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A Unified Approach to the Steady-State and Tracking
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Abstract—Most adaptive filters are inherently nonlinear and analysis, these results become limited by the same assumptions
time-variant systems. The nonlinearities in the update equations and restrictions. Third, it is common in the literature to perform
tend to lead to difficulties in the study of their steady-state per- yangient and steady-state analyses of different adaptive filters
formance as a limiting case of their transient performance. This . .
paper develops a unified approach to the steady-state and tracking separat_ely by studying each nonlinear update form se_p_arately.
ana|y5es of adaptive a|gorithms that bypasses many of these dif- SUCh d|St|nCt treatments genera”y Obscure Commonalltles that

ficulties. The approach is based on the study of the energy flow exist among algorithms.

through each iteration of an adaptive filter, and it relies on a fun- These points motivate the development in this paper of a
damental error variance relation. e
o _ unified approach to the steady-state performance of a large
Index Terms—Adaptive filter, feedback analysis, mean-square class of adaptive filters that bypasses several of the difficulties
error, steady-state analysis, tracking analysis, transient analysis. encountered in obtaining steady-state results as the limiting
case of a transient analysis. The approach is based on studying
l. INTRODUCTION the energy flow through each iteration of an adaptive filter

HE perf f dative filteri I %??]—[10], and it relies on a fundamental error variance relation
Ak performance otan adaptive iter1s generally measurefly; oy 6igs the weight-error variance recursion altogether. This
in terms of its transient behavior and its steady-state b

Eéint of view has at least three merits. First, a steady-state

havior. The former provides information about the stability angnalysis in its own right can complement an existing transient
the convergence rate of an adaptive filter, whereas the latter p )

ides inf i bout th  the filt 5'alysis. For instance, steady-state results can sometimes
vides information about the mean-square-error ot the WHer o oy14ineq ynder weaker assumptions than those required

it reaches steady state. Although the steady-state performaﬂ)c%etermine the steady-state behavior as a limiting case of
essentially corresponds to only one point on the learning curys

f daptive filter. th ituai here this inf f transient analysis. Thus, a steady-state analysis can be
otan adaptive Tiiter, there are many situations where this INlGfsef even when a transient analysis is available. Second, for
mation is of value by itself.

As is K there h b ks in the lit algorithms for which there is limited transient analysis (due
S IS KNOwn, there have been nNUMerous works In the ety oy cassive mathematical complexity, for example), having

ture on the performance of adaptive filters (see, e.g., [1]1-{7] aﬂqormation about the algorithm’s steady-state behavior is
the references therein). The prevailing approach to steady—s@é

. . Y-S\5&tter than having limited or no information at all. Third, the
analysis has been to obtain steady-state results as the limi

. . . . ) tHﬂgposed approach allows for a unified treatment of a large
case of a transient analysis. While this procedure is adequgﬁ,gsS of algorithms.

for understanding both the steady-state and the transient e may remark that although we focus in this paper on the

hawor. of an adgpnve algorithm, it can encouqter some d!ﬁ|cu teady-state performance of adaptive filters, the same approach
ties. First, transient analyses tend to be laborious, especially

daotive filt ith i dat i Thisis b @h also be used to study the transient (i.e., convergence and
adaptive Tiiters with nonlinear update equations. ThiS IS DECaUgEy;i ) hehavior of such filters. These details will be provided
they rely explicitly on a recursion for the weight-error varianc

) g . %lsewhere.
and recursions of this kind can become complicated for com-

plex algorithms. This explains why more elaborate steady-state
results exist for some adaptive filters than others. Second, tran-
sient analyses tend to require some simplifying assumptions,

which at times can be resrictive, such as requiring the indepeng . pojgtace letters are used to denote vectors, and capital

dence of certain vectors that are otherwise dependent. In tgg"ldface letters are used to denote matrices, @:@ndC. In
way, by obtaining steady-state results as a fallout of a tranSi%%tdition, the symbol#” denotes Hermitian conjugation (com-

plex conjugation for scalars). The symHialenotes the identity
matrix of appropriate dimensions, and the boldface |ditde-
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B. Problem Formulation TABLE |
. . . . EXAMPLES FOR f.(%)
Consider noisy measurementd(i)} that arise from the

linear model ALGORITHM fe(d)
LMS e(i)
d(i) = w;w’ + (i) 1) NLMS e/l
LMF e3(3)
where LMMN Se(i) + (1 — 6)e3(4)
w° unknowncolumnvector we wish to estimate; SA sign[e(4)]
v(i) accounts for measurement noise and modeling errors; CMAL-2 [R1% —y(3)]
u; rowinput (regressor) vector. CMA2-2 y()[Rs — (@)

Both u; and v(¢) are stochastic in nature. Many adaptive
schemes have been developed in the literature for the estima-

tion of w* in different contexts (e.g., echo cancellation, systew; (which involves performing a transient analysis) and finding
identification, blind and nonblind channel equalization). In thig'__ can be a burden, especially for adaptive schemes with non-
paper, we focus on the following general class of algorithms jinear update equations, which is the case for most of the al-
gorithms listed in Table I. This explains why the steady-state
Wit1 = W; + pug fe(?) 2) analysis of these algorithms in the literature is more advanced
in some cases than in others. It also explains why such analyses
have often been carried out separately for each individual algo-
' rithm and under varied conditions of operations.
p - step-size; _ - . Thus, it would be useful to develop a framework that can
fe(d) generic scalar function of the quantitips;, wi, d(i)}.  pandle a variety of algorithms in a unified manner and that
Usually, () is a function of the so-called output estimation.,, bypass several of the difficulties encountered in obtaining
error, which is defined by steady-state results as the limiting case of a transient analysis.
The approach in this paper is a step in this direction. It is based
on studying the energy flow through an adaptive filter, and it re-
lies on a certain fundamental energy conservation relation orig-
inally developed in [8]-[10] in the context of robust analysis of
gfjaptive filters.
adaptatiof. In the table0 < & < 1, Ry, and R, are positive The paper is .organ.ized as follows. In the next secFion, the
energy relation is derived for a general class of adaptive algo-

constants, ang(:) = u;w; is the adaptive filter output. i , ) .o . i
An important performance measure for an adaptive filter Ighms. In Section Il1, this relation is used to derive expressions

its steady-state mean-square-efidSE), which is defined as or the steady-stat®ISE of various algorithms. In Section IV,
' the arguments are extended to the nonstationary case. In addi-

MSE = lim E(|e(i)?) = lim E(|jv(s) + w;w:|?) t!on_, expressiops for certain optimum parameter values thfitop-
i—00 i—00 timize the tracking performance of the algorithms are provided.
}n addition, a comparison is performed between the tracking
abilities of several algorithms for various nonstationary environ-
ments. Conclusions of the paper are given in Section V. Several
simulation results are included to demonstrate the theoretical re-

where
w; estimate forw? at iterations;

Different choices forf.(¢) result in different adaptive algo-
rithms. For example, Table | defing&(¢) for many famous
special cases of (2) for both blind and nonblind modes

wherew; = w® — w; denotes the weight error vector. Unde
the often realistic assumption that (see, e.g., [1]-[7])
A.1 The noise sequence(:)} is iid and statistically inde-
pendent of the regressor sequenge

sults.
we find that theMSE is equivalently given by
MSE = o2 + lim E(|ju;w;|?). (4) [I. FUNDAMENTAL ENERGY RELATION

We start by noting that with any adaptive scheme of the form
Now, the conventional way for evaluating (4), and which don{2), we can associate the following so-caléegriori anda pos-
inates most (if not all) derivations in the literature, is the folteriori estimation errors
lowing. First, one assumes, in additiorAd,, that the regression

vectoru; is independent ofv;. Then, the abovMSE becomes ea(t) = WWy,  ep(d) = ww,q.
MSE = o2 + lim Tr(RC;) (5) Using the data model (1) and the definition (3), it is easy to see
e that the errorde(i), ¢, (i)} are related via(i) = cq (i) + v(3).
where C; denotes the weight error covariance mati%, = If we further subtractw” from both sides of (2) and mul-

E(w;w}),andR = E(ufw;) isthe input covariance matrix. As tiply by u; from the left, we also find that the three errors
is evident from (5), this method of computation requires the dée,(¢), e, (¢), (i)} are related via
termination of the steady-state value@f, say,C... Studying

ep(i) = eald) — pllwl? fe (@) |, (6)

1The list in the table assumes real-valued data. For complex-valued data, we
replace:® by ¢|e|? and definesign[a + 7] by (1/+/2)(sign[a] + j sign[b]).
) )
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Substituting (6) into (2), we obtain, for nonzewng, the update Using (6), the above collapses to the following fundamental

relation error variance relation in terms ¢é,(¢), v(¢)} only (recall that
< - 1 . o(i) = ea(d) + v(@):
Witl = W; — Wui [ea(t) — ep(i)]. (7 3
B = E | a60) leats) — 2 1.0
By evaluating the energies of both sides of this equation, we (A@)lea D) <N(L) ¢ald) ﬁ(i)f'(L) )
obtain (12)
1 1 This equation can now be solved for the steady-state excess
[Wigs || + W|ea(i)|2 = ||W||? + W|ep(i)|2. (8) mean-square-err¢gEMSE), which is defined by
AL .
Whenu; = 0, it is obviously true that ¢ = lim E(leq(i)]?).
[Wige|l? = [1W:])°. (9) Observe from (4) that the desirddSE is given byMSE =

) o2 + ¢ sothat finding¢ is equivalent to finding th/SE.
Both results (8) and (9) can be grouped together into a signieye emphasize again that (12) is exactrelation that holds
equation by defining without any approximations or assumptions, except for the
N N assumption that the filter is in steady state. The procedure of
i) = ([l l*) finding theEMSE through (12) avoids the need for evaluating

. . . = |12 H g 2
in terms of the pseudo-inverse of a scalar so that we obtain £(||W:||*) or its steady-state valug(||w||").

[Witall? + (D) ea(d)* = [[W:ll* + 5@ lep(DI* |, (20) lIl. STEADY-STATE ANALYSIS

_ ) _ ) We now apply the above general procedure to various adap-
This energy conservation relation holds fof adaptive algo- tive algorithms from Table I. Due to space limitations, we omit
rithms whose recursions are of the form given by (). ap- some trivial details and only highlight the main steps in the argu-

proximations or assumptions are needed to estalflil); itis ments. The reader will soon realize the convenience of working
an exact relation that shows how the energies of the weight er@th (12).

vectors at two successive time instants are related to the ener-
gies of thea priori anda posterioriestimation errors. Note alsoA. LMS Algorithm

that (10) holds for a colored noise sequeke€)}. However, ForLMS, we havef. (i) = ¢(é) = ¢, (i) + v(i). Substituting

we will continue to focus on the case of white noise in the sgs; (12) and using the noise assumptied., it follows imme-
quel. diately that

A. Relevance to Steady-State Performance Analysis .
v y ysi 2™ = L2 B(|wi)?ea()?) + 120 THR).  (13)

Relation (10) has several ramifications. It was derived in
[8]-[10] and used to study the robustness @ndtability of To solve forCLMS, we consider three cases.
adaptive filters. Here, we will use it to perform steady-state and 1) For sufficiently smalli, we can assume that the term
tracking analyses of such filters. Further applications of the ;.2 E(||u;||?|e.(4)|?) is negligible relative to the second
energy relation to the study of blind adaptive equalizers can be  term on the right-hand side of (13) so that
found in [11] and [12].
Thus, note first that in steady state (i.e.jas o0), we can CLMS = gai Tr(R) (small ). (14)
assume that

This is the same result obtained in [15] for small values
of u, but here, it is obtained more immediately.
g) For larger values of. for which we cannot neglect the
second term on the right-hand side of (13), we solve (13)
by imposing the following assumpticn:
A.2 At steady statey?||u;||? is statistically indepen-
dent of|e, (1) 2.
This assumption is realistic for long tapped-delay line fil-
terg. Furthermore, it becomes<actfor the case of con-

E(|[Wit|*) = E(|Wil*). (11)

This assumption is equivalent to assuming that the mean squar
deviation(MSD) converges to a steady-state value. This is a
justifiable assumption since our aim is to study the performance
of adaptive algorithms in steady state, i.e., after steady state is
reached. Now, observe that by using (11), and because of the

energy-preserving relation (10), the effect of the weight-error

vector is canceled out. By taking expectations of both sides of

(10), we then get 3By larger values oft, we do not necessarily mean a laygéut, rather, step
sizes that are not infinitesimally small and still guarantee filter stability.
E(fi(1)|eq()]?) = E(a()|ep(9)]). 4To guarantee convergence, the algorithm stepssieusually chosen to be

inversely proportional to the filter length/ [1]. Using the law of large numbers,
2We may mention that by averaging analysis, and under some conditions, {jee||?> could be considered to be a random variable of variance proportional
can generally guarantee that there exists a small enpughwhich the filter  to M. Thus,u?||u;||?> has variance proportional t/A4, which decays with
reaches steady state (see, e.g., [13] and [14])—we do not expand on this stalitigy/filter lengthAZ. This means that for long-enough filters, the variations in
issue here since the objective of this paper is to evaluate filter performance opégu.||? are very small, and this term can be considered to be independent of
steady state is reached. eali).
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stant modulus data that arises in some adaptive filteri@ Sign Algorithm

applications (see, e.g., [16]). Usi#g2, and (13), we di-

rectly obtain

(LMS _

po2 Tr(R)
2—pnTr(R)

largey.

(15)

For the sign algorithniSA), we havef. (¢) = signe(s)]. In
this case, (12) leads to the equality
E(ea(i)sigiea (i) +v(i)) = ETI(R).  (20)

By assuming that(s) anduv(i) are real-valued jointly Gaussian

Thisis also a well-known result (see [1] and [3]) butis obm steady state (as used in [18] and [19]), and by ugirigand
tained here rather more directly and in a different manngsrice’s theorern [20], we obtain

3) For Gaussian white-input signals (wikh = ¢2I), (13)
can be more accurately solved if one resorts to the widely E(cq (i) signea (i) +v(@))) = 2

used independence assumption [3]

A.3 At steady statew; is statistically independent of

u;.

In this case, it can be verified that

E(Jwi|P*lea(i)]?) = (M + N oy E(lea()]*)

where M is the filter length A = 1 if the {u;} are com-
plex valued, anch = 2 if the {u;} are real valued. This

leads to the well-known result

(LMS _

2— (M + XN)o?

po2 Tr(R)

(Gaussiah

(16)

E(lea()?)

0%+ E(fea(D)

Substituting into (20) and solving fdt(|e,(4)[?), we find that

¢SA = g - (a+ a? +403)

(21)

wherea = /(7 /8)n Tr(R). Expression (21) is the same result
that was obtained in [18] by using the independence assump-
tions in addition to the above Gaussianity assumption. Here, the
result is obtained without resorting directly to the independence
assumptions—see [21] for more details.

D. LMF andLMMN Algorithms

B. NLMS Algorithm

For the normalizedMS algorithm, £.(i) = e(¢)/|Ju;||?. In
this case, (12) and assumptiduil lead to the equality

Again, this is an exact equality. We consider two cases.

For the least-mean mixed-norftMMN) algorithm with
real-valued data, we havg (i) = &c(i) + (1 — §)e3(4) [22]
(the case of complex-valued data is considered further ahead
toward the end of this section). The least-mean fo(kfkF)
algorithm corresponds to the special cése 0[23]. Introduce,
for compactness of notation

E(u@)") =& E(v@)]%) = &.

By making the reasonable assumption that in steady state
lea ()| < |u(4)|? (see, e.g., [24]) and by using 1, the energy

b=1-46,

@-wk <|||u(|)||> =8 () @D

1) Under assumptioA.2, we have equation (12) implies that
E(1OPN _ g (@) - B (L 2ub¢-MMN = 20 Tr(R) 4+ e B (il lea (D) (22)
el ) = 0O0F Gape
where we introduced the constants
so that (17) leads to the expression a = 6202 1 26860 + §2¢Y (23)
(NLMS _ oy 18) b=26+ 350> (24)
T (2—p) c = 6% 4 126602 4 156¢Y. (25)
This result becomesxactfor constant modulus data. In\We again consider three cases.
addition, observe that it is independentRf 1) For values ofu that are small enough so that the term
2) In some works (see, €.9., [3, p. 443)), the following ap- 2 E(]|u;||?|e.(4)|?) could be ignored, we obtain
proximation is sometimes called upon: Tia
¢FMMN = ZTHR) | (smally).  (26)

2 (lea®?Y _ Ellea®P) | .
;]2 ~ E (|[w]]?) In [24], the same result was obtained for vanishingly

small i+ by using averaging analysis and ti@DE

method (see, e.g., [14]). Fér= 0, the above expression

collapses to

CHMF 1 (£) Ty

307

in which case, (17) leads directly to

2
pos;

ey () T

This is the same expression obtained in [17] in a differentsgq, wwo jointly Gaussian real-valued random variabieandy, we have
and less direct way. E(xsigny)) = /2/7 - 1/o,E(xy).

(NLMS _ (19)

(smallp)  (27)
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x107°

which is the same expression obtained in [23] by usir 12 ; ‘ . ; ; ; , !
the independence assumptions. TS e ot i ? ; : I
For larger values ofi, and usingA.2 again, we get the "] |~—— mmeovagew S
following new expressions for tHEMSE: L ' , f S L ]
115 : : P ; /vf/, [ -
LMMN _ _ naTr(R) g . S
< T 2 — peTr(R) (largey.) (28) IS g i
LME _ & Tr(R) 108} ; T .
¢ = 602 — 15,&7 THR) (largep). (29)
o

Fig. 1 compares the theoretiddSE obtained from (26) oot o0z 0@ oes o6 oo oo ot oo o
and (28) with the experiment®SE. In the simulations,

the unknown system weight vecter is of length 10, the Fig. 1. Experimental and theoretidsl SE versus for LMMN.
input u; is Gaussian of unit variance, aid= 0.5. The

noise is chosen to be a linear combination of normallyet R, = £¢/02%, and assume also that all data are real-valued
and uniformly distributed independent random variablgshe complex case is also studied in [11]). Define further, for
of variancess2 = 107% ando? = 107*/12, respec- compactness of notation(i) = y(¢)(Ra — |y(i)|?). Then, (12)
tively. Each simulation result is the steady-state statisticgields, for CMA2-2

average of 100 runs, with0® iterations in each run. The
figure shows that both expressions are in good match with
simulation results at small values@fHowever, (28) pro-
vides a better match with the simulation results for rela-
tively larger values of:, which validates the use of as-To solve this equation faE|e, (4)|?, we make the following rea-

2uE(ca(i)2(0) = 12 E(|lui?|2(0)]?). (33)

For the case of complex-valued data, we repletby c|c|?
and assume the noise is circular, iB(v2(¢)) = 0. Then, re-
peating the above arguments, we find that the three expressi
(26), (28), and (30) are still valid but withandc replaced by

sumptionA.2. sonable (and common) assumption—for more motivation and
3) For Gaussian white-input signdR. = o21), (22) can be explanation on this assumption, see [11] and [25]:
solved by imposing\.3 to yield A.4 The signalsi(i) ande, (i) are independent in steady
state so thatF(d(i)e,(¢)) = 0 since the signali() is
MM iMoZa assumed zero mean.
¢ =5 (M + 2070 (Gaussiai (30) AssumptionsA.2 andA.4 yield for small enough:
LMF _ pMar &g : CMA2-2 02R} — 2Ro€ 4 &
T s+ 2oz | (GRUssER (D) ¢ = () Ty

(smally).

This expression is slightly different from the one obtained in
'!)25%; it was shown in [11] that it leads to a better approximation
)
orthe MSE.
Table 1l summarizes the derived expressions for the steady-
stateEMSE for several of the algorithms of Table I.

W o=6+2602, =6 +85602+95¢8.  (32)
IV. TRACKING ANALYSIS

In a nonstationary environment, the dét#:) } is assumed to

Corresponding expressions for th®lF algorithm can be ob- gyise from a linear model of the ford{i) = u;w?+uv(i), where

tained by setting = 0. the unknown systemw? is now time variant. It is often assumed

that the variation irw?¢ is according to the mode¥y, ; = wy +

K3

E. CM Algorithms q:, Whereq, denotes the random perturbation (see, e.g., [1], [3],
Similar analyses can be carried out for constant modul@gd [19])¢ The purpose of the tracking analysis of an adaptive

(CM) algorithms. The details are provided in [11]. Here, wiilter is to study its ability to track such time variations.

only briefly comment on one particular case for the sake of We now show how to evaluate the tracking performance of

illustration. Assumes(i) = 0 (and, henceg, (i) = (7)), and an adaptive algorithm by the same feedback method proposed
define in this paper. For this purpose, we first redefine the weight error

74

8The approach of this paper can be applied to a more general modef for
) 4 4 4 6 which takes into account colored system variations and carrier offsets. Details
= E(|d(@)|"), &5 = E(d©)]%), & = E(d(H]°). will be provided elsewhere. Preliminary results appear in [26].
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TABLE I
EXPRESSIONS FOR THEEMSE FOR DIFFERENT ADAPTIVE ALGORITHMS IN A
STATIONARY ENVIRONMENT

~ ~ ALGORITHM EMSE
Wit1 = W; + (1) + 34
i+1 % N( ) f ( ) q:- ( ) LMS (small ) %03 TT(R)
) . LMS (large p) gﬂ%
If we further multiply (34) byu; from the left, we obtain that NS i o “E T VR
(6) and (7) still hold for the nonstationary case, whereas (1 C-u)  C-p) <W> ®)
becomes LMF (real, small 1) s (&) nm)
LMF (real, large u) %ﬁ%
[Wit1 — qill* + () ea(@)]* = [[Will* + ()| en (D) LMF (complex, small p) § (o) D®)
(@5) LMF (complex, large u) Eﬁ%
LMMN (real, small ) £ Tr(R)
LMMN (real, large u) m Tr(R)
For mathematical tractability of the tracking analysis, we i LMMN (complex, small 1) & Tr(R)
pose the following assumption, which is typical in the conte; LMMN (complex, large p) 7 Temy L(R)

of tracking analysis of adaptive filters (see, e.g., [19]). SA

%(a+ a2+4cr§), a=/TuTr(R

A.5 The sequencgq;} is a stationary sequence of inde- cma2-2 (real, small 4)

o R3—2Ra€] +E]
2(30‘3 —R3)

4

) Tr(R)

pendent zero-mean vectors and positive definite autoct
relation matrixQ = F(q;q}), which is mutually indepen-

CMA2-2 (complex, small p)

02R2~2R2€5+€3

al

) Tr(R)

dent of the sequencds; } and{v(i)}.
Using (6), (34), andA\.5, it is straightforward to verify that the
variance relation (12) should now be replaced by (36), shown Al PRESSIONS FOR THEEMSE
the bottom of the page. Comparing the above with (12), we see
that evaluating the nonstationdBMSE is simply a straightfor-

IN

TABLE Il

A NONSTATIONARY ENVIRONMENT FOR

DIFFERENT ALGORITHMS

ward extension of evaluating the station&WISE. The only ALSORITHM

EMSE

LMS (small p)

15 TTH(Q) + 1pod TH(R)

addition is the steady-state contribution by the system nons

tionarity, which is equal to TQ). LMS (large p)

=T TH(Q)+npo; Tr(R)

2—u Tr(R)

- mo)+ua E(" B

This is a useful observation in the context of the tracking an: NLms Ce T;(‘Qg;f“" —
ysis of adaptive algorithms since it allows us to arrive at trackir Lmr (smatl ) T mczéwcg TR
results almost by inspection from the stationary case resultS: |y (arge 4) - m%)ﬁgl‘ )

Ty 2]

the literature, both cases have usually been studied separa’ iy (smai ;)

p T Tr{(Q)+pa Tr(R.

We will now show how to use (36) to solve for the nonstationar mmn (1arge x)

2b
ETT{Q) +pa TR
2b—pc Tr(R)

EMSE for the algorithms given in Table I. SA

%(a+ a2+4ag), a= /(a1 T(Q) + 1 Tx(R))

The results foMS andNLMS can be obtained in a straight-
CMA2-2 (small p)

I T(Q)+u(of BT -2R:£{ 460 Tr(R)

forward manner, just by extending the arguments given in tl

2(303—Ry)

stationary case. Hence, we will only state the resulting expres-
sions in these two cases. Moreover, for space considerations,
we omit the tracking analysis of tHéM algorithms and refer
instead to the related work [27]; we only reproduce the result
of that paper here. For these reasons, in the sequel, we focug.an

TABLE IV
OPTIMUM ALGORITHM PARAMETERS AND MINIMUM EMSE IN
NONSTATIONARY ENVIRONMENTS

theSA, LMMN, andLMF algorithms. The final expressmnsforALGORITHM - ";(Q) Cmin
the MSE in the nonstationary case for all algorithms are sun“" oV TR Q) Tr(R)
marized in Tables Il and 1V; the latter contains expressions fiNLMS - E(?—‘j]mm av\/T&(Q) E( TaT? )Tr(R)
the optimal parameters that result in the smalMSE. LT _
LMF (small 1) Vs \/“—@3);%
A. Sign Algorithm LMMN (small z2) \/a%?&) \/amfm(m
Comparing (12) and (36) and using (22), we obtain SA o £ Te(Q) Tr(R) + [F0? Tr(Q) Tr(R)
+5 T (Q) (R
2 (sm Q) VTH(Q) (o RE~2Ra6{+E]) TH(R)
E(ea(i)sig(e (i) +v(i))) = p~*T(Q) + STI(R).  (37) ez (mal ) | |/
P 2
E(u(i)|ea(d)]") Tr(Q)+E< (1) |ea(2) — mfe(i) ) (36)
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Using the same procedure used in the stationary case, it is3) For Gaussian white-input signglB = o2I), imposing

straightforward to show that tHeEMSE is still given by (21) A.3, we get
SA_© “1Tr(Q) + pMola _
P = la+ Va2 +402 38 LMMN _ # u
2 ( ) (38) ¢ 2 — (M 1 2)o%c (Gaussiah (44)

(LMF _ Pt TH(Q) + pMonéy

) .
602 — 15.(M + 2)02€8 (Gaussiah (45)

whereq is now given by

a= \/E(/fl Tr(Q) + 1 Tr(R)). Expressions (40)—(45) are new results that describe the ability
8 of theLMF andLMMN algorithms to track system nonstationar-
ities. The following conclusions follow from these results. We
The optimum step size is then seen to be can see that the steady-st&W®SE for both of theLMF and
LMMN algorithms is composed of two terms. The first term
decreases witpy and increases with the system nonstationarity
variance T(Q). The second term increases wjttand the re-
ceived signal varianc&(||u;[|*) = Tr(R). Thus, unlike the
stationary case [see (26)—(29)], the steady-9EMESE is not
These are the same results obtained in [28] and [29]—for maenonotonically increasing function f We can also see that

SA _ [TrQ
w = Ty |

details see [21]. there exists an optimal value of the step sizethat minimizes
the steady-stat®ISE in the nonstationary case. This is estab-
B. LMF and LMMN Algorithms lished in Appendix A.

We focus on real-valued data (the complex case only change§i9- 2 shows the theoretical and simulake#d SE versusu for

some coefficients, as we saw in the stationary analysis). Coiie optimal value of calculated from (53) to bé, = 0.5432.
paring (12) and (36) and using (22), we obtain Here, we are using a noise sequence that is a mixture of Gaussian

and uniform noises with varianceg = o2 = 0.1. Moreover,
Q = s TandR = I with o, = 1072. Fig. 3 shows theo-
2ubCLMMN retical and simulated results verstior the optimal value of
= TrHQ) + p2aTr(R) + p2cE(||u])?|eq(i)[?). (39) w calculated from (54) to bg, = 0.0029. Both simulations
show that optimal parameter values obtained from simulations
{6,, 110} = {0.59,0.003} are a good match with the values
To solve for¢-MMN 'we consider three cases. {0.5432,0.0029}, given by (53) and (54), respectively.
1) For sufficiently smalk, we can assume that the third term  In Appendix A, we use the aboEMSE expressions to inves-
on the right-hand side of (39) is negligible with respect ttigate the existence of optimum design parameftéss, } that

the second term so that minimize the steady-staEMSE of LMF andLMMN, as given
by (40) and (41). We also compare the tracking performance
-1y T na TR of these algorithms with.MS for different noise distributions
(LMMN _ £ (Q)% paTHR) (smally). (40) (Gaussian, uniform, and a mixture of Gaussian and uniform).

V. CONCLUSION
At 6 = 0, (40) reduces to thEMSE of the LMF algo-

rithm, which is given by This paper develops an approach for the steady-state analysis

of adaptive filters that bypasses the need for considering the
limiting case of a transient analysis. One of the main features of
the new framework is that its starting point is the fundamental
energy (or variance) relation (12) [or (36) in the nonstationary
case]. This relation is fundamental in that it is exact, and it holds
for any adaptive scheme of the general form (2), irrespective of
any approximations. By expanding both sides of the relation,
and by imposing certain conditions or assumptions, one obtains
— an equation in the desirdeMSE. This equation is rather trivial
¢LMMN _ P THQ) + pa Tr(R) ((largey) (42) 1O solve when the step size is assumed to be sufficiently small.
2b — pcTr(R) For larger step sizes, on the other hand, the equation leads to
tighter expressions for tHeEMSE.
and We may add that the approach can be extended in a rather
straightforward manner to other scenarios as well, such as the
(LMF _ pmrTr(Q) + péE Tr(R) | 43 study of the performance of adaptive schemes in finite-precision
602 — 15uTr(R)EY (largep).  (43) implementations and the study of adaptive filters of RIeS

(LMF _ prTH(Q) + pég Tr(R)

2
6oz

(smally). (41)

2) For larger values of:, (39) can be solved by imposing
A.2 to obtain
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Fig. 4. Experimental and theoreticBflSE versusy for LMMN in a
nonstationary environment.

10 The corresponding minimum value of the steady-HEMSE is
* : ! ! : ’ : : . given by

¥ : : : H : w - -v  Simuiation
\ : : : : : »——  Theory

LMMN _ Ve TH(Q) Tr(R)

Cmin b (Sma”u) (47)

The LMF algorithm always has a constrainédhat is equal

to zero. Therefore, the optimum step-size that minimizes its
steady-stattEMSE, which is given in (41), and the corre-
sponding minimum steady-sta#MSE, are respectively, given

by

o1 oiz oia 054 ois s oie 057 oie ois 1 NLMF = Tr(Q)/gé TF(R) (48)

Fig. 3. Experimental and theoretidaMSE curves versus for LMMN at  and
B= fo

(LMF _ V& Q) Tr(R)

min 3 02
v

(smally).  (49)

and Gauss—Newton type by using the energy relation of [30].

We have also used the approach in [11], [12], and [27] t0 StUffyg can see from the above expressions thatiecreases with
the steady-state tracking and convergence performance of figiR ) and increases with the system nonstationarity variance

tionally spaced blind adaptive schemes. Tr(Q). On the other hand, the minimum achievaBMSE of
both algorithms increases with the square root of botfRJr
APPENDIX A and T(Q).
PARAMETER OPTIMIZATION FOR LMMN AND LMF 1) Simulation ResultsFig. 4 compares the simulation and

We explain here how the expressions that were derived in dhgoretical results for the ca®® = o7I andR = I with
body of the paper for thEMSE for LMF andLMMN enable ¢ = 5 x 107* andé = 0.8. Moreover, the noise sequence
us to investigate the existence of optimum design paramet&r& m|>2<ture of ?aussg;m noise and uniform noise with vari-
{6,, 11} that minimize the steady-staMSE, as given by (40) ancess,, = 107 ando; = 107°/12, respectively. It is seen

and (41). This is done for two cases labelédfixed §) and B. in the figure that the theoretical and experimeMtE are a
good match. The figure also shows that the steady-8&E

A. Fixed§ and Optimaly possesses a minimum value ¢f= 0.0113 at » = 0.006,
' which are in good agreement with the corresponding theoret-

If the norm mixing paraTeta?t;s a ;zrr]lon ch.ﬁseln to fuIﬂI] tical values obtained from (47) and (46)@;'4\!1"\/”\' —0.01136
some convergence properties, then there will always exist an L‘MMN — 0.0061, respectively.

optlmum value of. that m'n'm'zeS:LMMN’ which is directly Fig. 5 shows the experimentslISE and the theoreticdSE
given from (40) by obtained from (40) versus the norm mixing parameteor
Gaussian noise of varianeé = 107%,0, = 1072, andp =
0.001. It is clear that the minimum value of tidSE occurs at
(46) 5 — 1 for Gaussian noise.

pEMMN — /(@) /o Tr(R)




322

Simulation
Theory -

v - -V

Fig. 5. Experimental and theoreticAlSE versusy for LMMN in a
nonstationary environment with Gaussian noise.
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Fig. 6. Comparison of the tracking performance bMS, LMF, and
LMMN for Gaussian noise.

1.6

2) Comparison with MS: We can also compare the ability
of the LMF andLMMN algorithms to track random variations s
in nonstationary environments with that of th®1S algorithm, ‘
which is known to have excellent tracking properties (see, €.
[1], [3], and [19]). We use the ratio of the minimum achievabl
steady-stattMSE of each of the algorithms to that of thé/S
algorithm as a performance measure.

For theLMF algorithm, this ratio is given, from the results of
Table 1V, by

1.4

AMMN
_amin,

el g

[

1.2

CEMF Ve ‘

Here, we can see that the ratio depends only on the statistilc_:lgl

. i 7. Comparison of the tracking performance bMS, LMF, and
properties of the measurement noigeé). For the case of the L MMN for uniform noise.

LMMN algorithm, the same ratio is given by

Fig. 6 shows a plot of this ratio versus the design paranaetar

CLMS

min

(LMMN ~ /4

min

_oyb

(51)

various values of2. The figure shows that this ratio is always
less than unity for all values df ando?2. These results reflect
the superiority of theeMS algorithm over both thé MF and
LMMN for tracking nonstationary systems in Gaussian noise

which is also dependent on the statistical properties of the noisgyironments.

as well as on the norm mixing parameteiVe specialize these

results for the following noise distributions.
Gaussian Noiseln this case£) = 302, and&g = 1508.
Then, we can verify from (50) that

CLMS

min —

3
(LMF — 5

min

~ —1.1dB.

Uniform Noise: For a uniformly distributed noise in the
interval [—A, A], we haveo? = A2?/3,£% = A*/5 and&g =
A®/7. Then, we can verify from (50) that

7
-~ 3.7dB.
\/;

CLMS

min o

CLMF o

min

This indicates that the minimum achievable value of steady-state
This indicates that the minimum achievable value of steady-StatSE of the LMF algorithm is less than that of tHeMS algo-
MSE of the LMS algorithm is less than that of tHeMF algo-  rithm by approximately 3.7 dB for uniformly distributed noise.
rithm by approximately 1.1 dB for all values of the noise variFig. 7 shows a plot of the ratio of the minimum achievable

anceo?! For the case of theMMN algorithm, (51) yields

CLMS

min

(LMMN -

min

o,
V8202 4 66604 + 156205

(52)

EMSE of the LMS and LMMN algorithms versus the design
parametes for various values of2. The figure shows that this
ratio is always larger than unity for all values ®and«2. We
can also see that= 0 results in the best tracking performance,
which reflects the superiority of tHeMF algorithm in this case.
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Mixed Gaussian and Uniform NoiséiVe now consider the
case where the noise is a mix of Gaussian and uniform dist
butions (for example, a mix of Gaussian system noise and u
formly distributed roundoff errors). Fig. 8 shows the ratio of th
minimum achievabl&MSE of theLMS andLMMN algorithms
versuss for different values of the system noise variange
which is a combination of Gaussian and uniformly distributes;
noise with variance ratio 1:3. We can see that in this case, 1
LMMN algorithm will have the best tracking performance. Th
choice of the optimal norm mixing parameters given in the
final section of the paper.

1.1

=
5
_AE
D
3E

1.05

B. Optlma|6 andu s 0.1 0.2 03 oi4 0;5 o8 o7 0.8 0.9 - 1

We now derive an expression for the optimal value§®of: }
jointly (recall thats should lie in the intervalo, 1]). Differen-  Fid, 8 Comparison of the tracking ﬁ;ggf;?;ggit}gﬁ"& LMF, and
tiating (40) separately with respect toandé and setting the ’
derivatives equal to zero, we find tha'tMMN has a unique

stationary point at the pair 2) Otherwise, the optimdl is eithers, = 0 or 6, = 1 with

the corresponding still given by (54).
The resulting minimum value of tHeEMSE will be

£ — 303¢]
5, = — — 30,64 (53)
(&8 — 3028y) — (&4 — 30}
o 6 4 4 (LMMN _ o Tr(bQ) Tr(R) (smally).  (57)
to = /T1(Q)/a, Tr(R) (54) :

Gaussian Noise:For Gaussian system noisg, = 302,
wherea, is a in (23) with § replaced by, (similarly, we de- and¢y = 1509. Then
fine b, andc,). The pair{é,, 1+, } would correspond to a global

minimum if, and only if, the Hessian matrix Q#—MMN iS pos- 024 EL -2 = o2 (1 — 602 + 150 )
itive-definite at{é,, 1., ;. Some algebra will show that the Hes- 5
sian matrix is given by 1502 (o2 = 1 + 2 >0
v 5 (6]
H(6,, #10)

™Q) (1 _ 303) Q) which |mpI|e_s that (55) is always true for the Ggussan noise
-—_— case. Then, if the system degree of nonstationarity satisfies

_ Hobo trobo
1-302) THQ) o (02 — 260 1 &) TH(R)
( 2 ( 7 ¢) o2 (1 - 602 + 150%) Tr(R)
pobo o Q) < (58)

(1-302)°
Now, since its(1, 1) entry is positive, the Hessian matrix will

be positive definite if, and only if, the Schur complement witithe optimum value ob is given from (53) byé, = 1, which
respect to this entry is positive. This leads to the following coorresponds to theMS algorithm with an optimal step size

ditions: given by
6 i Q)
2 v v _ Q)
o, + & > 28, (55) o = R
and
Tr(Q) < (3(12%56) Tr(R). (56) and a corresponding minimuBEMSE of

Cmin = 0y Tr(Q) Tr(R)
Still, these conditions do not guarantee that &hén (53) will
lie mthe interval0, 1]. Using the above results, and the fact thagn ot is for Gaussian system noise, if (58) holds, tMS al-
¢"MMN has a unique stationary point, we arrive at thef0”0W|ngor|thm outperforms th& MF and LMMN algorithms, which
conclusion. is consistent with the results of the comparison in the previous
1) If conditions (55) and (56) applgndif the resultingé, section. Using a similar approach, we can show that &
liesin]0, 1], then the optimal parameters are given by (53jacking performance is superior in the case of uniform system
and (54). noise (i.e.6, = 0).
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