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Abstract—Most adaptive filters are inherently nonlinear and
time-variant systems. The nonlinearities in the update equations
tend to lead to difficulties in the study of their steady-state per-
formance as a limiting case of their transient performance. This
paper develops a unified approach to the steady-state and tracking
analyses of adaptive algorithms that bypasses many of these dif-
ficulties. The approach is based on the study of the energy flow
through each iteration of an adaptive filter, and it relies on a fun-
damental error variance relation.

Index Terms—Adaptive filter, feedback analysis, mean-square
error, steady-state analysis, tracking analysis, transient analysis.

I. INTRODUCTION

T HE performance of an adaptive filter is generally measured
in terms of its transient behavior and its steady-state be-

havior. The former provides information about the stability and
the convergence rate of an adaptive filter, whereas the latter pro-
vides information about the mean-square-error of the filter once
it reaches steady state. Although the steady-state performance
essentially corresponds to only one point on the learning curve
of an adaptive filter, there are many situations where this infor-
mation is of value by itself.

As is known, there have been numerous works in the litera-
ture on the performance of adaptive filters (see, e.g., [1]–[7] and
the references therein). The prevailing approach to steady-state
analysis has been to obtain steady-state results as the limiting
case of a transient analysis. While this procedure is adequate
for understanding both the steady-state and the transient be-
havior of an adaptive algorithm, it can encounter some difficul-
ties. First, transient analyses tend to be laborious, especially for
adaptive filters with nonlinear update equations. This is because
they rely explicitly on a recursion for the weight-error variance,
and recursions of this kind can become complicated for com-
plex algorithms. This explains why more elaborate steady-state
results exist for some adaptive filters than others. Second, tran-
sient analyses tend to require some simplifying assumptions,
which at times can be restrictive, such as requiring the indepen-
dence of certain vectors that are otherwise dependent. In this
way, by obtaining steady-state results as a fallout of a transient
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analysis, these results become limited by the same assumptions
and restrictions. Third, it is common in the literature to perform
transient and steady-state analyses of different adaptive filters
separately by studying each nonlinear update form separately.
Such distinct treatments generally obscure commonalities that
exist among algorithms.

These points motivate the development in this paper of a
unified approach to the steady-state performance of a large
class of adaptive filters that bypasses several of the difficulties
encountered in obtaining steady-state results as the limiting
case of a transient analysis. The approach is based on studying
the energy flow through each iteration of an adaptive filter
[8]–[10], and it relies on a fundamental error variance relation
that avoids the weight-error variance recursion altogether. This
point of view has at least three merits. First, a steady-state
analysis in its own right can complement an existing transient
analysis. For instance, steady-state results can sometimes
be obtained under weaker assumptions than those required
to determine the steady-state behavior as a limiting case of
the transient analysis. Thus, a steady-state analysis can be
useful even when a transient analysis is available. Second, for
algorithms for which there is limited transient analysis (due
to excessive mathematical complexity, for example), having
information about the algorithm’s steady-state behavior is
better than having limited or no information at all. Third, the
proposed approach allows for a unified treatment of a large
class of algorithms.

We may remark that although we focus in this paper on the
steady-state performance of adaptive filters, the same approach
can also be used to study the transient (i.e., convergence and
stability) behavior of such filters. These details will be provided
elsewhere.

A. Notation

Small boldface letters are used to denote vectors, and capital
boldface letters are used to denote matrices, e.g.,and . In
addition, the symbol “” denotes Hermitian conjugation (com-
plex conjugation for scalars). The symboldenotes the identity
matrix of appropriate dimensions, and the boldface letterde-
notes either a zero vector or a zero matrix. The notation
denotes the Euclidean norm of a vector. All vectors arecolumn
vectors, except for asinglevector, namely, the input data vector
denoted by , which is taken to be a row vector for convenience
of notation. The time instant is placed as a subscript for vectors
and between parentheses for scalars, e.g.,and .

1053–587X/01$10.00 © 2001 IEEE
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B. Problem Formulation

Consider noisy measurements that arise from the
linear model

(1)

where
unknowncolumnvector we wish to estimate;
accounts for measurement noise and modeling errors;
row input (regressor) vector.

Both and are stochastic in nature. Many adaptive
schemes have been developed in the literature for the estima-
tion of in different contexts (e.g., echo cancellation, system
identification, blind and nonblind channel equalization). In this
paper, we focus on the following general class of algorithms

(2)

where
estimate for at iteration ;
step-size;
generic scalar function of the quantities .

Usually, is a function of the so-called output estimation
error, which is defined by

(3)

Different choices for result in different adaptive algo-
rithms. For example, Table I defines for many famous
special cases of (2) for both blind and nonblind modes of
adaptation1 . In the table, and are positive
constants, and is the adaptive filter output.

An important performance measure for an adaptive filter is
its steady-state mean-square-errorMSE , which is defined as

MSE

where denotes the weight error vector. Under
the often realistic assumption that (see, e.g., [1]–[7])

A.1 The noise sequence { } is iid and statistically inde-
pendent of the regressor sequence

we find that theMSE is equivalently given by

MSE (4)

Now, the conventional way for evaluating (4), and which dom-
inates most (if not all) derivations in the literature, is the fol-
lowing. First, one assumes, in addition toA.1, that the regression
vector is independent of . Then, the aboveMSE becomes

MSE Tr (5)

where denotes the weight error covariance matrix,
, and is the input covariance matrix. As

is evident from (5), this method of computation requires the de-
termination of the steady-state value of, say, . Studying

1The list in the table assumes real-valued data. For complex-valued data, we
replacee by ejej and definesign[a+ jb] by (1=

p
2)(sign[a] + j sign[b]).

TABLE I
EXAMPLES FORf (i)

(which involves performing a transient analysis) and finding
can be a burden, especially for adaptive schemes with non-

linear update equations, which is the case for most of the al-
gorithms listed in Table I. This explains why the steady-state
analysis of these algorithms in the literature is more advanced
in some cases than in others. It also explains why such analyses
have often been carried out separately for each individual algo-
rithm and under varied conditions of operations.

Thus, it would be useful to develop a framework that can
handle a variety of algorithms in a unified manner and that
can bypass several of the difficulties encountered in obtaining
steady-state results as the limiting case of a transient analysis.
The approach in this paper is a step in this direction. It is based
on studying the energy flow through an adaptive filter, and it re-
lies on a certain fundamental energy conservation relation orig-
inally developed in [8]–[10] in the context of robust analysis of
adaptive filters.

The paper is organized as follows. In the next section, the
energy relation is derived for a general class of adaptive algo-
rithms. In Section III, this relation is used to derive expressions
for the steady-stateMSE of various algorithms. In Section IV,
the arguments are extended to the nonstationary case. In addi-
tion, expressions for certain optimum parameter values that op-
timize the tracking performance of the algorithms are provided.
In addition, a comparison is performed between the tracking
abilities of several algorithms for various nonstationary environ-
ments. Conclusions of the paper are given in Section V. Several
simulation results are included to demonstrate the theoretical re-
sults.

II. FUNDAMENTAL ENERGY RELATION

We start by noting that with any adaptive scheme of the form
(2), we can associate the following so-calleda priori anda pos-
teriori estimation errors

Using the data model (1) and the definition (3), it is easy to see
that the errors are related via .
If we further subtract from both sides of (2) and mul-
tiply by from the left, we also find that the three errors

are related via

(6)
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Substituting (6) into (2), we obtain, for nonzero, the update
relation

(7)

By evaluating the energies of both sides of this equation, we
obtain

(8)

When , it is obviously true that

(9)

Both results (8) and (9) can be grouped together into a signle
equation by defining

in terms of the pseudo-inverse of a scalar so that we obtain

(10)

This energy conservation relation holds for all adaptive algo-
rithms whose recursions are of the form given by (2).No ap-
proximations or assumptions are needed to establish(10); it is
an exact relation that shows how the energies of the weight error
vectors at two successive time instants are related to the ener-
gies of thea priori anda posterioriestimation errors. Note also
that (10) holds for a colored noise sequence . However,
we will continue to focus on the case of white noise in the se-
quel.

A. Relevance to Steady-State Performance Analysis

Relation (10) has several ramifications. It was derived in
[8]–[10] and used to study the robustness and-stability of
adaptive filters. Here, we will use it to perform steady-state and
tracking analyses of such filters. Further applications of the
energy relation to the study of blind adaptive equalizers can be
found in [11] and [12].

Thus, note first that in steady state (i.e., as ), we can
assume that

(11)

This assumption is equivalent to assuming that the mean square
deviation MSD converges to a steady-state value. This is a
justifiable assumption since our aim is to study the performance
of adaptive algorithms in steady state, i.e., after steady state is
reached.2 Now, observe that by using (11), and because of the
energy-preserving relation (10), the effect of the weight-error
vector is canceled out. By taking expectations of both sides of
(10), we then get

2We may mention that by averaging analysis, and under some conditions, one
can generally guarantee that there exists a small enough� for which the filter
reaches steady state (see, e.g., [13] and [14])—we do not expand on this stability
issue here since the objective of this paper is to evaluate filter performance once
steady state is reached.

Using (6), the above collapses to the following fundamental
error variance relation in terms of only (recall that

):

(12)
This equation can now be solved for the steady-state excess
mean-square-errorEMSE , which is defined by

Observe from (4) that the desiredMSE is given byMSE
so that finding is equivalent to finding theMSE.

We emphasize again that (12) is anexactrelation that holds
without any approximations or assumptions, except for the
assumption that the filter is in steady state. The procedure of
finding theEMSE through (12) avoids the need for evaluating

or its steady-state value .

III. STEADY-STATE ANALYSIS

We now apply the above general procedure to various adap-
tive algorithms from Table I. Due to space limitations, we omit
some trivial details and only highlight the main steps in the argu-
ments. The reader will soon realize the convenience of working
with (12).

A. LMS Algorithm

ForLMS, we have . Substituting
into (12) and using the noise assumptionA.1, it follows imme-
diately that

LMS Tr (13)

To solve for LMS, we consider three cases.

1) For sufficiently small , we can assume that the term
is negligible relative to the second

term on the right-hand side of (13) so that

LMS Tr small (14)

This is the same result obtained in [15] for small values
of , but here, it is obtained more immediately.

2) For larger values of for which we cannot neglect the
second term on the right-hand side of (13), we solve (13)
by imposing the following assumption:3

A.2 At steady state, is statistically indepen-
dent of .

This assumption is realistic for long tapped-delay line fil-
ters4 . Furthermore, it becomesexactfor the case of con-

3By larger values of�, we do not necessarily mean a large� but, rather, step
sizes that are not infinitesimally small and still guarantee filter stability.

4To guarantee convergence, the algorithm step-size� is usually chosen to be
inversely proportional to the filter lengthM [1]. Using the law of large numbers,
ku k could be considered to be a random variable of variance proportional
to M . Thus,� ku k has variance proportional to1=M , which decays with
the filter lengthM . This means that for long-enough filters, the variations in
� ku k are very small, and this term can be considered to be independent of
e (i).
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stant modulus data that arises in some adaptive filtering
applications (see, e.g., [16]). UsingA.2, and (13), we di-
rectly obtain

LMS Tr
Tr

large (15)

This is also a well-known result (see [1] and [3]) but is ob-
tained here rather more directly and in a different manner.

3) For Gaussian white-input signals (with ), (13)
can be more accurately solved if one resorts to the widely
used independence assumption [3]

A.3 At steady state, is statistically independent of
.

In this case, it can be verified that

where is the filter length, if the are com-
plex valued, and if the are real valued. This
leads to the well-known result

LMS Tr
Gaussian (16)

B. NLMS Algorithm

For the normalizedLMS algorithm, . In
this case, (12) and assumptionA.1 lead to the equality

(17)

Again, this is an exact equality. We consider two cases.

1) Under assumptionA.2, we have

so that (17) leads to the expression

NLMS (18)

This result becomesexactfor constant modulus data. In
addition, observe that it is independent of.

2) In some works (see, e.g., [3, p. 443]), the following ap-
proximation is sometimes called upon:

in which case, (17) leads directly to

NLMS Tr (19)

This is the same expression obtained in [17] in a different
and less direct way.

C. Sign Algorithm

For the sign algorithmSA , we have sign . In
this case, (12) leads to the equality

sign Tr (20)

By assuming that and are real-valued jointly Gaussian
in steady state (as used in [18] and [19]), and by usingA.1 and
Price’s theorem5 [20], we obtain

sign

Substituting into (20) and solving for , we find that

SA
(21)

where Tr . Expression (21) is the same result
that was obtained in [18] by using the independence assump-
tions in addition to the above Gaussianity assumption. Here, the
result is obtained without resorting directly to the independence
assumptions—see [21] for more details.

D. LMF andLMMN Algorithms

For the least-mean mixed-normLMMN algorithm with
real-valued data, we have [22]
(the case of complex-valued data is considered further ahead
toward the end of this section). The least-mean fourthLMF
algorithm corresponds to the special case [23]. Introduce,
for compactness of notation

By making the reasonable assumption that in steady state
(see, e.g., [24]) and by usingA.1, the energy

equation (12) implies that

LMMN Tr (22)

where we introduced the constants

(23)

(24)

(25)

We again consider three cases.

1) For values of that are small enough so that the term
could be ignored, we obtain

LMMN Tr small (26)

In [24], the same result was obtained for vanishingly
small by using averaging analysis and theODE
method (see, e.g., [14]). For , the above expression
collapses to

LMF Tr small (27)

5For two jointly Gaussian real-valued random variablesx andy, we have
E(x sign(y)) = 2=� � 1=� E(xy).
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which is the same expression obtained in [23] by using
the independence assumptions.

2) For larger values of , and usingA.2 again, we get the
following new expressions for theEMSE:

LMMN Tr
Tr

large (28)

LMF Tr
Tr

large (29)

Fig. 1 compares the theoreticalMSE obtained from (26)
and (28) with the experimentalMSE. In the simulations,
the unknown system weight vector is of length 10, the
input is Gaussian of unit variance, and . The
noise is chosen to be a linear combination of normally
and uniformly distributed independent random variables
of variances and , respec-
tively. Each simulation result is the steady-state statistical
average of 100 runs, with iterations in each run. The
figure shows that both expressions are in good match with
simulation results at small values of. However, (28) pro-
vides a better match with the simulation results for rela-
tively larger values of , which validates the use of as-
sumptionA.2.

3) For Gaussian white-input signals , (22) can be
solved by imposingA.3 to yield

LMMN Gaussian (30)

LMF Gaussian (31)

For the case of complex-valued data, we replaceby
and assume the noise is circular, i.e., . Then, re-
peating the above arguments, we find that the three expressions
(26), (28), and (30) are still valid but withand replaced by

(32)

Corresponding expressions for theLMF algorithm can be ob-
tained by setting .

E. CM Algorithms

Similar analyses can be carried out for constant modulus
CM algorithms. The details are provided in [11]. Here, we

only briefly comment on one particular case for the sake of
illustration. Assume (and, hence, ), and
define

Fig. 1. Experimental and theoreticalMSE versus� for LMMN.

Let , and assume also that all data are real-valued
(the complex case is also studied in [11]). Define further, for
compactness of notation, . Then, (12)
yields, forCMA2-2

(33)

To solve this equation for , we make the following rea-
sonable (and common) assumption—for more motivation and
explanation on this assumption, see [11] and [25]:

A.4 The signals and are independent in steady
state so that since the signal is
assumed zero mean.

AssumptionsA.2 andA.4 yield for small enough

CMA2-2 Tr

small

This expression is slightly different from the one obtained in
[25]; it was shown in [11] that it leads to a better approximation
for theMSE.

Table II summarizes the derived expressions for the steady-
stateEMSE for several of the algorithms of Table I.

IV. TRACKING ANALYSIS

In a nonstationary environment, the data is assumed to
arise from a linear model of the form , where
the unknown system is now time variant. It is often assumed
that the variation in is according to the model

, where denotes the random perturbation (see, e.g., [1], [3],
and [19]).6 The purpose of the tracking analysis of an adaptive
filter is to study its ability to track such time variations.

We now show how to evaluate the tracking performance of
an adaptive algorithm by the same feedback method proposed
in this paper. For this purpose, we first redefine the weight error

6The approach of this paper can be applied to a more general model forw ,
which takes into account colored system variations and carrier offsets. Details
will be provided elsewhere. Preliminary results appear in [26].
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vector as and thea posterioriestimation error
as . Then, satisfies

(34)

If we further multiply (34) by from the left, we obtain that
(6) and (7) still hold for the nonstationary case, whereas (10)
becomes

(35)

For mathematical tractability of the tracking analysis, we im-
pose the following assumption, which is typical in the context
of tracking analysis of adaptive filters (see, e.g., [19]).

A.5 The sequence is a stationary sequence of inde-
pendent zero-mean vectors and positive definite autocor-
relation matrix which is mutually indepen-
dent of the sequences and .

Using (6), (34), andA.5, it is straightforward to verify that the
variance relation (12) should now be replaced by (36), shown at
the bottom of the page. Comparing the above with (12), we see
that evaluating the nonstationaryEMSE is simply a straightfor-
ward extension of evaluating the stationaryEMSE. The only
addition is the steady-state contribution by the system nonsta-
tionarity, which is equal to Tr .

This is a useful observation in the context of the tracking anal-
ysis of adaptive algorithms since it allows us to arrive at tracking
results almost by inspection from the stationary case results. In
the literature, both cases have usually been studied separately.
We will now show how to use (36) to solve for the nonstationary
EMSE for the algorithms given in Table I.

The results forLMS andNLMS can be obtained in a straight-
forward manner, just by extending the arguments given in the
stationary case. Hence, we will only state the resulting expres-
sions in these two cases. Moreover, for space considerations,
we omit the tracking analysis of theCM algorithms and refer
instead to the related work [27]; we only reproduce the result
of that paper here. For these reasons, in the sequel, we focus on
theSA, LMMN, andLMF algorithms. The final expressions for
theMSE in the nonstationary case for all algorithms are sum-
marized in Tables III and IV; the latter contains expressions for
the optimal parameters that result in the smallestMSE.

A. Sign Algorithm

Comparing (12) and (36) and using (22), we obtain

sign Tr Tr (37)

TABLE II
EXPRESSIONS FOR THEEMSEFOR DIFFERENTADAPTIVE ALGORITHMS IN A

STATIONARY ENVIRONMENT

TABLE III
EXPRESSIONS FOR THEEMSEIN A NONSTATIONARY ENVIRONMENT FOR

DIFFERENTALGORITHMS

TABLE IV
OPTIMUM ALGORITHM PARAMETERS AND MINIMUM EMSE IN

NONSTATIONARY ENVIRONMENTS

Tr (36)
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Using the same procedure used in the stationary case, it is
straightforward to show that theEMSE is still given by (21)

SA
(38)

where is now given by

Tr Tr

The optimum step size is then seen to be

SA Tr
Tr

These are the same results obtained in [28] and [29]—for more
details see [21].

B. LMF andLMMN Algorithms

We focus on real-valued data (the complex case only changes
some coefficients, as we saw in the stationary analysis). Com-
paring (12) and (36) and using (22), we obtain

LMMN

Tr Tr (39)

To solve for LMMN, we consider three cases.

1) For sufficiently small , we can assume that the third term
on the right-hand side of (39) is negligible with respect to
the second term so that

LMMN Tr Tr
small (40)

At , (40) reduces to theEMSE of the LMF algo-
rithm, which is given by

LMF Tr Tr
small (41)

2) For larger values of , (39) can be solved by imposing
A.2 to obtain

LMMN Tr Tr
Tr

(large (42)

and

LMF Tr Tr
Tr

large (43)

3) For Gaussian white-input signals , imposing
A.3, we get

LMMN Tr
Gaussian (44)

LMF Tr
Gaussian (45)

Expressions (40)–(45) are new results that describe the ability
of theLMF andLMMN algorithms to track system nonstationar-
ities. The following conclusions follow from these results. We
can see that the steady-stateEMSE for both of theLMF and
LMMN algorithms is composed of two terms. The first term
decreases with and increases with the system nonstationarity
variance Tr . The second term increases withand the re-
ceived signal variance Tr . Thus, unlike the
stationary case [see (26)–(29)], the steady-stateEMSE is not
a monotonically increasing function of. We can also see that
there exists an optimal value of the step sizethat minimizes
the steady-stateMSE in the nonstationary case. This is estab-
lished in Appendix A.

Fig. 2 shows the theoretical and simulatedEMSE versus for
the optimal value of calculated from (53) to be .
Here, we are using a noise sequence that is a mixture of Gaussian
and uniform noises with variances . Moreover,

and with . Fig. 3 shows theo-
retical and simulated results versusfor the optimal value of

calculated from (54) to be . Both simulations
show that optimal parameter values obtained from simulations

are a good match with the values
, given by (53) and (54), respectively.

In Appendix A, we use the aboveEMSE expressions to inves-
tigate the existence of optimum design parameters that
minimize the steady-stateEMSE of LMF andLMMN, as given
by (40) and (41). We also compare the tracking performance
of these algorithms withLMS for different noise distributions
(Gaussian, uniform, and a mixture of Gaussian and uniform).

V. CONCLUSION

This paper develops an approach for the steady-state analysis
of adaptive filters that bypasses the need for considering the
limiting case of a transient analysis. One of the main features of
the new framework is that its starting point is the fundamental
energy (or variance) relation (12) [or (36) in the nonstationary
case]. This relation is fundamental in that it is exact, and it holds
for any adaptive scheme of the general form (2), irrespective of
any approximations. By expanding both sides of the relation,
and by imposing certain conditions or assumptions, one obtains
an equation in the desiredEMSE. This equation is rather trivial
to solve when the step size is assumed to be sufficiently small.
For larger step sizes, on the other hand, the equation leads to
tighter expressions for theEMSE.

We may add that the approach can be extended in a rather
straightforward manner to other scenarios as well, such as the
study of the performance of adaptive schemes in finite-precision
implementations and the study of adaptive filters of theRLS
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Fig. 2. Experimental and theoreticalEMSE curves versus� for LMMN at
� = � .

Fig. 3. Experimental and theoreticalEMSE curves versus� for LMMN at
� = � .

and Gauss–Newton type by using the energy relation of [30].
We have also used the approach in [11], [12], and [27] to study
the steady-state tracking and convergence performance of frac-
tionally spaced blind adaptive schemes.

APPENDIX A
PARAMETER OPTIMIZATION FOR LMMN AND LMF

We explain here how the expressions that were derived in the
body of the paper for theEMSE for LMF andLMMN enable
us to investigate the existence of optimum design parameters

that minimize the steady-stateEMSE, as given by (40)
and (41). This is done for two cases labeled(fixed ) and .

A. Fixed and Optimal

If the norm mixing parameter is a priori chosen to fulfill
some convergence properties, then there will always exist an
optimum value of that minimizes LMMN, which is directly
given from (40) by

LMMN Tr Tr (46)

Fig. 4. Experimental and theoreticalMSE versus� for LMMN in a
nonstationary environment.

The corresponding minimum value of the steady-stateEMSE is
given by

LMMN Tr Tr
small (47)

The LMF algorithm always has a constrainedthat is equal
to zero. Therefore, the optimum step-size that minimizes its
steady-stateEMSE, which is given in (41), and the corre-
sponding minimum steady-stateEMSE, are respectively, given
by

LMF Tr Tr (48)

and

LMF Tr Tr
small (49)

We can see from the above expressions thatdecreases with
Tr and increases with the system nonstationarity variance
Tr . On the other hand, the minimum achievableEMSE of
both algorithms increases with the square root of both Tr
and Tr .

1) Simulation Results:Fig. 4 compares the simulation and
theoretical results for the case and with

and . Moreover, the noise sequence
is a mixture of Gaussian noise and uniform noise with vari-
ances and , respectively. It is seen
in the figure that the theoretical and experimentalMSE are a
good match. The figure also shows that the steady-stateMSE
possesses a minimum value of at ,
which are in good agreement with the corresponding theoret-
ical values obtained from (47) and (46) asLMMN

and LMMN , respectively.
Fig. 5 shows the experimentalMSE and the theoreticalMSE

obtained from (40) versus the norm mixing parameterfor
Gaussian noise of variance and

. It is clear that the minimum value of theMSE occurs at
for Gaussian noise.
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Fig. 5. Experimental and theoreticalMSE versus� for LMMN in a
nonstationary environment with Gaussian noise.

2) Comparison withLMS: We can also compare the ability
of theLMF andLMMN algorithms to track random variations
in nonstationary environments with that of theLMS algorithm,
which is known to have excellent tracking properties (see, e.g.,
[1], [3], and [19]). We use the ratio of the minimum achievable
steady-stateMSE of each of the algorithms to that of theLMS
algorithm as a performance measure.

For theLMF algorithm, this ratio is given, from the results of
Table IV, by

LMS

LMF
(50)

Here, we can see that the ratio depends only on the statistical
properties of the measurement noise . For the case of the
LMMN algorithm, the same ratio is given by

LMS

LMMN
(51)

which is also dependent on the statistical properties of the noise,
as well as on the norm mixing parameter. We specialize these
results for the following noise distributions.

Gaussian Noise:In this case, , and .
Then, we can verify from (50) that

LMS

LMF
dB

This indicates that the minimum achievable value of steady-state
MSE of theLMS algorithm is less than that of theLMF algo-
rithm by approximately 1.1 dB for all values of the noise vari-
ance ! For the case of theLMMN algorithm, (51) yields

LMS

LMMN
(52)

Fig. 6. Comparison of the tracking performance ofLMS, LMF, and
LMMN for Gaussian noise.

Fig. 7. Comparison of the tracking performance ofLMS, LMF, and
LMMN for uniform noise.

Fig. 6 shows a plot of this ratio versus the design parameterfor
various values of . The figure shows that this ratio is always
less than unity for all values of and . These results reflect
the superiority of theLMS algorithm over both theLMF and
LMMN for tracking nonstationary systems in Gaussian noise
environments.

Uniform Noise: For a uniformly distributed noise in the
interval , we have and

. Then, we can verify from (50) that

LMS

LMF
dB

This indicates that the minimum achievable value of steady-state
MSE of theLMF algorithm is less than that of theLMS algo-
rithm by approximately 3.7 dB for uniformly distributed noise.
Fig. 7 shows a plot of the ratio of the minimum achievable
EMSE of the LMS andLMMN algorithms versus the design
parameter for various values of . The figure shows that this
ratio is always larger than unity for all values ofand . We
can also see that results in the best tracking performance,
which reflects the superiority of theLMF algorithm in this case.
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Mixed Gaussian and Uniform Noise:We now consider the
case where the noise is a mix of Gaussian and uniform distri-
butions (for example, a mix of Gaussian system noise and uni-
formly distributed roundoff errors). Fig. 8 shows the ratio of the
minimum achievableEMSE of theLMS andLMMN algorithms
versus for different values of the system noise variance,
which is a combination of Gaussian and uniformly distributed
noise with variance ratio 1:3. We can see that in this case, the
LMMN algorithm will have the best tracking performance. The
choice of the optimal norm mixing parameteris given in the
final section of the paper.

B. Optimal and

We now derive an expression for the optimal values of
jointly (recall that should lie in the interval ). Differen-
tiating (40) separately with respect toand and setting the
derivatives equal to zero, we find thatLMMN has a unique
stationary point at the pair

(53)

and
Tr Tr (54)

where is in (23) with replaced by (similarly, we de-
fine and ). The pair would correspond to a global
minimum if, and only if, the Hessian matrix ofLMMN is pos-
itive-definite at . Some algebra will show that the Hes-
sian matrix is given by

Tr Tr

Tr Tr

Now, since its entry is positive, the Hessian matrix will
be positive definite if, and only if, the Schur complement with
respect to this entry is positive. This leads to the following con-
ditions:

(55)

and

Tr Tr (56)

Still, these conditions do not guarantee that thein (53) will
lie in the interval . Using the above results, and the fact that
LMMN has a unique stationary point, we arrive at the following

conclusion.

1) If conditions (55) and (56) applyand if the resulting
lies in , then the optimal parameters are given by (53)
and (54).

Fig. 8. Comparison of the tracking performance ofLMS, LMF, and
LMMN for a mixed Gaussian/uniform noise distribution.

2) Otherwise, the optimal is either or with
the corresponding still given by (54).

The resulting minimum value of theEMSE will be

LMMN Tr Tr
small (57)

Gaussian Noise:For Gaussian system noise, ,
and . Then

which implies that (55) is always true for the Gaussian noise
case. Then, if the system degree of nonstationarity satisfies

Tr
Tr

(58)

the optimum value of is given from (53) by , which
corresponds to theLMS algorithm with an optimal step size
given by

Tr
Tr

and a corresponding minimumEMSE of

Tr Tr

That is, for Gaussian system noise, if (58) holds, theLMS al-
gorithm outperforms theLMF andLMMN algorithms, which
is consistent with the results of the comparison in the previous
section. Using a similar approach, we can show that theLMF
tracking performance is superior in the case of uniform system
noise (i.e., ).
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