetime increases when the
fidelity constraint is more relaxed. The reason behind this is that
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Fig. 7. The operational lifetime versus the estimation fidelity constraint in a
wireless sensor network with constant transmit power. For each radio range, the
results are averaged over 100 simulations.
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Fig. 9. The operational lifetime versus the estimation fidelity constraint in a
wireless sensor network with adaptive transmit power. For each constraint on
the radio range, i.e., rmax = 0.12,0.15, and 0.18, the results are averaged over
100 simulations.
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Fig. 8. The operational lifetime versus the probability of missed detection
(Pup = 1 — Pp) constraint in a wireless sensor network with constant
transmit power. The probability of false alarm is fixed at Pr 4 = 0.1. For each
radio range, the results are averaged over 100 simulations.

during each work period, a slack fidelity requirement requires
only a small number of sensors while a stringent fidelity con-
straint needs a larger number of active sensors. The number of
sensors activated during each work period has a direct influence
on the network lifetime. It can be observed that the innovations
diffusion algorithm has the network last longer than does the
randomized selection method.

The radio ranges of the sensors are also of importance for
the operational lifetime. Provided that the sensor positions are
fixed, the number of neighboring nodes of each sensor is deter-
mined by the radio range 7 3. If a sensor has a larger radio range,
i.e., the transmitter has a larger transmit power, then it can com-
municate with more neighboring sensors. Consequently, a large
radio range will be able to keep good connectivity when some
sensor nodes run out of energy. However, a larger radio range
requires a larger transmit power level at the transmitter, which
may drain out the energy or sensors more quickly. Given a con-
stant transmit power level P(r3) at each sensor, Fig. 7 depicts
the system operational lifetimes with respect to different radio

10 =iq —Badio'Bange=0.18(‘R48)’ 4
EEEEES G Srcs o 8
———————— B e R |
10 = 1
10~ 10~
F’MD

Fig. 10. The operational lifetime versus the probability of missed detection
(1 — P,) constraint in a wireless sensor network with adaptive transmit power.
For each constraint on the radio range, i.e., Tmax = 0.12,0.15, and 0.18, the
results are averaged over 100 simulations.

ranges. It can be observed that the sensors run out of energy
more quickly with a larger radio range. Fig. 8 shows the opera-
tional lifetime of a detection network with different radio ranges
against the constraint on the missed detection probabilities. It
has observations similar to Fig. 7.

2) Adaptive Transmit Power: We consider that each sensor
can adjust its transmit power such that the desired SNR (3 at the
receiver can be achieved with a minimum transmit power level
at the transmitter. Thus, the transmit power of active sensor ¢
depends on the distance from its current active neighbors, i.e.

Pi= max_d3Nop. (63)

JENA(D)
In the simulation setup, the amounts of energy expended during
the sampling and work stages are respectively given by (61)
and (62) as well, except that the transmit power now uses (63).
Specifically, we set E;°"" = 0.00001, Ef°™™ = (.0001 X
P;/P(0.12), EY°™% = 0.01 x P;/P(0.12), and o = 3.5.
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When choosing the radio range, there is a tradeoff between
energy expenditure and maintaining the network connectivity.
Using large radio ranges will draw off the energy quickly. On
the other hand, larger radio ranges may keep the network con-
nected and may activate a more informative sensor with larger
probability at each iteration, and the number of active sensors re-
quired to satisfy the desired fidelity may be reduced resulting in
a longer operational lifetime. The estimation and detection sim-
ulation results are presented in Figs. 9 and 10, respectively, with
different radio constraints (i.e., rmax = 0.12,0.15, and 0.18).
For the innovations diffusion algorithm with adaptive transmit
power, a medium radio range (e.g., rmax = 0.15) has the best
performance in terms of the system lifetime.

Compared to the constant transmit power, the innovation dif-
fusion algorithm equipped with adaptive transmit power can
achieve a significant improvement in the system lifetime be-
cause the desired SNR at the receiver can be obtained with a
minimum transmit power level and the sensor energy can be
more efficiently used. On the other hand, the randomized se-
lection scheme does not show significant performance gain in
the transmit power adaptation when compared with the fixed
transmit power scheme.

VII. CONCLUSION

This paper has proposed a distributed sampling scheme
based on innovations diffusion for estimation or detection in
sensor networks. It has been shown that the proposed dis-
tributed sampling algorithm requires at most a total amount
of energy O(N3) to accomplish the sampling task. Conse-
quently, it suggests that selecting the most informative sensor
measurements for inference will reduce the number of active
sensors and lead to energy efficiency. One main advantage of
the proposed scheme is that it can be implemented efficiently
in an asynchronous and scalable way. The performance of the
spatial sampling scheme has been evaluated and illustrated
through numerical simulations.

APPENDIX 1
PROOF OF LEMMA 1

Proof: For iy, # i;, we assume i, < 7;. According to (31),
we have e;, € L{y;,...,yi.} and e;; LL{y; ..., ¥i,_, }-
Since L{yi,,....¥i,} € L{yi,---,¥i,_,}. it follows that
e;, L e;, . For i = 14, it can be shown that I/ (eikeg;) =Q;,
by substituting (31) and (32) into (33), i.e.,

Qi = (_BiklAk‘*chi—l I)

T
> < CAk—l Bik._A,‘,1>
BiklAk—1 ipig

—1 T
% ( _CAA-—I]::Bik‘-Ak—l )

—1
=C - Bik‘Ak*chk—lBZ&‘lAk—l' (64)

Ttk

This completes the proof. [ |
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APPENDIX I
PROOF OF THEOREM 1

Proof: Assume that we have a set of selected sensors A,,.
For all 4;, € A, the projection matrices Pm A,_, defined in
(32) can be combined into a block lower triangular matrix as
shown in

I
_Biz\Al C;\i I
Py =

n

—1
-Bija,,Ch, 1

(65)
Similarly, we can combine the transformed measurements z;, in
(36) and the matrices Gy, | 4, _, in (37), respectively, in compact
forms as

z4, =col(2i,,2iy,..-,%i, ) =Pa ya, (66)
and
G, =col (Gi |4y, Gigl a5+ Gija, )
=P, Hg,, . (67)
According to Lemma 1, the covariance matrix of the vector
col (e;,,€;,,...,e;, ) is the block diagonal matrix
Qi
Qiz
Qu, =
Qi,
=P,4,C4,PY . (68)
Now the MMSE using z 4, is given by
" -1
-1
DAn = (Z G,iz;|Ak,1 Qi;\, Gik'AAl)
k=1
- -1
= (G4,Q4.Gu,)
-1
-1 _ _
= |HL, PL, (P4,) CAi PAiPAn Ha,
—_———
I I
- -1
= (HL,CL Ha,) (69)

It follows that both z 4, and y 4, result in the same MMSE.
Moreover, the linear m.v.u.e. using z 4, can be written as

0 za,)

-1

n n
T —1
Z Gik|A1\‘,1 QU\ G":I\-lAkfl
=1

T —1
Z Gik [Ar—1 Qu Zj),

k=1

T ~—1 -1 -1
(H4,CL Ha,) Ga, Q4 24,
-1 -1 -1 p-1
= (H4,C4'Ha,) HL C'PL'P4 ya,
——
I

=0(ya,).

Thus, the result is established. [ |
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APPENDIX III
PROOF OF THEOREM 2

Proof: According to (10), the log-likelihood function from
the original observations y 4, is given by

L(ya,) =254, C1ya, —54,CLsa,

=20"H) C,'ya, —0"H, C,'H, 6.(70)

From (66) and (67), L (y 4, ) can be written as
L(ya,) =20"G} P TCLPY 24,
Qu,
—07G], P, CL P, Ga,b
Q.
=20"GY Ql7a, —07GY Q5 G0
=L(z4,)-

Consequently, y 4, and z 4, have the same deflection coeffi-
cients, i.e.

d(ya,) = d*(za,) = 0TGT Q7' G40

(71)

(72)
[

REFERENCES

[1] Z. Quan, W. J. Kaiser, and A. H. Sayed, “A spatial sampling
scheme based on innovations diffusion in sensor networks,” in Proc.
Inf. Process. Sens. Netw. (IPSN), Cambridge, MA, Apr. 2007, pp.
323-330.

[2] L. F. Akyildiz, W. Su, Y. Sankarsubramaniam, and E. Cayirci, “Wire-
less sensor networks: A survey,” Comput. Netw., vol. 38, pp. 393-422,
Mar. 2002.

[3] M. Perillo, Z. Ignjatovic, and W. Heinzelman, “An energy conserva-
tion method for wireless sensor networks employing a blue noise spa-
tial sampling technique,” in Proc. Inf. Process. Sens. Netw. (IPSN),
Berkeley, CA, Apr. 2004, pp. 116-123.

[4] A.H. Sayed, Fundamentals of Adaptive Filtering. New York: Wiley,

2003.

S. M. Kay, Fundamentals of Statistical Signal Processing: Detection

Theory. Englewood Cliffs, NJ: Prentice-Hall, 1993.

V. Delouille, R. Neelamani, and R. Baraniuk, “Robust distributed es-

timation in sensor networks using the embedded polygons algorithm,”

in Proc. Inf. Process. Sens. Netw. (IPSN), Berkeley, CA, Apr. 2004, pp.

405-413.

R. Nowak, U. Mitra, and R. Willett, “Estimating inhomogeneous fields

using wireless sensor networks,” IEEE J. Select. Areas Commun., vol.

22, pp. 999-1006, Aug. 2004.

[8] M. Rabbat and R. Nowak, “Distributed optimization in sensor net-
works,” in Proc. Inf. Process. Sens. Netw. (IPSN), Berkeley, CA, Apr.
2004, pp. 20-27.

[9] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor
fusion based on average consensus,” in Proc. Inf. Process. Sens. Netw.
(IPSN), Los Angeles, CA, Apr. 2005, pp. 63-70.

[10] Y. Sung, S. Misra, L. Tong, and A. Ephremides, “Signal processing for
application-specific ad hoc networks,” IEEE Signal Process. Mag., vol.
23, no. 5, pp. 74-83, Sep. 20006.

[11] V. Saligrama, M. Alanyali, and O. Savas, “Distributed detection in
sensor networks with packet losses and finite capacity links,” IEEE
Trans. Signal Process., vol. 54, pp. 4118-4132, Nov. 2006.

[12] C. G. Lopes and A. H. Sayed, “Incremental adaptive strategies over
distributed networks,” IEEE Trans. Signal Process., vol. 55, pp.
4064-4077, Aug. 2007.

[13] F. Zhao, J. Shin, and J. Reich, “Information-driven dynamic sensor
collaboration,” IEEE Signal Process. Mag., vol. 19, no. 1, pp. 61-72,
2002.

[14] E. Ertin, J. Fisher, and L. Potter, “Maximum mutual information prin-
ciple for dynamic sensor query problems,” in Proc. Inf. Process. Sens.
Netw. (IPSN), Palo Alto, CA, Apr. 2003, pp. 405-416.

(51
(6]

(71

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 2, FEBRUARY 2009

[15] H. Wang, G. Pottie, K. Yao, and D. Estrin, “Entropy-based sensor selec-
tion heuristic for target localization,” in Proc. Inf. Process. Sens. Netw.
(IPSN), Berkeley, CA, Apr. 2004, pp. 36-45.

[16] V.Isler and R. Bajcsy, “The sensor selection problem for bounded un-
certainty sensing models,” in Proc. Inf. Process. Sens. Netw. (IPSN),
Los Angeles, CA, Apr. 2005, pp. 151-158.

[17] Z. Hu, J. Zhang, and L. Tong, “Adaptive sensor activity control in
many-to-one sensor networks,” IEEE J. Sel. Areas Commun., vol. 24,
pp. 1525-1534, Aug. 2006.

[18] Z.Quan and A. H. Sayed, “Innovations-based sampling over spatially-
correlated sensors,” in Proc. IEEE ICASSP, Honolulu, HI, Apr. 2007,
pp. 509-512.

[19] 1. Xiao, S. Cui, Z. Q. Luo, and A. J. Goldsmith, “Power scheduling
of universal decentralized estimation in sensor networks,” IEEE Trans.
Signal Process., vol. 54, pp. 413-422, Feb. 2006.

[20] N. A. C. Cressie, Statistics for Spatial Data. New York: Wiley, 1993.

[21] M. C. Vuran, O. B. Akan, and I. F. Akyildiz, “Spatio-temporal corre-
lation: theory and applications for wireless sensor networks,” Comput.
Netw., vol. 45, pp. 245-259, 2004.

[22] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Englewood Cliffs, NJ: Prentice-Hall,
1982.

[23] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation.
wood Cliffs, NJ: Prentice-Hall, 2000.

[24] R. G. Gallager, Discrete Stochastic Processes.
1996.

[25] D. P. Bertsimas and J. N. Tsitsiklis, Parallel and Distributed Com-
putation: Numerical Methods. Englewood Cliffs, NJ: Prentice-Hall,
1989.

Engle-

New York: Kluwer,

Zhi Quan received the B.E. degree in communica-
tion engineering from Beijing University of Posts and
Telecommunications, China, and the M.S. degree in
electrical engineering from Oklahoma State Univer-
sity, Stillwater.

He is working toward the Ph.D. degree in elec-
trical engineering at the University of California, Los
Angeles (UCLA). He was a visiting researcher with
Princeton University, Princeton, NJ, during summer
2007, and was an engineering intern with Qualcomm
during summer 2008. His current research interests
include statistical signal processing, wireless communication and networking,
cognitive radios, and multimedia.

Mr. Quan was the recipient of the UCLA Chancellor’s Dissertation Fellow-
ship (2008-2009).

William J. Kaiser received the Ph.D. degree in solid-
state physics from Wayne State University, Detroit,
ML, in 1984.

From 1977 to 1986, he was a member of the Ford
Motor Co. Research Staff, where his development
of automotive sensor and embedded system tech-
nology resulted in large volume commercial sensor
production. At Ford, he also developed the first
spectroscopies directed to microelectronics systems
based on scanning tunneling microscopy. From 1986
to 1994, he initiated the NASA Microinstrument
program for distributed sensing at the Jet Propulsion Laboratory, Pasadena,
CA. In 1994, he joined the Electrical Engineering Department, University of
California, Los Angeles (UCLA). Along with Professor Pottie, he initiated the
first wireless networked microsensor programs with a vision of linking the
Internet to the physical world through distributed monitoring. This continued
research includes the topics of low-power embedded computing for wireless
networked sensing, biomedical embedded computing, robotic sensor systems
for environmental monitoring, and distributed sensing for energy and water re-
source management. He served as Electrical Engineering Department Chairman
from 1996 to 2000. He has more than 170 publications and 23 patents.

Professor Kaiser received the Peter Mark Award of the American Vacuum So-
ciety, the NASA Medal for Exceptional Scientific Achievement, the Arch Col-
well Best Paper Award of the Society of Automotive Engineers, the Best Paper
Award at BodyNets 2008, two R&D 100 Awards, the Allied Signal Faculty Re-
search Award, the Brian P. Copenhaver Award for Innovation in Teaching with
Technology, and the UCLA Gold Shield Faculty Award.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on May 15, 2009 at 13:24 from IEEE Xplore. Restrictions apply.



QUAN et al.: INNOVATIONS DIFFUSION

Ali H. Sayed (F’01) received the Ph.D. degree in
1992 from Stanford University, Stanford, CA.

He is Professor and Chairman of Electrical
Engineering with the University of California, Los
Angeles (UCLA) and Principal Investigator of the
Adaptive Systems Laboratory. He has published
widely, with over 300 articles and five books, in
the areas of statistical signal processing, estimation
theory, adaptive filtering, signal processing for
communications and wireless networking, and fast
algorithms for large structured problems. He is
coauthor of the textbook Linear Estimation (Englewood Cliffs, NJ: Prentice
Hall, 2000), of the research monograph Indefinite Quadratic Estimation and
Control (Philadelphia, PA: STAM, 1999), and coeditor of Fast Algorithms for
Matrices with Structure(Philadelphia, PA: SIAM, 1999). He is also the author
of the textbooks Fundamentals of Adaptive Filtering (Hoboken, NJ: Wiley,
2003), and Adaptive Filters (Hoboken, NJ: Wiley, 2008). He has contributed
several encyclopedia and handbook articles.

Dr. Sayed is a Fellow of IEEE for his contributions to adaptive filtering
and estimation algorithms. He has served on the editorial boards of the IEEE

751

Signal Processing Magazine, the European Signal Processing Journal, the In-
ternational Journal on Adaptive Control and Signal Processing, and the SIAM
Journal on Matrix Analysis and Applications. He has also served as the Ed-
itor-in-Chief of the IEEE TRANSACTIONS ON SIGNAL PROCESSING (2003-2005),
and the EURASIP Journal on Advances in Signal Processing (2006-2007). He
is a member of the Signal Processing for Communications and the Signal Pro-
cessing Theory and Methods Technical Committees of the IEEE Signal Pro-
cessing Society. He has served on the Publications (2003-2005), Awards (2005),
and Conference (2007-present) Boards of the IEEE Signal Processing Society.
He served on the Board of Governors (2007-2008) of the same Society and is
now serving as Vice-President of Publications (2009—present). His work has re-
ceived several recognitions including the 1996 IEEE Donald G. Fink Award,
2002 Best Paper Award from the IEEE Signal Processing Society, 2003 Kuwait
Prize in Basic Sciences, 2005 Terman Award, 2005 Young Author Best Paper
Award from the IEEE Signal Processing Society, and two Best Student Paper
Awards at international meetings (1999 and 2001). He has served as a 2005
Distinguished Lecturer of the IEEE Signal Processing Society and as General
Chairman of ICASSP 2008.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on May 15, 2009 at 13:24 from IEEE Xplore. Restrictions apply.



