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Extended Fast Fixed-Order RLS Adaptive Filters
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Abstract—The existing derivations of conventional fast RLS RLS algorithms can be derived in this context (in [10] and [11],
adaptive filters are intrinsically dependent on the shift structure e have shown that order-recursive (lattice) structures can also
in the |nput regression vectors. This structure arises when a be developed for Laguerre netWOka)

tapped-delay line (FIR) filter is used as a modeling filter. In this There are several important reasons to consider orthonormal
paper, we show, unlike what original derivations may suggest, . . . : .
that fast fixed-order RLS adaptive algorithms are not limited to  basis functions instead of the usual FIR implementations.
FIR filter structures. We show that fast recursions in both explicit ~ First, the use of orthonormal models to describe the dynam-
and array forms exist for more general data structures, such as jcal behavior of a wide class of systems has been studied
orthonormally baseq models. One of the benefits of working with extensively in many recent works on system identification
orthonormal bases is that fewer parameters can be used to model .
long impulse responses. and control [13]-[16]. Second, the grthonormallty property of
such structures offers many benefits in estimation problems,
including better numerical conditioning of the data. Third, one
of the primary motivations in using IIR basis functions for
adaptive filtering is the fact that it requires fewer parameters to
I. INTRODUCTION model systems with long impulse responses.
In echo cancellation applications, for example, a long FIR

algorithms represent an attractive way to compute the le gpr may be necessary to model the echq path, and gdaptlve
squares solution of growing length data efficiently. Where%@Q techniques have been p_roposed as possible alternatives (e.g.,
conventional RLS require®(M?2) computations per sample, 17] ga.nd [18]). These techniques are nevertheless Ifnown to_face
where)M is the filter order, its fast versions require ol M) §tablllty prqblems d“? tolthe arbitrary pole locations during
operations. Examples of such fast schemes include the '!élg?r operation. Ad_aptlve f||ter_s ba_sed on or_thonormal mode_ls
a posteriori error sequential technique (FAEST) [1], the fastan offer an attractive alternative since, in this case, the location

transversal filter algorithm (FTF) [2], and least-squares latti the poles is f|xeq. Such schem_es have alrgady been suggested
algorithms [5]-[7]. The latter class of algorithms deal wit or echo cancellation and equalization applications [22], [23].
gwever, these earlier contributions rely on a slow RLS-type

order-recursive structures, whereas the first two exampIE) tor adapti laorithm th e 112 .
(FTF and FAEST) deal with fixed-order structures; both FT rmiora aptive algorithm that requwéhi( )operatlons_.
this paper, we show that faét(M) fixed-order adaptive

and FAEST can also be viewed as special cases of a gen éﬁ‘
’ ¢ &[&ers for general orthonormal models can be derived in the

fast estimation algorithm for state-space models known as . )
east-squares domain, thus leading to fast RLS Laguerre adap-

(extended) Chandrasekhar recursions [8], [9]. ) h o f the ad £ usi |
The low complexity that is achieved by these algorithms istlye schemes. One of the advantages of using a least-squares-
ed adaptive scheme is that these tend to exhibit faster con-

direct consequence of the shift structure that is characteristicb&'fS - )
regression vectors in FIR adaptive implementations. This favcgrge_nce rates and smaller misadjustments than gradient-based
is evident in the conventional derivations of fast adaptive algg- aptive schemes.
rithms, all of which rely heavily on the shift structure. The argu-

ments in [8] and [9], however, have shown that fast RLS algo- Il. RLS ALGORITHM

rithms can still be derived for certain more general structures i”We start by reviewing the standard least-squares problem and
the regression vectors other than the shift structure. In this papgfecursive solution. Given a column vector € CM*tl and a

we show that input regression vectors that arise from more geji 4 matrixi xy € CVH*M | the exponentially weighted least

eral networks, such as orthonormal filters, satisfy the Str“Ctu'%ﬂuares problem seeks the column veaia CM that solves
conditions required in [9], and, therefore, that fast fixed-order

Inui)n[)\]\r+lw*ﬂ_lw + (yN — HNw)*WN(yN — HNw)] (1)

Index Terms—Fixed-order filter, Laguerre network, or-
thonormal model, regularized least-squares, RLS algorithm.

AST recursive least squares (RLS) adaptive filterin
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The individual entries of the measurement vegtorwill be
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The well-known RLS algorithm allows us to update; recur-

denoted by{d(:)}, and the individual rows of the data matrixsively as follows:

Hy will be denoted by{w;}, i.e.,

d(O) Uo
d(].) Ul
w=| . |, Hv=] .
d(N) uUN

Letwy denote the optimal solution of (1). It is given by

wy = PyHy Wiy @
in terms of the coefficient matrix
Py = (VU + Hy Wy Hy) 7 3)
Let 45 denote the vector
in 2 Hywy 4)

which we refer to as theegularizedprojection (or simply pro-
jection) ofy onto the range space &fx-, which is written as
R(Hn).

Define further two estimation error vectors: thgosteriori
error vector

en =yn — Hywn
and thea priori error vector

EN = YN — H]\rwN_l

wherewy 1 is the solution to a least-squares problem simil

to (1) with data up to timeV — 1 (and with A T II~! replaced
by ANI171)

min[)\Nw*H_lw +(yy_1— Hy_1w)*

w

X Wn_1(yn—1 — Hyvaw)]. (5)
The minimum cost of (1) is denoted i§y/V), and itis given by
E(V) = ynWien. (6)

The last entries oéy ande are called the posteriorianda
priori estimation errors at tim&’, and they are given by

e(N)=d(N) —unwn, eN)=d(N)—unwy_1.
These are related by a conversion factor, i.e.,
)

where

Y(N)=1—unPyul. 8)
Iwe may note that in the absence of regularizatifir* = 0), the expres-

sion for the minimum cost can also be expressed in the equivalent{a¥ih =

e Wien. This follows from the orthogonality propertyy, Wxex = 0.

However, when regularization is present, we need to use (6) instead. This fact

wy1 = wWN + g1 [d(V + 1) —uypwn]  (9)
gn+1 = AT Pyuj v(N + 1) (10)
T HN41) =1+ A tuy i Pyuby (12)
Py = APy —gnpy NIV + Dghy (12)

wherew_; = 0, andP_; = IL It also holds thayyy1 =
PN+1uRr+1.2

The computation of the gain vectgi 41 in the above so-
lution relies on the propagation of the (Riccati) varialbtg.
This method of computation requiré¥ A/ 2) operations per it-
eration. Fas® (M) RLS schemes, on the other hand, avoid the
propagation ofPy and evaluate the necessary gain vector in a
more efficient manner. It turns out that the choicdbplays a
crucial role in the derivation of such fast schemes, as we now
explain.

Assume for the time being that there exists a square nmtrix
that relates two successive regression vectors as

UN = U,N+1\I/. (13)

Using (10), we can then relate two successive gain vectors
{9n,9~n+1} as follows. Define the normalized gain vector

kn = gny HIN). (14)
Then

Uky = ATNUPy_uly = APy Uy

aéubtracting this equality fromaiy 41 = A’IPNURUA, we find

that

Entr = ¥ky + A7 (Py — UPN_ U Ul (15)

This equation shows that in order to update the normalized gain
vector from timeN to time N 41, itis notnecessary to evaluate
the individual{ P, Py—_1} but only the difference

Virywy = Pnv — WPy V", (16)

It turns out that such differences can be updated quickly for
certain choices ofl andW¥ (as shown in [8] and [9] in a more
general state-space context), and this fact can be used to derive
fast RLS schemes for input data vectors with or without shift
structure, as we will explain.

I1l. BRIEF OVERVIEW OF IR AND ORTHONORMAL BASIS
STRUCTURES

The objective in this section is to motivate the use of or-
thonormal filter structures. Thus, consider a stable transfer func-
tion

B(z) P

G(z) = =
Az 1- Zf:l arz

distinguishes the derivations we will provide for the updates of the minimum
costs of the so-called forward and backward prediction problems from thosé?We remark that without the factor™¥ +1 in the cost (1), the above RLS re-

that assume no regularization. More on this later.

cursions would not correspond to an exact least-squares solution.
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and assume that we want to estimétg, b, } from noisy ob- s ["y—zr z"—al’ . | Iz“—tfl'
servations of the output signal, sdy{(/V)}, in response to an [z \ fmaz i = T

wy W,

input sequencés(V)}. Using thez-transform notation, we can .

write
z C\: é y)
o(z) = B( )s(z) T é

A(2)
; Fig. 1. Transversal Laguerre network.

or, equivalently
L Q  the necessity to monitor the poles since they can become
Z“ko N —k)+ Zbks N—Fk unstable during the process of convergence of the algo-

rithm;
so that the available measurements satisfy « the convergence can be very slow compared with an adap-
P o tive FIR implementation.

- Z axo(N — k) + Z bes(N — k) + v(N).  (17) These two facts constitute a major impairment facing the em-
b1 =0 ployment of adaptive IIR filters in practice.

There are two common techniques for estimating the para@- A priori Information on System Dynamics

eters{ayz, by} from {d N}
Lan b} {d(N). s(N)} One way to overcome these difficulties is to choose a fixed

A. Equation-Error Method IIR model structure of the form
Here, we replace théo(N — k)} on the right-hand side of M—1
(A7) by {d(N — k) — v(N — k)} so that <Z kak(z)> ) (20)
IS o k=0
NYy=> apd(N —k)+ > bes(N — k) +v/(N) (18) where
k=0 {wr} parameters to be estimated,;

wherev/ (V) is a colored noise that is obtained by filteringv) 15t} rational transfer functions;

through A(z). If we ignore the dependency of the spectrum 4/ ~ model order.
of v/(IV) on the{ay}, then model (18) can be assumed to bglote that in this formulation, the output signal does not depend

linear in the parameter$ay, by}, which can be estimated via o its past values. Moreover, in this case, the estimpigg

any linear estimation procedure (e.g., LMS) to find will not be biased by measurement noise.
A useful modeling structure is the so-called (complex) La-

r Q. guerre model, where thf3;} are chosen as the orthonormal
= adN—k)+> bhs(n—k). (19) set

- _ 2 —1 _ % k
A major problem with this formulation is that the estimates Bi(z) = Vi |a|1 <Z a1> , lal<1. (21)
{&, b} become biased due to the color of the nai4eV) and 1—az™ 1—az”

its dependency okay }.
P Y Ofta} Fig. 1 shows the corresponding network. Laguerre functions

B. Output-Error Method have been studied extensively in recent works on system identi-
fication and control [13], [16] and have also been suggested for
echo cancellation purposes [22].

In this paper, we consider an extention of the Laguerre model
that allows to incorporate prior information onariety of poles

LS Q. say,{ao, a1, ...,an_1}. Thatis, we consider
Za AN k) + 3 bes(N — k) Y. tao, o1 v}
k=1 k=0

5 k _
- | o _ VI H (22)
where the{ay, b} are still updated via an instantaneous-gra- 1—apz! 1—a;z
dient algorithm. One of the main drawbacks of this formulation
is the existence of multiple local minima in the correspondinghis orthonormal network is illustrated in Fig. 2. This model
mean-squared-error surface. This implies that an adaptive ¥&s proposed in [21] in the context of system identification, and
lution can be trapped before achieving “optimality.” An alterit preserves orthonormality of th#,,(z). Note that the Laguerre
native method to overcome the problem of local minima is fodel is obtained by setting all the poles#p= a. There are
employ the so-called Steiglitz—McBride (SM) error formulatiofihree main reasons for considering the use of such orthonormal
[19], which in many cases presents global convergence.  structures in adaptive filtering.

Nevertheless, regardless of which error formulation is used, 1) When the system to be modeled has poles, an adaptive
there are still major disadvantages in considering an adaptive FIR filter can exibit poor performance in comparison with
IIR solution for practical purposes. These include an adaptive structure based on rational functions.

Here, we replace thé&(N — &)} on the right-hand side of
(19) by{d(N — k)} so that the estimat#{ V) is now computed
via
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- - - = - -1
s(V) loay '~ at l-ap, M| 4 A 7' -a] A 2t -af - Ay zl-ay,

P — —_— - ... — -
1-apz! 1-az! 1-a,.,z’ 1- a7 Al-az! Al a7 T et
u(N,0) w(N.M-1)

r4 ™, 4 uN.2) ”
w w,
Ve

4
W, w,
V1-]a)? y1-lay|? Vi-]ay? Vi=lay|? - 7 s -
1-apz™! 1-a;z" 1-a,7" 1-a,_,z! C{} l ¥ % A
u(N, M~ -/ e

wol ,  win| o wnz| ] ,
W wy wy w,
- % /s s Fig. 3. Equivalent orthonormal structure.
N L dy
e (% To see this, consider the equivalent orthonormal network de-

picted in Fig. 3. Then

Fig. 2. Transversal orthonormal structure for adaptive filtering.

. . . . N+1,0)= N,0) 4+ Ags(N
2) Unlike the conventional 1IR adaptive methods, WhIChu( th ') a0 B )+ Aos(N)
present serious problems of stability, local minima, and“(N + 1,0) = a;u(N, )

slow convergence, the use of prior information offers a + A [W(N,i—1)—a* u(N+1,i—1)]
stable and global solution, due to fixed poles location. Aig -
3) Orthonormality guarantees good numerical conditioning (25)

for the underlying estimation problem, in contrast with
other equivalent system descriptions. That is, note th

a S P )
one could have chosen to represent the transfer fur\{é—]er?AZ = Vi—ail. . .
. . . . L Using (25), we can easily relate all the entries of two suc-
tion G(z) according to a partial-fraction description or a

. : ._cessive regression vectars anduy 41 by writing their corre-
fixed-denominator model. However, such representations 9 a N1 DY 9

. . " i . . sponding difference equations (for example, the following rela-
can be numerically ill-conditioned in comparison with th?. ! . .

L -tions hold for the first three entries afy):
orthonormal structure. Moreover, the statistical properties
of the regressors in a nonorthonormal model could qugN +1,0) = agu(lV,0) + Ags(N)
to data covariance matrices with large eigenvalue spread, A A
and the training of the coefficientgw,} could be ad- w(V +1,1) = —ag—~u(N +1,0) + ——u(N,0)
versely affected. 0 0

+ aju(N,1)
A
(N +1,2) = (a0m)" 2 u(N + 1,0)
IV. FAST ARRAY ALGORITHM FOR ORTHONORMAL FILTER A 0
STRUCTURES — a{A—Qu(N, 0) — AsA1u(N, 1) 4+ asu(N, 2).
0

We now discuss how a fast least-squares adaptive filter Gan,4trix form. we can express these relations as
be derived for trainning the structure of Fig. 2. ’

Thus, consider the orthonormal filter structure of Fig. 2 withy,,, | 2 [W(N+1,0) uyn]=[unyr u(N,M— 1)U
transfer function [froms(V) to d(V)] given by AL
= up+1,nv+1 ¥ (26)

whereV is the(M + 1) x (M + 1) matrix (say, forM = 5)

M-1 7
v 1—la;|? 2~ —qaf
Gz)= > w |_| 11 B k| < 1. 1 ab 0 0 0 0
: 1—a;z1 1—apz—t N
i=0 k=0 23 0 A1 Ag ai 0 0 0
. . . . ( ) 0 —CL1A2A0 AQAl a§ 0 0
The inputto the orthonormalfilter at tim€ is denoted by (), ¥ = | AA AAr AA «
o . ) arasAzAg  —azAzA; 3A2 az 0
and the coefficients that combine the outputs of the successive 0 —aiazasdg azasz Ay —azAs As 0
lowpass sections are denoted fy; }. Let amnads  —apirbedl  aentay o
0 A4 A4 A4 A4 1
(27)
un 2 [u(N,0) w(N,1) - uw(N,M-1)] (24 2

Up41,N+1 = [unv+1 w(N, M —1)].

. . .. Except for the additional terms(N + 1,0) andu(N, M —
denote the regression vector at tidve Observe that the indi- 1), (26) is of the same form as (L3). This slight difference in

vidual entries of.,y are nOF time-delayed versions of egch Othe{he nature of the relations can be handled by properly defining
However, as we now verify, two successive regression vectQls - nded quantities

{un,un41} satisfy a relation similar to (but not exactly of the Thus. note that us.ing (10) and (14), we can write
same form as) (13) for somee. (Later, we will show that we can ' '

handle the slight discrepancy in the relation by properly defining [kNH} _ -t [PN 0} [ Un 11 }

extended vectors.) 0 0 O] |u"(N,M-1) (28)
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Likewise Now, implement g1 ¢ J)-unitary transformation matri y,
. i.e., 0Oy satisfiesOny (1 ® J)O% = (14 J) that transforms the
Y 0|2 AU 0 0 u' (N +1,0) following prearray to the form
k‘N 0 PN—l U,RT / L
—1/2 _
0 0 wt v (V) WUNHLN [ s O}
=\1lw o+ N1 29 - Oy = (34)
|:0 P]\f_1:| |:U,*(N,M—1):| ( ) \I/k'ﬁ\r %LN m C
where the second equality follows from (26). Subtracting (28yhere -
from (29), we obtain s positive scalar;
. m  column vector;
kN-I-l _ 0 C matrix.
0 | kn Then, we claim that we can make the identifications
1([Py 0 0 0 . - i
:Xq 0 0}_%0 PN_J\P> s=y AN+, m=kiy, C=Lyn
[ Wx 41 30 and show thaVp, ¢ = CJC™. (This last equation means
x w(N,M—1)|" (30)  that the inertia ofV(py,.,v) can be taken ad and that the

above array algorithm provides the desired low rank factor
This relation shows that in order to update the scaled gain veclot; as well.)
from ky to kx41, we only need to know how to update the To determine thds,m, C} as above, we proceed as follows.

difference Using the(1 & J)-unitarity of © 5, we obtain from (34) that the
e 0 0 0 following equality holds:
V[PN,‘I/} é N - \I/* (31) _1/2 N 1 - L
0 0 0 Pnv y~HEHN) Aunyiln
WEL, %L N

We now verify that it is possible to update the differences

Vpy,u} efficiently for all N. 1 yTHAN)  runeily *
For this purpose, we first note that for the case of prewin- % J WL I S
. . L N VAN
dowed input data [i.es(N) = 0 for N < 0 and zero initial .
conditions], we obtain at the initial time instaift = 0 —|s 0! s 0 (35)
m C J||m C

-1
V (Pow} = [)‘ OH 8} - [8 l(ﬂ U, (32) Equating the (1, 1) entries on both sides of this equality, we find
thats should satisfy

Assume thatl is chosen such that the above difference has low |s]2 =y "H(V) + A Yang Ly Ly,
rank (sayr, wherer is independent o/ —see Section V-C). _ L w ok
(say P ) =y V) + Ay (PY - UPY )y,

We can then facto¥ (p, ) as ) ) . . ,

=75 (N) — A~ G'NPN—IU}(\T + A ﬂ]\f+1PKrﬂRr+1

w1 = L Lx 11 —1 - U ok
Vip, ) 0 Lg (33) W4y Van a1 Phl s
. . . . _ —1
whereLg is (M + 1) x r, andJ is anr x  signature matrix =7 (N+1). (36)
with as many+1s asV (p, ¢} has positive or negative eigen-
values. We will show that when this holds, successive diff
encesVp, v for N > 0 will not exceedr and, more impor-
tantly, that the inertia of all these successive differences canalso  s*m = Wkiyy~Y/3(N) + A\ Ly J Ly @4
be taken a¢/. In other words, by forcing the initial difference [ 0
=V

This allows us to identify ass = v~/2(V + 1). Likewise,
eé’quating the (2, 1) block entries on both sides of (34), we obtain

(32) to have low rank and a certain inertia, we end up forcing kn

} + AT (P — UPL_ ) W
all successive differences to have a similar property. This fact is

essential to the derivation of a fast algorithm. Comparing with (30) and using the valuespfwve conclude that
we can make the identificatiom = ky ;.
A. Fast Array Algorithm Finally, equating the (2, 2) entries on both sides of (35), we

To establish the above claims we proceed by induction. Afér—]d thatC' should satisty
sume that the differenc€ (p, v, attimeN can be factored as ¢ jc*
Vipy,wy = LnJ LY forsome(M +1) x r matrix L. Define 1T o _1 * *
N . o = Wk ykyVv AT Ly JLy —
further, for compactness of notation, the extended quantities - ~§\‘ + L NN Tm .
=UEkNEn V" + AT Ly J Ly — Kj kN

—1/2 7.0 7.0k 7k — u * T Tk
i 2 [ —(1)/2(N)} . kw2 [91\’71\’0/ (N)} = WhER W + A1 (PR — WPy U7) = kR kN
INTN —lpu _ ju Jux - kAR | T
: A0 O : A|Pnyr O - [)‘ Py - kN-i—lkN'i'l} -V [)\ P kf\rkﬁ\r} v
P = [ 0 PN:| and Py, = [ 0 0} : = PY,, — WP, @37)
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which allows us to identifyfC as L, and to take the inertia evenfor\ = 1, this type of construction can cause the algorithm

of the differenceéV(p, ., vy asJ. The resulting fast algorithm to diverge in finite precision.

can be summarized as follows. To improve the numerical behavior of the array algorithm, we
propose to construéd as follows. First, create a zero entry in

(Fast Array RLS) Consider input regression vectotsy arising from the orthonormal the first row of the post-array by means of a circular (Givens)
filter structure of Fig. 2 as in (24). The solution to the minimization problem (1) can pefOtation, using the entries (0, 0) and (0, 1) of the pre-array (as
recursively computed as follows. Start with ; = 0,~~*/2(0) = 1, kg = 0, Lg indicated by the arrows)

and J from the factorization (32) and (33), and repeat for ed¢h> 0

—
YT Jxluvgr w(N, M - D)Ly @ o x X 0] x

/ /
o On X X X . x' %' %

o 1 Givens| ,
anr—L2(N) Vol x X x| —=7|x x' x
w’l/zl(/lg’ +1) 0 X X X x" x' x

= | [oviir V2V +1
|:gv+1"/ (N+1) Lnps % X X < %! %
0

where® v is a(1 & .J)-unitary matrix that produces the zero entries in the above post- Now, note that the additional hyperbolic rotation that is needed
array, andL is (M + 1) x r. The transformation matri® » and the multiplication | t0 zero out the remaining entry in the first row of the post-array
by the matrix¥ defined in (27) can be implemented according to the procedure descripe@lS0 results in a zero entry in t&/ + 1, 0) position of the post-

in Sections IV-B and VI. Moreover array. Rather than determining this hyperbolic rotation by using
the entries (0, 0) and (0, 2) of thiest row of the pre-array, we
propose instead to determine the hyperbolic rotation by using
In Section V/-C, we discuss the choicéloéind the values o, and./. More specifically | the entrie A + 1,0) and (M + 1,2) of the last row of the

11—1 is chosen as the unique positive-definite solution of the Lyapunov equation | Pre-array. That is

wyi1 =wy +gnt1[d(N +1) —uyi1wn].

AT =TT = po”

as defined later in (77). Then, as described by (79)—(83) and (85)
1 —qq VA 1
o=ty 4 .
NGAO!

Hyperbolic

L® X X X X
X X X X X
L0 X X X X
[©]x x x X
X X X X ©
X X X X ©

andJ = (1 © —1).

This choice seems to be more reasonable since in this case, the

Note that whem = 0, we havell = [, and the algorithm col- rotation matrix® is determined by using all the equations that
lapses to the fast array RLS algorithm for the usual FIR inpabnstitute the algorithm. We have verified by simulations (in
data structure; see, e.g., [26] and [27]. In Section VI, we will fuMatlab precision) that this method of constructi@gis more
ther exploit the structure oF to show that the matrix product reliable in terms of numerical errors (see Fig. 11).
[ i ] can be obtained efficiently i®(211) opera- It i_s importan_t to clarify that 'Fhe method or even the type of
. 9N7vY (N) rotations used in these recursions are not entirely responsable
tions. for the numerical behavior of the fast RLS algorithm. In Sec-
tion VII, we will invoke the concepts dbackward consistency

. . _ . andminimalityand comment on some stability issues for such
Although, from a theoretical point of view, arfy & J/)-uni-  tast RLS recursions, as done in [28]-[30].
tary matrix® 5 that produces the zero entries in the first row of

the post-array in (34) will do, we have noticed that different im-

plementations lead to different numerical behavior. To see this, } ] . . ]
consider for simplicity the casa/ = 3 andJ = (1 & —1). The recursions of Section IV provide a fast algorithm in

Then, the pre- and post-arrays will be of the generic forms  array form. Its cost i€2(10M ) per iteration plus the additional
cost for implementing the rotations. An alternative description,

B. Some Implementation Issues

V. EXTENDED FAST TRANSVERSAL FILTER

XXX x 00 which is often more efficient and relies on a set of explicit
XXX XXX equations, can be given. This description is obtained by em-
XX X1 O=1x x X ploying an alternative factorization for (31) that is motivated
i i i >(; i i by introducing the so-called forward and backward prediction

problems. These problems will further allow us to provide an
In order to create the zero pattern in the first row of the postiterpretation for the columns df 5 in terms of forward and
array, the(1 & J)-unitary rotation® can be constructed basedackward prediction filters.

solely on the first row of the pre array, which means that only Before proceeding, we should remark that since, in the re-
the information that is needed to update* (V) toy~(N+1) mainder of this paper, we need to deal with order-recursive re-
is required to determin®. In other words, no information from lations, it becomes important to explicitly indicate the size of all
the other equations is used to update the rest of the entries ofdgliantities involved (in addition to a time index). For example,
array. We have observed in simulations (see Section VIII) thae will write w), n instead ofwy to indicate that it is a vector



MERCHED AND SAYED: EXTENDED FAST FIXED-ORDER RLS ADAPTIVE FILTERS 3021

of order M that is computed by using data up to time We denote the resulting (forward) estimation error vector. The quan-
will also write Hy, n instead ofH x to indicate that it is a ma- tity Cj\}(N) is defined as

trix with row vectors of sizel/ and with data up to timeév so

that problem (1) becomes ¢L(NY 2 ANt 4 ef () (42)

min [)\N'H
w

wilyjwn + (yn — Haywa)* where¢!, (IV) is the resulting minimum cost (cf. (6))

X Wiluw = HM’NwM)] 51{4(N) = x5 \WNfumN-

and its solution isv,z x. In @ similar vein, we write ) ] o
Of course, the optimal solution of the forward prediction

{9vnemn, enr v, em(N), enr(N), yar(N), € (N)}. problem (41) can be updated recursively via an RLS algorithm
of the form
A. Forward Estimation Problem wly v = why v_y +karn far (V) (43)
Consider the input data matrix gy, N = N Py v1uhy v yar(N) (44)
%(0,0)  u(0,1) --- u(0,M —1) i (N)=1+ A g N P N1ty (45)
w(1,0)  w(1,1) - w(l,M-—1) Puny=\1Pyn_1— =1(NYg*
’ ’ ’ N = N-1 = 9mNVy (N)garn  (46)
Hyy = w(2,0)  w(2,1) - w(2,M-1)
: : whereky v = gu vy, (V) and for(N) is the last entry of
N,0) w(N,1) - w(N,M—1 fun. . o .
uN,0) N, 1) u( ) Substituting (40) into (44), it is immediate to see that we ob-
whose coefficient matrix is defined by tain the order update
Pihy = (WG + Hyy y W Haw) - - [ 0 } 4 ouN) [ ! } (47)
. LA ka,n AT (N —1) [~wyn1
Now, suppose that one more column is appendédoy from M ’
the left, i.e., wherea;(N) is thea priori forward prediction error defined
- via
Hypinv = [woy  Hun] (38)
and let fru(N) = an(N)yu(N)
Pl = (AN 4 EE W H . where fy;(N) is the last entry offas v
MA+LA ( Ml MALNTEN M+1.) A similar order-update can be obtained fqg (/V) by substi-
wherell,; andIl,; 4, are assumed to be related via tuting (40) into (45):
Ml = (peIl}). 39 . N)I?
M+1 (N & M) ( ) ’YM+1(N) = ’yM(N) - M (48)
Cu(N)

Then, it is straightforward to verify that

. AN p gt Whaon  xh yWaHyy Note that (47) and (48) require the computation OfGKIﬁ{N),
P, ;= s4¥ ; IRA - ’ i . . . .
M+1,N [ H3 yWon le,ll\f } which admits the well-known recursion
Inverting, we obtain CIANY = XN — 1) 4+ o, (N) fau(N) (49)
Pyyin = [8 PO } + f# Combining this recursion with (48), we obtain an alternative
MN ] Gy(N) order update fory; (V)
1 fx
X |:_ f :| |:1 _wJW,N:| (40) A s N -1
War N g1 (V) :,YM(N)%, (50)
Wherewj{f N= PJ\LJ\"HXL/\rWJ\’xO,N is the solution to the reg- M
ularized forward prediction least-squares problem
. B. Backward Estimation Problem
: N+1, fep—1,.f f . . .
min [)‘ wy My wyy, + (370,1\’ - HM,NwM) Similarly to the forward estimation problem, assume now that
M one more column is appended#h,; n from the right, i.e.,
X WN (l’oJ\r — H]\LNIUJ{4) :| . (41) B
Hyvinv =[Hun~N Zmn] (51)
This problem projects:g v onto R(Hy, ) in a regularized
manner. Let Define the corresponding coefficient matrix

_ S —1 _ (WN+17-1 7+ 7
fun =zon — Hyvwyy n Py = (WG + Hy o W Hag, )
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wherell,; andIl,; are assumed to be related by

—_ I ¢
= [ -

for some row vector and scalap to be specified. Then, using
(51), we have the equation shown at the bottom of the page.

Again, inverting both sides, we get

5 | Pun O 1 —qN |«
Py n = [ 0 0} +C§’\4(N) [ 1 [—¢n 1]. (B3)

This equation has two main differences with respect to (40).

First, the vectory is the sum of two quantities
aN = w?\l,N +in (54)
wherety is given by

tN = )\N+1P]\47NC (55)
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wheregy; (N) = ey (N)yp(N), and
em(N) = Bu(N) —upg, nEN—1.
In addition, the quantity$, (V) in (53) is defined by
(V) 2 &5, (V) + AVF (6 = ¢y — uly ve)

Itis easy to obtain a time-update for this term. To see this, let us
first define the quantities

G(N) = &5 (N) + AN Hs (61)
p(N) 2 AN gy (62)
r(N) 2 ANHLL e (63)

so that

Gy (N) 2 o(N) — p(N) — ().

and w, » is the solution to the (backward) least-squares

problem

[ ANHL =1 b b
min [)\ wyr Ly wiy + (xM,N - HM,NwM)

Whr

X WN (-TA4,I\’ — H}\L]\rwl;w) :| . (56)
The resulting minimum cost is

5?\4(1\7) = le,NWNbJW,N'

Problem (56) projects ;v onto R(H s, ), and the resulting

(backward) estimation error vector is given by

b
byun =xym N — Hy nwyy -

Note thatwﬁL N Can be updated via a standard RLS algorithm

via
w?\l,N = w?w,NA + kar,nbar(N) (57)
IMN = )\_1PJ\4,N—1U7\LN'YJ\4(N) (58)
Yot (N) = 14+ Aty v Pry 1y (59)
Pyn=XA"1Pyn_1— 91\4,1\f’7;T41(N)97\4,N (60)

with an associated priori backward prediction error
Br(N) = zp(N) — wpr Nl vy

Substituting (60) into (55), we obtain a recursive relationtfer
(which is analogous to the time-update f@f(4,1\f)

tv =tv_1 — gm,n(untn_1).

This equation, combined with the time update (57)1h§(g7N,
implies the following time-update fary:

v = gn-1+ ov (N)knr

The first term on the right-hand side of the above equation can
be updated similarly tg4, (V)
S(N) = X¢(N — 1) + Bas(N)bps (N). (64)

Now, multiplying the time updates f@mﬁ’m N andgy by ¢* from
the left, the following equations can be obtained:

p(N) =Ap(N — 1) + (upr,ntn—1)"0om(N)  (65)

7(N) = )\7(N — 1) + b}kw(N)(U,]\LNtN_l). (66)
Adding (64)—(66), we get, after combining terms

C?W(N) = )‘C?W(N = 1)+ ey (N)om(N) (67)

Observe that the variablgg}, (), C}\}(N)} do notcorre-
spond to the exact values of the minimum costs for the back-
ward and forward prediction problems (41) and (56). Only when
A < landN — oo, they tend to coincide with the actual values
{&8,(N), €4,(N) .

Now, multiplying (53) from the right by}, ; x;, We ob-
tain, similar to the forward estimation problem

kun] o —wh,
|: I\/I,l\:| :k/\/[+17]\r—l/]\/[(N)|: w]\l,]\l:| (68)

0 1

wherevy (N) = enr(N)/AC, (N — 1). The quantity, (V)
is usually referred to as threscue variableand can be directly
obtained as the last entry éﬁHl,N (to be computed further
ahead).

Proceeding similarly to the derivation of (48), we also obtain

(V)P

YM+1 (N) = ’YJW(N) W (69)

—1
p-1 _ Pyn
M+1,N =

x?\l,NWNHJ\LN + AN+L

HXLNWN‘IJ\LN + A\Vtle
SANAL + .IRLNWN.I]\LN
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Combining (67) and (69), we arrive at the following order upthus, multiplying both sides of (72) by;, ., from the right,
date foryp (V) we get

vy N a 7 = a r
(V) = Yvr41(N) (70) IM+1,N+1 = YOm41N- (73)

T 1-—7 Nep(Nvar(N)'
re(N)en(V)ra(N) If we further multiply (73) byzirs, v41 from the left and subtract
Note that the variables,; (N) andg; (V) play roles similar 1 from both sides, we find
to thea priori anda posterioribackward prediction problems.

However, although all the quantities related to the backward pre- A1 (N + 1) = a1 (N) (74)
diction problems satisfy identical recursive equations, here, the}/]. o

have different interpretations. which implies that

C. Exploiting Data Structure Farsrner = Ykaain (75)

We remarked earlier in Section Il that a fast algorithm WOU|gs desired
e e e, W00 o (7210l e sl 1 show o choose
updatek,;  to I;'M+1,Ny and using (68), we know how to order™4: c, an_dé in (52) in order to satisfy (71). Substituting (52)
downdate’EJ\HMu,]L to ks n+1. Thus, in order to obtain a di- and (39) into (71), we get
rect upd@te fromkys, v t0 kas,v+1, We still need to know how H;}
to relatekys 41, v andkps41 v41. It turns out that in order to [ *
relate these two variables, we need to call on the structure of the
regressors. Thus, consider again the extended quantities defiNed, consider the matri¥ in (26) and (27) and partitio —*
in (26) as

el _y1g-x|# O 1
6}_)\ v [0 HXA\P . (79)

upsi Ny = [u(N +1,0) upn] U* = [g T}
_ m
UML1L,N+1 = [UM+1,N+1 U(N’ M — 1)]

(see the structure of—* in Section VI), where we have the

equations shown at the bottom of the next page. Expanding (76),
we find thatll;; should satisfy

and letw denote any invertible matrix that relates them

UN+1,N+1 ¥ = Upj41,N -

—1 _ gyl — T
That is, from this relation, it follows that Ay = Ty 17 = oo (77
B 0 . Therefore, if|ax] < /A, this Lyapunov equation admits a
Hyv1n41 = |:le+1 N} unique positive definite solutiofl,,. This is because all the
’ eigenvalues of are either?, or 0, and the paitA=*/%T,v) is
where controllable. From (76), we then obtain
Hypon = [von  Hun] c= A" m”
and (78)
Hyvinv+1 = [Hunyt Tun] §=A"tmlly m* = AT I o v
We then get Substituting the above expressions into the definitions of the
B initial quantities
Py N1 ; ;
o — _ -1 . b _
_ ()\1\ +2HMl+1 + HM+1,N+1WN+1HM+1,N+1) {w07Q—17 ka0, €31(0), E( 1)}
o ok . —1y-1 N "
= (AY PO + O o vWnHua YY) . we get the following initial conditions:
Note that if we could choosH 4, as ¢ (=1) = p/A (79)
b _y—1 —1 o
5], = APy, o (71) Car(0) = A [ a1, 1 — c'le (80)
_ WpL,0 Whr,—1 M,—1 ( )
v}v)e ther; obtain a simple relation betweePis41 v41, g0 = Ilc (82)
MLN 7e(0) = 1. (83)
Prryings = UPy oy y T (72)  In summary, the time update of the gain vedtgr x, which

is necessary to update the optimal solution
From (72), we can obtain similar relations between the quan-

tities {garr+1,~7, Gart1, v +1F and{yar11(N), a1 (V + 1)} wam N+1 = WM, N + kamvprem (N + 1)
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TABLE |
H EXTENDED FAST ADAPTIVE FILTER FOR
MN-1 HM,N ORTHONORMAL STRUCTURES
R S—
Forward MN-1 Initialization
Prediction kM,N
.................. u is a small positive number; II is the solution to (77);
X X
. X X c is given by (78).
Hyoin-s i § Hy,n C]{/[(-l) =p/A
x X ¢4 (0) = A I oy -1 —e*Tle
—— X ot -k -0
LA Z WM0 = W, -1 M,-1
. M+1,N go = Ilc
y Tm(0) =1

Exploit Structure

Fig. 4. Schematic procedure for computing the normalized gain vector.
For N > 0, repeat.

can be efficiently performed in three steps:
1) order updatéiy, v — kar11,n [Se€ (47)];
2) time updatéeyr11 v — karg1,n+1 [See (75)].

u(N) = aou(N — 1) + /1 — |ag|2s(N)

3) order downdaté ;1 n+1 — ka,n+1 [See (68)]. am(N = 1) = u(N) - up,N_10}; y_,
Fig. 4 illustrates the above procedure for updating the normal-  fa(N —1) = yu{(N — Dap (N - 1)
ized gain vector. . _ 0 at, (N=1) 1
~ Note that whers;, = 0, we have? = I, and therefore, kM+iN-1 = kN1 MYz Ty —wl
kam41,v4+1 = kam41 v, in which case, the recursions collapse C,{,(N 1= /\C,{,(N ~2)+al (N - 1) far(N - 1)

to the FTF algorithm [2]. Moreover, (75) is the only recursion t g

that uses the fact that the input data has structure. Table | lists “M.¥-1= ¥hr,N-2 F kM',N'lfM(N -1

the resulting algorithm. Fa+1(N) =vm(N - 1)%‘“((;%12))
Remark: The above results also provide us with an initial M

rank-two factorization for the array algorithm of Section IV.

To see this, substitute the expressions (53) and (31) for ~M+uN = ¥kmriN-1

{Prry1.n, Prrar v41 ) into (31) to get vaa(N) ——:(lm entry of Bag +1.)
km,n =kumn +vam(N)gn -1
[PN 0} v [0 0 } U= LyJLY  (84) em(N) = A8 (N = 1)vi, (V)
0 0 0 Py: 1M (N) = 1—’7M+1:86;;1h(l?2’)”M(N)
where om(N) =y (N)epm(N)
. s m GG (N) = A (N - 1) + e3,(N)om(N)
Ly = [\I/ {—wf } 1 } [ M 1 ] . aN = qn-1+ ks Nom(N)
M,N—1 RETS)

(85) em(N)=d(N) —um NwM N-1

This expression provides an interpretation for the columns of &M (¥) = va(Nem (N)
Ly in terms of the filters{w?, x_,, an}- wm,N = wMN-1+ kanen(N)

VI. EVALUATION OF THE PRODUCT \IflchH,N_l

The fast algorithms in array and explicit forms require thexample, consider the prodeIzt%MHW,l in the fast algorithm
computation of the product of a vector by the matfix For of Table I. Our goal in this section is to show that this product

and
T

—CLBAl (aoal)*Ag —(aoalag)*Ag (aoalagag)*A4 0

AO Ao AO AO




MERCHED AND SAYED: EXTENDED FAST FIXED-ORDER RLS ADAPTIVE FILTERS

3025

can be evaluated efficiently by a network similar to the one of Now, note that andW—* have similar structures. In partic-

Fig. 3.

—%

ular, the submatrice®;.,,_, . and¥1;,_, . (which are defined

To begin with, recall from the discussion in Section IV thaby the rows lying between the horizontal’lines) are related as fol-
every network structure as in Fig. 2 gives rise to a relation of thews. Introduce a matri¥ that is formed by replacing thig:} }

form
u(N +1,0)*
w(N +1,1)*
w(N+1,2)*
w(N, 2)*
1 0 0 07 ru(N+1,0)"
R A1 1 0 *
=1 A()J Ao u(N, 0)
aga)’As  —ajds 44 w(N,1)*
A A 241 a2 ’
0 0 o 1 u(N,2)*
\pt*
(86)

in ¥ by their complex conjugateg; }

1 ao 0 0 0 0
0 Al AO a1 0 0 0
_ 0 —CL’{ A2A0 A2A1 ag 0 0
V= 0 CLTCL;AgAO —CL;AgAl A3A2 as 0
0 —ajajaiAg ajas Ay —aj Az As 0
Lo LA Aq A4
0 alajazazdqg —asazay AL —azaz A —ay Az 1
Asg Aa Aa Asg

Then, theseconctolumns of and¥ —* will differ by a scaling
factor, i.e.,

A2\
Vin—21 = A% -0

In other words, the entries of two successive regressors areare all other columns will coincide.

lated as above or, more compactly, recursively, as given by

7

Aicq

w(N +1,1) = a;u(N,i) +

X [w(N,i—1) —a]_ju(N +1,i—1)].

This suggests that matrix-vector products of the fgrea U—*«

can be efficiently computed as follows:

y(i) = a;z(i) + =

where{z(4),y(¢)} denote the entries dfc, y}:

z(0) y(0)
z(1) y(1)
r = Y=

y(2)

A i — 1) — (i — 1)]

(87)

Let W, . andW,_; s denote the top and last two rowsBf
respectively. Let us also partitidth; 41, y—1 as

X

k/\4+1,1\f—1 =1 k/\4+1,1\f—1(1)
kyvinv—1(2: M)

In this way, we can express the prod&o&MH, N_1aS

o ki1, N—1
3 0
U o | Afkvn—1(1)
k]\4+v1,N—1(2 : M)
B 2V BNT YR VRS W
[ kvi1,8-1(0) + afkar1,n-1(1)
= Vo K, vt

War—:m, kv, v—1

Wk/\4+1,N—1 = (88)

(89)

where we have defined

A similar recursion can be used to evaluate the entries of

Ukyrp1,v—1. TO see this, we will elaborate further on the

relation betweenr and¥—*,
Thus, recall that fodd = 5, we have

0
/ _ 27,
Matn-1 = | Agkat,n—1(1)
ka:n, n—1

and where the zero entry that appears in the center submatrix

1 ay 0 0 0 0 _ : =
0 Ay Ay at 0 0 0 \:wll cancel the center part of the first columnwf* (for M =
0 —alAng A2A1 as 0 0 O)
U= 2
0 G1G2A31110 _GQAiAl Agz‘}g Cfé 0 —ad Ay /Ao
0 _WXZS‘AO GQE 1A ﬂi{ii A_iA 0 (aoal)*A2/Ao
0 a1a2f1434a4 0 *0«21‘1:4114 1 *ai;l: 2 *7«:4 3 1 _(a0a1a2)*A3/A0
andW~* is given at the bottom of the page. andlchH?N,l(l) denotes the second entrylvqul?N,l.
I 1 0 0 0 0 0]
“ah L a 0 0 0
(apa1)" A —aj A
\Ij_* _ %{):A %*1 AQAl a9 0 0
T e . St CR R
(ntageaa) s —(isoatal s (apag) AgAT  —ajAsAs Asd} as
L 0 0 0 0 0 1 ]
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Now, comparingd—* and ¥ —*, we find that they are iden- model case, this computation simply amountéX®@M ) oper-
tical, except that th¢ay, } in ¥~ * are replaced bya;},}. There- ations.
fore, matrix-vector products of the fordr*z can be evaluated
in the same manner ds *z [i.e., as in (87) with{ay, } replaced VII. STABILITY ISSUES
by {a} }]. We thus find that the matrix produdt_}, _, &y x

- : It is well known that the original fast fixed-order RLS recur-
can be computed efficiently via

sions for shift structure data (FTF [2]), both in array and ex-
3 N = ok ; A; plicit forms, are unstable when implemented in finite precision
w1 N(E) = iR v (0) + A L arithmetic. Early mentions of such instability problems were re-
[k (6= 1) — ai_1kyan(i— 1], (90) ported in [2] and [3], even though the general idea behind the
Farsa vl ) : +1: ( d fast fixed-order algorithms had already been put forward in [4].
In summary, the matrix-vector produdtt ;1 y—1 can be Of course, the numerical effects depend on the accuracy

computed efficiently as follows. of the digital processor employed. However, increasing the
wordlengthdoes notompletely solve the divergence problem.
1. Define the vector This can be verified by running simulations of the FTF algo-

rithm in Matlab precision. It may take a while to diverge, but
divergence will almost inevitably occur. The unstable behavior
of the fast fixed-order RLS recursions can be better understood
through the concepts difackward consistencgnd minimality,
which is explained in [28]-[30] and which we briefly discuss
here. Our goal is to extend the results of the FTF algorithm in
[28]-[30] to the general case of orthonormal models.

’
kA/I+1,N—1 =

0
AgkI\/I+I,N1(1):| .

ko:pr, N—1

2. Start withk ar1,~—1(0) = 0 and repeat for = 1to M — 2

Eﬂ/erl,N(i) = a? kj‘\/[ﬁ»l,N—l@)

i

A . - .
W v (=D —aia kg v (@ = D)
A

A. Backward Consistency
This computes the center submatrix in the product (88).

3. Compute the first entry dfar 1, v @s The error propagation in fast RLS algorithm_s is_, origi_nated in
the prediction part of the recursions. The main idea is to rep-
Eari1,n(0) = knrgr,v—1(0) + agkary1, v—1(1). resent the propagated quantities of the prediction section as the

) § statesx(NV) of a nonlinear system, say
4. Compute the inner produétys 1, v (M — 1) = W1 karr1,N—1-

5. Compute the last entry &1, v Via X(N+1)=Tx(N),s(N +1)] (92)

Tong i1, N (M) = Ky v (M) = ang -1 Faria,w (M = 1). wheres(N) is the input signal, an@” is a memoryless nonlin-

earity that depends on the algorithm used. In the case of the FTF
algorithm, the states are

Step 5 is simple since, except for the last entries, the last two 1 kN an
rows of & differ only by a scaling factor-ay; ;. x(N) = { [—wf, } Gl 1/2 [ }
In the special case of a Laguerre modelhas a lower trian- Nt
gular Toeplitz-like structure C8 (N, v(N) } . (93)
1 a* 0 0 0 O
0 (1- |a|2) a* 0 0 0 Now, consider the perturbed system
10 —a(l- |a| ) (1—]a?) a* 0 0 / T
W= 0 a2(1— |a| ) —a(l— |a|2) (1_ |a|2) at 0 X(N+1) —T[X (N),S(N+1)]+5(N) (94)
0 —a? a? —a 1 0| whereé(V)is due to quantization. Then, state ersftlV) —
0 a* —a? a? —a 11 x/(N) will remain bounded if (92) is exponentially stable for
(91) all statesx(/V') contained in a certain stability regigh(V) (the
which simplifies (90) to solution manifold) and if the perturbatidrdoes not pusir’( V)
. , .y , outsideS;(N).
ke () = 0"k, v () Now, let S;(V) be the stability domain of the perturbed

+ [k vo1(i = 1) — akppr n(i — 1)) system (94). An algorithm is said to ackward consisterif

Another possibility for the computation of the above matrithe computed solution of a problem is the exact solution to a
product is to rely on fast transform techniques by embeddingP@rturbed problem. The procedure for stability analysis is to
Toeplitz matrix into a largen x n circulant matrix, which can check if Sy(N) C S;(N) for all N, in which case, its time
then be diagonalized by a DFT, DHT, or any trigonometric trangecursions will be exponentially stable (see [29]).
form matrix (note that the submatriko.;_2 1.0 is Toeplitz).
A second technique is to expreégsas the sum of circulant an
skewcirculant matrices, which again can be diagonalized by The answer to whether the fast fixed-order RLS filters are
these transforms (see [25]). stable or not relies on the fact that these represent systems with

The cost of the usual FIR FTF algorithm is known to baonminimaldimension, in which case§;(N) ¢ S;(N), as
O(7M) operations. Here, due to steps 2 and 3 in the geneslown in [28] and [29] for the FIR case. Our goal is to define

¢B- Minimality
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a similar stability domairs;( V) for the FTF algorithm for the and similarly for{ W /* (w), W**(w), K*(w)}. We then obtain
general model (22) by specifying the minimal components tfie following relation:
the state vectox(V).

Thus, consider (37), which is written as (1= 1/zw*)P(z,w*) = W/ (2)W/* (w) + K (2) K™ (w)
—WP()W"(w). (101)
[PNH 0} v [0 0 }\P
0 0 0 Pn This equation extends (10) of [29] (see also [31, pp. 697])
1 0 0o 1", to the case of (weighted) orthonormal bases [see (98)]. Now,
(N [kM’N} [kM’N} v choosew = z, and note that becausey is positive definite,
«  theright-hand side of (101) satisfies
+ )\_ILI\TJL*T _ 1 |:kM,N+1:| |:kM,N+1:|
NN+ 1) 0 0 W)W/ (2) + K(2)K*(2) — WP (2)W'(2)
(99) >0, |2]>1
, =0, |2/=1
and note that (12) can be written as <0, |7 <1
{PA(;“ 8} =271 {}8\ 8} which implies thatiw(») must not have zeros inside the unit
. circle. Note also that by choosing= 1/z*, we have that
_ 1 karn+1 | | ka, v (96) , ,
AN +1) 0 0 : W ()W (1/2%) = W/ () WI*(1/2") + K(2)K*(1/2").
Substituting (96) into (95), we obtain the following rank-3 rela- (102)
tion: Therefore, Wb(z) is seen uniquely defined from{WW/
Py 0 0o 07, (e’*), K(¢/*)} as the spectral factor of the right-hand side of
{ 0 0} — AV {0 PN:| wr (102) that has all its zeros outside the unit circle and all its

N poles inside the unit circle. The quantiy, (V) is inferred by
A 0 0 . i b i
=LyJLYy + —=T U* (97) normalizing the last coefficient dV°(z) to unity.
(V) kmw | LEa,ny Now, in order to completely characterize the minimal compo-
nents of the FTF algorithm, we further need to establish one last

where in the case of the FTE,y is defined in (85). This fac- ; ;
relation. Thus, consider the analogous of (50) for the backward

torization is analogous to (8) in [29] and suggests #1dt + 3 - _
variables are needed to propagate the solution. However, thi@igdiction problem:
actually more than the necessary to represent these variables. To A (V)

see this, consider a row vector that contains the basis functions ~ Yv+1 (VN +1) =y (N +1) (103)

oM
B (%) of (22), which is given by (N +1)
_ _ _ Using the fact thatyy; 1 (N + 1) = yp+1(N) [see (74)], we
But1(2) = [Bu(z) 27 Bu(2)A~ "7 have the following time update relation fog; (V):
where (N —=1)C (N +1
(N 4 1) = g AT D Gt
B]w(z) C]\{(N) Cj\l( )
2 [Bo(z) ) BMfl(z))\—(M—l)/Q} Solving for,,(N), with the initial conditionsy,,(0) = 1, and

{¢f,(=1),¢%,(0)} as defined in (79) and (80), we obtain
and note that the following relation holds:

— Cﬁ/l(_l) Cg/f(N)
’YM(N) RO CﬁI(N—l) (104)

Brrg1(2) A28 = [Bo(2)AY? 271Buy(2)]. (98)

Now, multiply (97) byB(~z) from the left and3*(w) fromthe Note that for shift data structure,(—1) = pA~! and

right, and define the following generating functions: ¢4,(0) = pA~ M+ 50 that (104) collapses to the well-known
. . relation
P(Z, w ) j B]W(Z)P]\TB]W(w) . (99) ( ) B )\JWC?W(N) (105)
W2 BN Bl |l -y
% 1 Equations (102) and (104) imply that, in fact, oly/ + 1 de-
1{4/2(1\7 —1) grees of freedom are needed to represent the solutionfi.e.,
LA . sro [—an 1 coefficients ofw!, (N — 1), M coefficients ofkr; vy~ 1/2(N),
Wh(z) = [Bu(z) 27 Ba(2)A™/? [ 1 } e and¢f, (N — 1)]. This is becaus&/*(z) can be obtained from
M

the spectral factorization (102), agl, (V) is inferred by nor-
(100) malizing the last coefficient df’*( ) (in the orthonormal basis
K(z) 2 2 WABy(2)kanvagt 2 (N) representation) to unity.



3028 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 12, DECEMBER 2001

(a) No rescuing
T

T

Therefore, the sei; is represented by the variables such the s
i) spectral factorization (102) is verified with respect to the;
orthonormal basis defined in (100); i
ii) with W?(») having all its zeros outside the unit circle anc™ _,
all poles inside the unit circle;
i) likelihood variable v(N) obtained from (104) satisfies
0<~y(N) <1
In this case, the minimal components of the state vee{dr)
are

1 L 1 1 L L
800 1000 1200 1400 1600 1800 2000
{b) Originai rescuing
T T T

H y }«;}(N—1>”fM’N’V—”2(N)}

—WN_1

and the error between the actual and computed quantities g-«,

WM‘LA L gl Absadad Y . J—.
L bk ot b biosai i 4 ol ot it s
L 1 L 1

1 1
—qnN b 0 200 400 600 800 1000 1200 1400 1600 1800 2000
{|: 1 7CM(N)7'Y(N) ITERATION

o ) ~ Fig. 5. (a) Extended FTF with no rescuing. (b) Original rescuing mechanism.
is interpreted as a perturbation that leads the state outside (th®escuing based on (104).
stability domains;.

Therescuing mechanisnmoposed in [3] represent a roughwith A = 0.95 in Matlab precision. It can be seen that after

e p ; ‘
way of projecting the stata’(IV) back onto the manifold; 4?10 iterations, the filter without a rescue mechanism becomes

once the likelihood variable becomes negative. The approagll; able. We observed that the rescuing mechanism that makes

used in [3] amounts to monitoring the quantity (we describe trtljese of (104) appeared to be more robust to finite precision than
procedure for our algorithm) the original rescuing mechanism of [3].
Another approach for addressing the stability problem of the
1= Y1 (N)ens (N )var (V) FTF algorithm was proposed in [27]. Although the resulting al-
gorithm is claimed to be numerically stable, the method of anal-
which appears in the denominator of (70). If it is positive, thgsis employed and the corresponding “stabilized” solution are
algorithm continues its flow. Otherwise, we restart the algorithialid only under some restrictive conditions, and instability can

as follows: still occur in practice.
The idea behind the analysis in [27] was based on introducing
UM N = redundancy into the computation of certain quantities, i.e., on

computing some variables of the FTF algorithm in two different

WMN = WM,N-1 . . . ;
ways. In so doing, it is possible to obtain measurements of the

CJJ\}(N -1= Cf{f(_l) numerical errors accumulated in these quantities. These mea-
G (V) = (5, (0) surements are then used in a feedback mechanism in order to
wj{4,1\f—1 =kyn=0 “stabilize” the recursions.
gy = e Unfortunately, this stabilization procedure assumes a re-

stricted class of stationary signals. Moreover, the forgetting
m(N) =1 factor A has to be chosen very close to unity in order to
avoid divergence (this is also the case for the nonstabilized
that is, the algorithm is reinitialized with the current optimajgorithm). This condition hinders its use in important practical
solution. In our simulations, however, we noticed that the Useélgcumstances, as for example, in high-order adaptive filtering
(104) in the rescuing section provides a more reliable solutiogchemes and in cases of nonstationary enviroments.

upm,N =0 VIIl. SIMULATION RESULTS
WM,N = WM,N-1 In this section, we run some system identification examples
b . . .
¢Ct(N) = Car(0) (N 1) using a Laguerre adaptive structure. In all experiments, the La-
51{4(_1) M guerre pole was optimized offline by adjusting the pole location

and running the experiment until maximum cancellation was ob-
served. (We remark that an efficient method to find the optimal
pole position for a certain system is currently an open problem,
ym(N) = 1. and it is beyond the scope of this work.)
Example 1—IIR System Identificatioftig. 6 compares the
Fig. 5 illustrates the use of this rescue mechanism appliedMSE performance (obtained by averaging over 100 runs of the
the extended fast RLS algorithm. We usedidn= 5-tap filter experiment) of the fast Laguerre filter with the fast FIR filter

f _ _
Wy N—-1~ kyvn =0
qn = 1lc
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Fig. 6. Comparison of a six-tap fast Laguerre filter with a 500-tap fast FIRig. 8. Comparison of a 50-tap fast Laguerre filter with a 200-tap fast FIR

filter. filter for a typical line echo impulse response.
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Fig. 7. Echo path impulse response. Fig. 9. Another echo path impulse response.

the Laguerre filter provides better cancellation during the initial
(both implemented in explicit forms). The model used for thgerations of the algorithm.
system identification example in Fig. 6 is the same from [24]) Example 3—Performance of Different AlgorithmBig. 9
shows another typical echo path for line echo cancelers.
0.0017271(1 4 0.673271) Here, the simulation was performed in order to attain the test
(1—0.3682"1)(1 — 0.81921)(1 — 0.99521) scenario specified in the G.168 standard [33] for echo cancelers.
The input used for the adaptive echo canceler was a composite

The input to the unknown model was taken as colored noise, aif§/fce signal. The performance criterion is éioo return line

the signal-to-noise ratio (SNR) at the output was 50 dB. T#EhancemenERLE), which is defined as

Laguerre filter was implemented with six taps, with the pole T )

located ata = 0.95, and the FIR filter with 500 taps. Both ERLE = 101og,, < k=n |(F)] )

filters used\ = 0.999. We see from the figure that the La- SR Edck)2

guerre-RLS algorithm presents faster convergence and achieves

a lower MSE level compared with the fast FIR-RLS algorithmwhere is a window of length 6000 (it has to be greater than
Example 2—Typical Echo Path Identificatiotig. 7 shows 5600) according to the G.168 standard.

a typical echo path for line echo cancelers. Here, the pole loca-The simulation was run with normalized LMS (NLMS), fast

tion of a Laguerre structure with 50 taps was fixediat 0.7. FIR-RLS, and fast Laguerre-RLS algorithms, with= 1. The

The corresponding fast FIR filter was simulated with 200 tapsaguerre pole location was set to= 0.7. No measurement

Fig. 8 illustrates the learning curve for both schemes. Note thadise was added at the output, and the number of coefficients

G(z) =




3030

50 T Y T T T Y T
‘o : LA AU R AR W
- imitr e AN ;
wob : . . ".\‘, ‘.. v X / ]
FIR=RLS (174 taps) ;o 4 .
.,,r‘\.
- L3
35 ’_ ’-4‘ 4 -
4 gl
1] N
g ok . 1
R '
o 1 h
N a
5 2 .: ot NLMS {174 taps) ]
- s
W
20p - E
© G168
15p “
10p E
5 N N A . 1 s :
0 0.5 1 15 2 25 3 3.5 4
lteration 4
x 10

Fig. 10. ERLE for the NLMS, fast FIR-RLS, and fast Laguerre-RLS

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 12, DECEMBER 2001

IX. CONCLUSION

We have shown that the fast fixed-order RLS algorithms
are not limited to tapped-delay-line data structures, as original
derivations in the literature suggest. The approach here, fol-
lowing [8] and [9], shows that for more general data structures,
we can derive fast filters in both array and explicit forms.

(1]

[2

(3]

algorithms.
[5]
10 T v T T T T T
A ' ' [6]
of "
e 7
-10f P E
i
-20f Lo : J [8]
I method 1
o} ! ] ]
= i
°§: i proposed method ] [10]
s
I EEY
[12]
i [13]
%0 A ; . i . ; . ; [14]
[} 10 20 30 40 50 60 70 80 100
ITERATION
[15]
Fig. 11. Simulations when two methods of implementing the hyperbolic

rotations are used.

(16]

in each adaptive filter was set such that approximately 45 dB
cancellation was obtained. Fig. 10 shows the resulting ERLH7]
The NLMS and fast FIR-RLS adaptive algorithms achieve 43
dB cancellation using 174 taps for the adaptive filters. The fast
Laguerre-RLS achieves the same cancellation with 50 adaptivé®]

coefficients.

Fig. 11 illustrates the effect of using two methods of imple-[20]

menting the hyperbolic rotations in the array-based algorithm as
described in Section IV-B. We have observed that the propos

method is more reliable than the standard method of computing
the rotation matrix®, although it can still encounter some nu- [22]

merical difficulties. In the array form, foA = 1, and using

Matlab precision, we did not notice such problems even ovep3]
long simulations. [Actually, even the fast array algorithm for re-

gression vectors with shift structure is also unstableMet 1
if the rotations are not implemented with care.]

(24]
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