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Cooperative Sensing via Sequential Detection
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Abstract—Efficient and reliable spectrum sensing plays a critical
role in cognitive radio networks. This paper presents a cooperative
sequential detection scheme to reduce the average sensing time that
is required to reach a detection decision. In the scheme, each cogni-
tive radio computes the log-likelihood ratio for its every measure-
ment, and the base station sequentially accumulates these log-like-
lihood statistics and determines whether to stop making measure-
ment. The paper studies how to implement the scheme in a robust
manner when the assumed signal models have unknown parame-
ters, such as signal strength and noise variance. These ideas are il-
lustrated through two examples in spectrum sensing. One assumes
both the signal and noise are Gaussian distributed, while the other
assumes the target signal is deterministic.

Index Terms—Cognitive radio, composite hypothesis testing, co-
operative sensing, sequential detection, spectrum sensing.

I. INTRODUCTION

C OGNITIVE radio has recently emerged as a useful
technology to improve the efficiency of spectrum uti-

lization [3], [4]. In the U.S., the spectrum is traditionally
assigned by the Federal Communications Commission (FCC)
to specific users or applications, and each user can only utilize
its preassigned bandwidth for communication. This discipline
causes some bandwidth to be overcrowded while some other
bandwidth may be underutilized. Cognitive radio aims at
providing a flexible way of spectrum management, permitting
secondary users to temporally access spectrum that is not used
by legacy users. In this regard, the FCC has taken a number
of steps in the U.S. towards allowing low-power devices to
operate in the broadcast TV bands that are not being used by
TV channels [5]. The U.S. TV bands include the following
portions of the VHF and UHF radio spectrum: 54–72, 76–88,
174–216, and 470–806 MHz. Each TV channel occupies a slot
of 6-MHz bandwidth. If a TV frequency band is not used in
a particular geographical region, it can be used by cognitive
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radios for transmission. To promote this development, IEEE
has established the IEEE 802.22 Working Group to develop a
standard for a cognitive radio-based device in TV bands [6].

A key challenge in the development of the IEEE 802.22 stan-
dard is that a cognitive radio should be able to reliably de-
tect the presence of TV signals in a fading environment. Oth-
erwise, the radio may use the frequency band that is occupied
by a TV channel, and cause interference to the TV receivers
nearby. Many sensing and detection schemes have been reported
in the IEEE 802.22 community, e.g., [7]–[12]. These schemes
can be classified into two categories: single-user sensing and
cooperative sensing. Due to the large variation in the received
signal strength that is caused by path loss and fading, single-user
sensing has proven to be unreliable, which consequently trig-
gered the FCC to require geolocation-based methods for iden-
tifying unused frequency bands [13], [14]. The geolocation ap-
proach is suitable for registered TV bands; however, its cost and
operational overhead prevent its wide use in the opportunistic
access to occasional “white spaces” in the spectrum. Coopera-
tive sensing relies on multiple radios to detect the presence of
primary users and provides a reliable solution for cognitive radio
networks [10]–[12]. In this paper, we focus on how to achieve
cooperative sensing in an efficient and robust manner.

The performance of spectrum sensing is usually measured
by two key factors: probability of detection errors and sensing
time. The traditional way to design a sensing strategy is based
on the Neyman–Pearson criterion, and the resulting likelihood
ratio test (LRT) fixes the number of required samples or the
sensing time. In this framework, the probability of false alarm
is required to be less than a predefined level , and under
this constraint, the probability of miss detection is optimized
(minimized) by the proposed test [15]. In contrast to the
Neyman–Pearson framework, another design methodology is
to minimize the required sensing time, subject to a constraint
on the detection errors [16]–[18]. The resulting test is called the
sequential probability ratio test (SPRT) and was first developed
in the seminal work by Wald [19]. A recent exposition about the
theory behind the test can be found in [20]. Some recent papers
have applied this technique to spectrum sensing for cognitive
radio networks, e.g., [21] and [22]. In the scheme proposed in
[21], the autocorrelation coefficient based log-likelihood ratios
from different cognitive radios are combined in a sequential
manner at the base station for quickly detecting the primary
user. In [22], the sequential detection method is applied to the
detection of cyclostationary features in the received signals.
These techniques can reduce the sensing time and the amount
of signal samples required in identifying the unused spectrum.

In this paper, we extend previous work on the sequential de-
tection method for collaborative spectrum sensing. In the pro-
posed framework, each cognitive radio computes the log-like-
lihood ratio for its every measurement, and the base station se-
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Fig. 1. Cognitive radio network for spectrum sensing.

quentially accumulates the log-likelihood statistics and deter-
mines whether to stop making new measurement. Due to un-
certainties caused by fading and interference, we normally do
not have exact information about some signal parameters, such
as signal strength and noise variance. It is thus important to
make the sequential detection algorithm sufficiently robust to
the uncertainties in unknown parameters. Different from pre-
vious work which assumes complete knowledge about the dis-
tributions of the measurements, our work modifies the orig-
inal SPRT in order to handle unknown parameters in the as-
sumed signal models. In our proposed solution, unknown pa-
rameters are sequentially estimated by the maximum likelihood
estimation, and the sequential detection algorithm is performed
by using the estimated parameters. By doing so, the average
sensing time depends on the signal conditions, rather than being
fixed as in the Neyman–Pearson approach. With proper stopping
conditions, the proposed scheme guarantees to achieve the de-
sired sensing performance in terms of the probability of false
alarm and miss detection. These ideas are illustrated through
two spectrum sensing examples. One assumes both the signal
and noise are Gaussian distributed, while the other assumes the
target signal is deterministic.

Throughout this paper, we adopt the following definitions
and notations. The network consists of cognitive radios
that are monitoring the frequency band of interest, as shown in
Fig. 1. The two hypotheses corresponding to the signal-absent
and signal-present events are defined as

target signal is absent

target signal is present

The signal acquired by the th cognitive
radio device is represented by

where is the th acquired signal sample when the target
signal is present and is the th acquired noise signal
sample when the target signal is absent. The samples
can be either a scalar or a vector, depending on the applica-
tion of interest. Throughout the paper, we assume that the sam-
ples acquired by different radios are statistically independent,
and that the samples acquired by the same radio are indepen-

dent and identically distributed (i.i.d.).1 Under and , the
distributions of the acquired signal at the th radio are charac-
terized by the probability density functions and

, respectively. The performance of detecting
against is measured by the probability of false alarm and
the probability of miss detection. The error of false alarm refers
to the error of accepting when is true, while the error of
miss detection is the error of accepting when is true. The
probability of false alarm is represented by

and the probability of miss detection is represented by

where represents the detector output.
The paper is organized as follows. Section II develops the

sequential test for simple hypotheses and its application to coop-
erative sensing. Section III extends the discussion to composite
hypothesis testing problems when the sensing models have
unknown parameters and modeling uncertainties. The proposed
scheme is evaluated in Section IV through computer simulations.

II. SEQUENTIAL SENSING FOR SIMPLE HYPOTHESES

To begin with, assume that the number of samples (ac-
quired by each cognitive radio) is fixed. To detect and ,
the likelihood ratio test (LRT) is performed according to

Accept if

Accept if (1)

where the log-likelihood ratio (LLR) is computed by the base
station as

The threshold value and the sample size are selected such
that the probability of false alarm and the probability of miss
detection are bounded by some pre-assigned values
and , respectively,2 i.e.,

and (2)

To do so, the distributions of the test statistic, i.e., the LLR,
under and need to be determined. The computation of

1The assumptions simplify the notation and derivations presented in the
paper. They have extensions for many applications. For instance, in Example
2 further ahead, the samples acquired by different radios are statistically
independent, given that the target signal and its amplitude are deterministic.
Since the target signal in Example 2 is periodic, we define each sample as
a signal vector over one period and the samples from the same radio can be
regarded as i.i.d.

2The detector with a fixed sample size is designed according to the
Neyman–Pearson criterion. The threshold � is determined by the probability
of false alarm. That is, no matter what other conditions are, the threshold � is
always set to ensure that � is minimized under the constraint � � �. To
ensure � � � by this design methodology, we need to choose appropriate
� .
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the distributions is usually not easy and may involve complex
numerical computations or simulations.

To reduce the number of required samples, instead of using
a fixed sample size , we can implement the LRT for every
acquired sample in a sequential manner motivated by Wald’s
work [19]. That is, for , we perform the following
test:

Accept and terminate if LLR

Accept and terminate if LLR

Take one more sample to

repeat the test if (3)

where

and are predetermined constants according to the
sensing objective (2). In the context of cooperative sensing, each
radio computes the log-likelihood ratio for its every acquired
sample, and the base station sequentially accumulates the log-
likelihood statistics and performs the above test, as described in
Algorithm 1.

Algorithm 1: Cooperative Sequential Sensing for Simple
Hypotheses

0: Set , and let at the base station.
1: repeat
2: .
3: The th radio acquires sample

and computes .
4: Each radio sends its to

the base station.
5: The base station updates the sequential log-likelihood ratio

according to

6: until or .
7: If , “ : target signal is present” is claimed; if

, “ : target signal is absent” is claimed.

Assume that the detection procedure terminates at
. By the following lemma, the test stops at fi-

nite with probability one.
Lemma 2.1: (see [23, Lemma 1]): If the second moment

of under is not zero,
then for .

To see how and are determined, we need to study how
and depend on and . Before proceeding, we

present some regularity assumptions. Recall that the Kullback-
Leibler (KL) distance between the distributions

and is defined as

Moreover, , where equality holds if, and
only if, . Notice that

Throughout the paper, we assume that
1a) ;
1b) .

The “ ” condition ensures that the two hypotheses are dis-
tinguishable based on the underlying distributions, which also
implies the condition required by Lemma 2.1; the “ ” condi-
tion ensures that the distributions are well behaved for the sub-
sequent derivation.

At , we have

or

provided that the change in at each step is relatively small
compared to the absolute values of and , which is true when

and are sufficiently small.3 It can then be shown that (see
Appendix A for the derivation4)

(4)

(5)

To find appropriate and , we set (4) and (5) to be equal to
and , respectively, and result

(6)

Obviously, if and are sufficiently small, we have
and . We also see from (6) that and do not depend
on specific distributions and are convenient to compute. Since

and are normally much smaller than 1, we let

and (7)

Although the stopping boundary (7) is obtained through approx-
imation, we can prove that with (7), the sensing objective (2) is
exactly achievable by the test, as shown in the following lemma.

Lemma 2.2: If the stopping condition for the sequential test
is set according to (7), then

and

Proof: See Appendix B.

3It is seen in (6) and (7) that the absolute values of� and� can be sufficiently
large when � and � are sufficiently small.

4Appendices A and B are immediate consequences of some well-known facts
in the sequential detection literature. They are given here to ensure readers who
are new to this area can have good understanding of the theory that is frequently
used in the subsequent sections.
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In the test, the number of samples required to reach a decision
in Algorithm 1 is a random variable. By using Wald’s equation,5

the average number of required samples under and is
given by (see Appendix C for the derivation)

(8)

and

(9)

To summarize the results, we have the following theorem.
Theorem 2.1: For the sequential sensing procedure defined

in (3), if the thresholds and are given by (7), then
and . If and are sufficiently small, and

are approximated by expressions (4) and (5), respec-
tively, and the average number of required samples under
and is approximated by expressions (8) and (9), respectively.

Expressions (8) and (9) show that the average required
sensing time depends on the KL distance provided by each
sensing radio. The larger the KL distance, the less the required
sensing time is, and this is consistent with intuition. In order
to save processing power and communication bandwidth, we
may need to select a subset of available radios for spectrum
sensing. Based on (8) and (9), we can choose radios with larger
KL distance in order to minimize

In the following, we illustrate the sequential sensing technique
by examples.

Example 1—Detecting a Gaussian Random Signal with
Known Variance: In the first example, the signal samples are
scalars, i.e., let . The acquired signals under

and are assumed to be i.i.d. Gaussian with mean zero
and variances and , respectively,6 i.e.,

5Let� �� � � � � be any sequence of i.i.d. random variables with partial sums
� � � � � � � � � � � . Let � be any stopping time with respect to
� �� � �� �� � � ��. Wald’s equation states that ��� � � ��� �����,
provided that ��� � � � and ���� � �.

6This assumption is based on the statistical model used in the energy or power
detectors, where primary users are detected based on the received signal power
level.

For the test with a fixed sample size , the LRT given by (1)
turns out to be an energy detector, i.e.,

Accept if

Accept if

To find the value of , we treat the summation
approximately as Gaussian distributed and obtain an expression
for the minimum to achieve (2) [see (10) at the bottom of
the page and Appendix D for the derivation], where is the

-function of the standard normal distribution.7 The associated
is given by

(11)

For the sequential test given in (3), we have

The average number of required samples under and is
given by (8) and (9), where

with . The above two KL distance terms
are monotonically increasing functions of . So we prefer
sensing radios with large , which is consistent with common
sense.

Example 2—Detecting a Known Periodic Signal in Gaussian
Noise: In the second example, we detect a known periodic

7���� is defined as the probability that a standard normal random variable
(zero mean, unit variance) exceeds �, i.e., ���� � �	

�
�
� �.

(10)
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signal in white Gaussian noise.8 Under and , the acquired
signal at each sensing radio is represented by

where is the periodic target signal, is the amplitude
of the received target signal, and is the additive white
Gaussian noise with mean zero and variance . Assume that

and are known to the receivers, and the signals acquired
by different radios are statistically independent. Since is
periodic, we define each as a signal vector over one pe-
riod, i.e.,

where is the period of . We can see that the from
the same radio are i.i.d. distributed. The LRT with fixed sample
size is given by

Accept if

Accept if

The minimum required to achieve (2) is given by (see
Appendix E for the derivation)

(12)

The associated is given by

(13)

For the sequential test (3), we have

The average number of required samples under and is
given by (8) and (9), where

III. SEQUENTIAL SENSING WITH COMPOSITE HYPOTHESES

In Section II, we explained how to perform sequential sensing
in a network when the distributions and are
exactly known. In practice, however, there normally exist un-

8Sinusoidal signal is often used in communication channels for synchroniza-
tion. It can be utilized as features for spectrum sensing.

known parameters in the assumed statistical models of signal
and noise. In a radio propagation environment, these unknown
parameters might be the signal strength, noise variance, etc.
With imperfect knowledge about these parameters, non-exact
distributions are used in the sensing algorithm and may cause
performance degradation. In this section, we first analyze the
performance degradation caused by the modeling errors for the
sequential test proposed in Section II, and then study how to
modify the test to deal with unknown model parameters.

A. Sequential Detection With Modeling Errors

Rather than the true distributions and
underlying and , we assume that non-exact

distributions and are used in the
sequential test (3), i.e., the sequential log-likelihood ratio is
computed by

(14)

The assumed distributions and
are usually close to their true counterpart and

. Recall that the following assumptions for the
distributions and are made in the
derivation of the properties of the sequential test:

1a) , i.e., the mean
of under , is
positive and finite;

1b) , i.e., the mean
of under , is
positive and finite.

We make similar assumptions for and
as follows:

2a) the mean of
under is positive and finite;

2b) the mean of
under is positive and finite.

The assumptions ensure that the sequential test with the log-
likelihood ratio given by (14) stops with probability one. Intu-
itively, 2a) implies that the mean of under is negative
and goes unbounded as increases, while 2b) implies that the
mean of under is positive and goes unbounded as
increases. The following theorem summarizes the performance
of the sequential sensing algorithm in the presence of modeling
errors. Part of the results can also be found in [24].

Theorem 3.1: For the test defined in (3) with being
replaced by in (14), assume that 2a) and 2b) hold. Then,

1) for
2) there exist and such that

and
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3) if the thresholds and are given by (7), then

and

4) if and are sufficiently small, and are ap-
proximated by

(15)

(16)

and the average number of samples required by the sensing
scheme is given by (17) and (18), shown at the bottom of
the page.
Proof: See Appendix F.

It can be seen that in the absence of modeling errors, i.e.,
when

we have and , which is identical to the case
we discussed in Section II. If can be greater or
less than the desired value , if the stopping thresholds and

are set according to (7), and a similar remark holds for . In
many circumstances, modeling uncertainties can be represented
by unknown parameters, for which the sequential test can be
modified to incorporate sequential parameter estimation.

B. Sequential Sensing With Unknown Parameters

Assume that unknown parameters and
are deterministic for . The signal re-

ceived by the th sensing radio is dis-
tributed according to

If the distributions and belong to the same
family of distribution, we assume that the parameter spaces

and are disjoint, i.e., .9 For a
fixed sample size , the log-likelihood ratio is given by

(19)

Since ( ) are unknown, we
exploit the generalized likelihood ratio test by replacing

9Throughout the paper, it is assumed that the parameter spaces
� and � are known to the sensing algorithm.

in (19) with their maximum likelihood estimates. In other
words, this test uses the so-called generalized log-likelihood
ratio (GLLR), which is defined as

where and are the maximum likelihood estimates of
and , i.e.,

The sequential test based on the above GLLR is defined as
follows. Each time when the radios acquire new samples

, we update the parameter estimates ac-
cording to10

(20)

(21)

and perform the following sequential test:

Accept and terminate if

Accept and terminate if

Take one more sample to

repeat the test if (22)

where is the generalized log-likelihood ratio based on
the parameter estimates obtained from the samples, i.e.,

and are predefined thresholds for stopping the test.
Compared to the test defined in (3), where the thresholds and

are constant, and are proposed to be functions of

10In the proposed sequential sensing algorithm, we use (20) and (21) to es-
timate the unknown parameters for every acquired sample, which is computa-
tionally expensive if the stopping condition requires a large amount of samples.
As such, if they can be implemented by recursive algorithms, i.e., simply up-
dating previous estimate at new samples, it will definitely help to reduce the
computational cost. For instance, in Examples 3 and 4, (20) and (21) will be
implemented recursively.

(17)

(18)
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. This is because the estimates and introduce esti-
mation errors into the test, which will degrade the performance
if and are set according to (6) or (7) as constants. To
compensate for this effect, we choose appropriate functions
and of as the stopping thresholds. Intuitively, the average
estimation error tends to decrease with the increase of , and
hence and should be functions of to reflect this trend.
When is small, and should be set to tolerate large es-
timation errors.

The cooperative sensing algorithm is summarized in
Algorithm 2. For the newly acquired samples

at time , the radios update the param-
eter estimates and the base station recomputes the sequential

. Then the is compared with and to
decide whether to terminate or continue the test.

Algorithm 2: Cooperative Sequential Sensing for
Composite Hypotheses

0: Set .
1: repeat
2: .
3: The th radio acquires sample

and estimates the unknown parameters
and by using (20) and (21). Since it is unknown
that which hypothesis is true, expression (20) assumes

that is true and obtains , and expression (21)

assumes that is true and obtains .
4: Each radio computes its own generalized sequential

log-likelihood ratio by

and sends the result to the base station.
5: The base station computes the generalized sequential

log-likelihood ratio according to

6: until or .

7: If , “ : target signal is present” is
claimed; if , “ : target signal is absent”
is claimed.

We now explore how to choose appropriate and for
achieving the desired sensing objective. Let

where and are defined as11

Note that is given by with and

changed to and respectively, and is given

by with and changed to and re-
spectively. It is easy to see that

(23)

(24)

where

In the above two expressions, we will see later that under some
mild conditions, and can be asymptot-
ically bounded in some sense. For example, the maximum like-
lihood estimation is in general asymptotically consistent and ef-
ficient, implying the following:

1) under converges to and converges to
in probability;

2) under converges to and converges to
in probability.

Therefore, we can view as the estimate of
under with error term and as the estimate of

under with error term . Given the fol-
lowing regularity conditions12:

3a) and for
;

11Throughout the paper, we assume that there exists only one ����� � ���� �
for each true parameter pair ���� � ��� �.

12Unlike in previous discussion, assumptions 3b) and 3c) do not imply as-
sumption 3a), because the stopping thresholds � and � are in general not
constant. However, it will be shown in later discussion that with mild regularity
conditions, asymptotically � and � can be set as constants, for which 3a)
is true, if provided that 3b) and 3c) are true.
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3b) the mean of

under is positive and finite;
3c) the mean of

under is positive and finite
the following lemma implies that if the test stops with
a negligible probability (close to zero) for the event

under and the

event under ,
the sensing objective (2) can be achieved.

Lemma 3.1: Assume that the sequential test (22) stops at
. If the stopping thresholds and are set such that

for any ,

(25)

(26)

where and are given by (7), then

and

Proof: See Appendix G.
By expressions (23) and (24), if we can bound the term

under for properly, we may find
appropriate and to meet the conditions (25) and (26)
required by Lemma 3.1. The following theorem states that this
is feasible if the second moment of is finite under

for .
Theorem 3.2: For the sensing algorithm defined in (22), as-

sume that the second moment of under and
the second moment of under are finite for all

. Let

For any , if the stopping thresholds are set as

and

where and are given by (7), then

and

Proof: See Appendix H.
By the above theorem, if we can obtain an upper bound for the

second moment of under for , then we
have a systematic way to set the stopping conditions to achieve
the desired sensing performance.13

13The � and � suggested by Theorem 3.2 are usually too conservative
and require a large number of samples to meet the objective. In practice, we can
sometimes get tighter stopping conditions.

C. Asymptotic Upper Bound for the Second Moment of

Theorem 3.2 requires an upper bound for the second mo-
ment of under for and every , which
is normally too complicated to compute. In the following, we
consider obtaining such a bound in the asymptotic sense, i.e.,
when is large. This is motivated by two reasons. First, it is
easier to compute such an asymptotic bound since the maximum
likelihood estimator is asymptotically consistent and efficient;
second, when and are small, there is a high chance that
the test stops at large , and the asymptotic bound provides a
good approximation to actual bound in this case. To begin with,
we note that under some mild regularity conditions, the max-
imum likelihood estimator is unbiased, asymptotically consis-
tent and efficient [25], implying that (see Appendix I for a brief
explanation):

4a) under , as converges to and
converges to in probability, and

4b) under , as converges to and
converges to in probability, and

is the Big-O notation.14

Note that are given by a summation
over terms of the following form:

where in probability and
as . It can be shown by using the Taylor series expan-
sion that (see Appendix J for the derivation):

(27)

(28)

14That is, ���� � ������� �� �� � iff there exist positive numbers � and
� such that ������ � � ������ for all ��� 	 �.
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Since are i.i.d., we approximately treat

as independent.
Thus,

This eventually implies

That is, are asymptotically
bounded by a constant. This enables us to use Theorem 3.2 as
a systematic approach to achieve the sensing objective. That is,
we can set the stopping thresholds as

and (29)

for some positive constants and . In this case, since
and are finite constants and
are asymptotically bounded, the test must stop with probability
1 and assumption 3a) holds.

D. Complexity of the Proposed Algorithm

As a drawback, Algorithm 2 has higher complexity than the
methods with fixed sample size. Assume that the method with
fixed sample size needs samples to achieve the sensing
objective. It then has computational complexity ,
since the parameter estimates , and the GLLR are
only computed once and the computational cost is normally
proportional to the total number of samples . To achieve
the same sensing objective, Algorithm 2 has complexity

, because , and the need to be
computed for every and the average number of samples is
normally proportional to .

In Algorithm 2, the computation is carried out by all the ra-
dios, and each radio has the complexity . In practice,
alternatively we can perform all the computation at the base sta-
tion that usually has more computational power. In certain situ-
ations where the complexity of Algorithm 2 prevents it from
being practical, e.g., in low-power sensor networks, our next
goal is to seek suboptimal (or approximate) algorithms with less
complexity.

In the following, we use two spectrum sensing examples to
illustrate the idea.

Example 3—Detecting a Gaussian Random Signal with Un-
known Variances: In this example, the signal model is identical
to that in Example 1, except that and are unknown to

the receivers. Assume that the signal and noise variances have
different range:

where and are the lower and upper bounds for
and are the lower and upper bounds for

, and . The generalized likelihood ratio test
with a fixed sample size is given by

Accept if

Accept if

(30)

where the maximum likelihood estimates of and are
given by

As illustrated by Example 1 in Section II, if we have perfect
knowledge of and , the minimum number of re-
quired samples and the associated are given by expressions
(10) and (11). However, since and are unknown in
this example, the optimal and should be valid for all
possible signal and noise variances, and can be found from the
worst-case scenario, i.e., when and

. In other words, the optimal is the minimum sample
size for achieving and when

and for all .
The proposed sequential scheme is a natural solution to this

type of problem because the required sensing time depends on
the signals and the associated parameter estimates. In the test
(22), we have

where
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In the above, the sum can be updated recur-
sively at each new sample to save the complexity. Let

, and . It is easy to
verify that under ,

and

in probability, and

Similarly, under we have

and

in probability, and

Following from previous discussion, we set the stopping con-
ditions as (29), where and are given by (7) and
are some positive constants. Theorem 3.2 advises on how to se-
lect proper and ; however, the and obtained from
Theorem 3.2 are normally too large and require too many sam-
ples. In our simulations, we obtain the values for and
through computer experiments.

Example 4—Detecting a Periodic Signal with Unknown Am-
plitude: The signal model in this example is identical to that in
Example 2, except that the signal amplitude are unknown to
the receivers. Assume that

where and are the lower and upper bounds for .
The generalized likelihood ratio test with a fixed sample size is
given by

Accept if

Accept if

(31)

where

The optimal and its associated are selected such that the
resulting and are no greater than and , respec-
tively, if for all .

In the proposed sequential test (22), we have

where

Similar to Example 3, we can calculate by designing iter-
ative procedure for saving the computational complexity. It is
easy to check that under ,

and under ,

The stopping conditions can then be set as (29). In the simula-
tions, we obtain the values for and through computer
experiments.

IV. SIMULATION RESULTS

In this section, we simulate the proposed cooperative sequen-
tial sensing scheme and compare its performance with the con-
ventional method with fixed sample size. The simulated network
has four cognitive radios for spectrum sensing, i.e., .
Four different sensing scenarios are considered, corresponding
to the four examples presented in Sections II and III. In the first
two examples, we assume that the exact signal and noise models
are known to the radios, while in the last two examples, the as-
sumed signal and noise models have unknown parameters.

In the first scenario, the target signal and observation noise
are Gaussian distributed with zero mean. The received signal
variances under hypotheses and are listed in Table I.
The base station has full knowledge of the distributions of the
signal and noise in terms of and .
The sensing method with a fixed sample size uses the and

determined by expressions (10) and (11), while the sequen-
tial method uses the and determined by (7). In the simula-
tions, the sensing objective is set according to (2) with .
For different , Fig. 2 plots the average number of sam-
ples that is required to achieve and .
It is observed that the sequential method substantially reduces
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Fig. 2. Detection of zero-mean Gaussian signals with known variances. The
signal variance � and noise variance � are listed in Table I. The sensing
method with a fixed sample size uses the � and � determined by (10) and
(11). The parameters � and � in the sequential method are determined by (7).

Fig. 3. Detection of a sinusoidal signal with known amplitude in white
Gaussian noise. The signal amplitude � and noise variance � are listed
in Table II. The sensing method with a fixed sample size uses the � and �
determined by (12) and (13). The parameters � and � in the sequential method
are determined by (7).

TABLE I
SIMULATED SIGNAL AND NOISE VARIANCES IN FIGS. 2 AND 4

TABLE II
SIMULATED SINUSOIDAL AMPLITUDE AND NOISE VARIANCE IN FIGS. 3 AND 5

the sensing time. The second scenario considers the detection
of a sinusoidal signal in white Gaussian noise. The normalized
signal frequency is 0.1 and thus . The received signal
amplitude and noise variances are listed in Table II,
and the simulation results are shown in Fig. 3. Note that each
“sample” in this scenario is a “vectorized” sample, consisting
of actual samples in a full period.

Fig. 4. Detection of zero-mean Gaussian signals with unknown variances. The
simulated signal and noise variances are listed in Table I. In Case 1, the simu-
lated signal and noise variances are � and � , respectively; in Case 2,
the simulated signal and noise variances are � and � , respectively. The
sensing method with a fixed sample size uses the � and � determined from
the worst case, i.e., Case 1. In the sequential method, � and � are deter-
mined by (29) with � � �	� and � � �	�.

The third scenario assumes the same signal model as in the
first scenario, but the base station has no exact information about
the signal and noise variances. Prior knowledge about the range
of the signal and noise variances is given in Table I, i.e.,

and for .
The sensing method with a fixed sample size uses the test given
by expression (30). Monte Carlo simulations are performed for
various values of to find the optimal that requires minimum

to achieve and . In the
sequential test, the stopping condition is given by (29), where

,15 and are set according to (7). Fig. 4
plots the average number of required samples versus
for the sequential method and the method with a fixed sample
size. In Case 1, the actually simulated signal and noise variances
are and , respectively; in Case 2, the actually sim-
ulated signal and noise variances are and , respec-
tively. Case 1 represents the worst signal condition for spectrum
sensing and normally requires more samples than Case 2. Here,
the “worst case” refers to the signal condition that requires the
maximum number of samples in order to achieve the sensing
objectives for both and , given that the detection thresh-
olds or stopping rules have been optimized for each case. Ob-
viously, Case 1 has the worst signal-to-noise ratio for detection.
Since the method with a fixed sample size cannot distinguish
between Case 1 and Case 2, the number of signal samples it
requires should satisfy the requirement of Case 1, although it
might be too many for Case 2. The proposed sequential method
adjusts the number of samples adaptively for each case, and sub-
stantially saves the sensing time. The last scenario assumes the
same signal model as in the second scenario, but the amplitude
of the target sinusoidal signal is unknown. The lower and upper
bounds of the received sinusoidal amplitude at each radio are
given in Table II. The sensing method with a fixed sample size

15The expressions provided in Theorem 3.2 for determining � and � are
usually computationally expensive, and the computed� and� are normally
too large and require too many samples. In the simulations, we simply tried
many different combinations for the values of� and� , and selected the one
that meets the requirement, i.e., 
 � � and 
 � �, with the smallest
����� �� �� �� �� for the worst signal scenario.
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Fig. 5. Detection of a sinusoidal signal with unknown amplitude in white
Gaussian noise. The signal amplitude and noise variance are listed in Table II.
In Case 1, the simulated signal amplitude and noise variance are � and
� , respectively; in Case 2, the simulated signal amplitude and noise variance
are � and � , respectively. The sensing method with a fixed sample size uses
the � and � determined from the worst case, i.e., Case 1. In the sequential
method, � and � are determined by (29) with � � ��� and � � ���.

Fig. 6. Relative efficiency of the sequential algorithm for the simulation results
presented in Figs. 2–5. Relative efficiency is defined as the ratio between the av-
erage number of samples required by the sequential algorithm and that required
by the method with fixed sample size.

uses the test given by (31). In the sequential algorithm, we set
and for the stopping condition given by

(29). As shown in Fig. 5, the sequential method substantially re-
duces the average number of required signal samples.

Fig. 6 shows the relative efficiency of the sequential algorithm
with respect to the method with fixed sample size. Relative ef-
ficiency is defined as the ratio between the average number of
samples required by the sequential algorithm and that required
by the method with fixed sample size. Fig. 6 plots the relative
efficiency computed from the simulation results presented in
Figs. 2–5. For the simulations with unknown signal parameters,
only the worst-case relative efficiency, i.e., Case 1 in Figs. 4
and 5, is plotted. The plots show that the achieved saving in
the average number of samples depends on , and signal
distributions.

In addition to the sequential algorithm presented in the paper,
we can also perform sequential detection by the method in [1]
and [24]. Instead of estimating the unknown model parameters,

[1] and [24] always assume the signal model for the worst sce-
nario, i.e., Case 1, and performs the sequential test by using the
algorithm presented in Section II. This approach avoids esti-
mating the unknown parameters and can have less complexity.
However, if the signal is not the assumed case, the method in
[1] and [24] may require a larger sample size and lose flexi-
bility, while a major part (Section III) of this paper is to solve
this problem.

V. CONCLUSION

This paper presents a sequential method for spectrum sensing
in a cognitive radio network. In contrast to the conventional
Neyman-Pearson detector, the sequential method significantly
reduces the average sensing time that is required to achieve
the sensing objective. For signals received through wireless
channels, we consider the case when the assumed signal and
noise models have unknown parameters. The traditional se-
quential test is modified in order to detect signals with unknown
parameters. The simulation results coincide with the theory
and demonstrate the effectiveness of the proposed cooperative
sensing scheme.

APPENDIX

A. Derivation of Expressions (4) and (5)

Under and , the acquired samples are dis-
tributed according to and

, respectively. Let

The log-likelihood ratio can be written as

It is easy to see that

which implies that is a martingale under for
. Since

we have .16 By the optional stopping the-
orem,

(32)

Note that at , we have either or
. Thus,

(33)

Combining (32) and (33), we solve

16This is a direct application of Proposition 7.1.1 in [26].



6278 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 12, DECEMBER 2010

and get (4). By further noting that is a Martingale under
, we can get (5) through the same argument.

B. Proof of Lemma 2.2

At ,

or

Since is a martingale under , we have

which leads to

On the other hand,

and hence

C. Derivation of Expressions (8) and (9)

By Wald’s equation,

(34)

Recall that either or , hence

(35)

Combining (34) and (35) leads to (8). Similarly, we can get (9).

D. Derivation of Expressions (10) and (11)

Under , according to the central limit theorem, when
is large, the test statistic is approximately distributed as

Hence,

which gives

(36)

Under , when is large, the test statistic is approximately
distributed as

which yields (37), shown at the bottom of the page. By sub-
stituting (36) into (37), we need to find such that [see the
equation shown at the bottom of the next page], which finally
yields (10) by letting and . Expression
(11) is obtained from (36) by letting .

(37)



ZOU et al.: COOPERATIVE SENSING VIA SEQUENTIAL DETECTION 6279

E. Derivation of Expressions (12) and (13)

Under , the test statistic is distributed as

and hence

(38)

Under , the test statistic is distributed as

and hence

(39)

To achieve and , we solve (38) and (39) to
get (12) and (13).

F. Proof of Theorem 3.1

1) It follows directly from the assumptions that
[23, Lemma 1] and [26, Propo-

sition 7.1.1] for .

2) To show that there exists such that

(40)

it is sufficient to prove that there exist and such
that

and

We note that as ,

as by as-
sumption 2a). Moreover, assumption 2a) implies

and hence17

17Here, we assume that the distributions � �� ����� � �� �����
� �� ����, and � �� ���� satisfy the following regularity condition. For
each� � �� �� � � � �� , there exists a set� such that i) � �� ���� �� 	 iff
� ��� � � ; ii) � �� ���� �� 	 iff � ��� � � ; iii) � �� ���� �� 	
iff � ��� � � ; iv)� �� ���� �� 	 iff � ��� � � . Intuitively,
� is the set that consists of all “observable” measurements and the
probability density functions have nonzero values on those measurements.
Define the Cartesian product � as � � � � � � � � � � � , and let
���� � �� ����� ���� � � � �� ����. Note the following fact:

� �� ��������� � � �� ���� ����� � ��

Then,

� ����� 	 	

iff

� ����� 	 	

where � is the indicator function.
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This further implies that

for some . We then have

If is sufficiently large,

Since is a contin-
uous function of , there must exist between and
such that (40) holds. It can be similarly shown that there exists

such that

3) Because of (40), is a martingale. Hence,

which leads to . Similarly, we can show
that .

4) If and are sufficiently small, i.e., and are suffi-
ciently large, we have either or .
Then,

from which we get (15). Similarly, by noting that is
a martingale under , we get (16). To compute the average
number of required samples under , we have

and

By Wald’s equation,

which yields (17). Expression (18) can be obtained similarly.

G. Proof of Lemma 3.1

Under , it is easy to verify that is a martingale.
By the optional stopping theorem,

Hence,

It then follows that

Similarly, we can show that under the given
assumptions.

H. Proof of Theorem 3.2

By Chebyshev’s inequality, we have

Let

and

At , we have

or

It then follows that
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and

It then follows from Lemma 3.1 immediately that

and

I. A Brief Justification of Assumptions 4a) and 4b)

In this section, we give a brief explanation on assumptions 4a)
and 4b). We refer to [25] for rigorous arguments and statements.
The maximum likelihood estimate of and are given by
(20) and (21), respectively. Under hypothesis , we consider

the following equivalent expressions for and :

(41)

(42)

Note that are distributed according to
under . By the law of large numbers, as

(43)

in probability, and

(44)

in probability. Combining (41) with (43) and (42) with (44), we
can in general justify that under

in probability. By similar argument, we can justify that under

in probability.
Under some mild regularity conditions, the maximum likeli-

hood estimator is asymptotically efficient, i.e., under

where is the Fisher information matrix evaluated from
and its elements at the th row and th

column are given by

where and are the th and th elements of

the parameter vector . Moreover, is unbiased. It then
follows immediately that

and

For , normally we also have18

Similarly, under

18This is true for Examples 3 and 4.
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and

J. Derivation of Expressions (27) and (28)

Let . By the Taylor series expansion,

(45)

where is the gradient vector of with respect to
denotes the matrix transpose, and is the Hessian

matrix of with respect to . In the expression,
depends on all the currently received samples, while the other
terms only depend on the sample . The mean of (45) is given
by

and the second moment of (45) is given by
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