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Abstract—The existing derivations of conventional fast RLS
adaptive filters are intrinsically dependent on the shift structure
in the input regression vectors. This structure arises when a
tapped-delay line (FIR) filter is used as a modeling filter. In this
paper, we show, unlike what original derivations may suggest,
that fast fixed-order RLS adaptive algorithms are not limited to
FIR filter structures. We show that fast recursions in both explicit
and array forms exist for more general data structures, such as
orthonormally based models. One of the benefits of working with
orthonormal bases is that fewer parameters can be used to model
long impulse responses.

Index Terms—Fixed-order filter, Laguerre network, or-
thonormal model, regularized least-squares, RLS algorithm.

I. INTRODUCTION

FAST recursive least squares (RLS) adaptive filtering
algorithms represent an attractive way to compute the least

squares solution of growing length data efficiently. Whereas
conventional RLS requires computations per sample,
where is the filter order, its fast versions require only
operations. Examples of such fast schemes include the fast
a posteriori error sequential technique (FAEST) [1], the fast
transversal filter algorithm (FTF) [2], and least-squares lattice
algorithms [5]–[7]. The latter class of algorithms deal with
order-recursive structures, whereas the first two examples
(FTF and FAEST) deal with fixed-order structures; both FTF
and FAEST can also be viewed as special cases of a general
fast estimation algorithm for state-space models known as the
(extended) Chandrasekhar recursions [8], [9].

The low complexity that is achieved by these algorithms is a
direct consequence of the shift structure that is characteristic of
regression vectors in FIR adaptive implementations. This fact
is evident in the conventional derivations of fast adaptive algo-
rithms, all of which rely heavily on the shift structure. The argu-
ments in [8] and [9], however, have shown that fast RLS algo-
rithms can still be derived for certain more general structures in
the regression vectors other than the shift structure. In this paper,
we show that input regression vectors that arise from more gen-
eral networks, such as orthonormal filters, satisfy the structural
conditions required in [9], and, therefore, that fast fixed-order
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RLS algorithms can be derived in this context (in [10] and [11],
we have shown that order-recursive (lattice) structures can also
be developed for Laguerre networks).

There are several important reasons to consider orthonormal
basis functions instead of the usual FIR implementations.
First, the use of orthonormal models to describe the dynam-
ical behavior of a wide class of systems has been studied
extensively in many recent works on system identification
and control [13]–[16]. Second, the orthonormality property of
such structures offers many benefits in estimation problems,
including better numerical conditioning of the data. Third, one
of the primary motivations in using IIR basis functions for
adaptive filtering is the fact that it requires fewer parameters to
model systems with long impulse responses.

In echo cancellation applications, for example, a long FIR
filter may be necessary to model the echo path, and adaptive
IIR techniques have been proposed as possible alternatives (e.g.,
[17] and [18]). These techniques are nevertheless known to face
stability problems due to the arbitrary pole locations during
filter operation. Adaptive filters based on orthonormal models
can offer an attractive alternative since, in this case, the location
of the poles is fixed. Such schemes have already been suggested
for echo cancellation and equalization applications [22], [23].
However, these earlier contributions rely on a slow RLS-type
form for adaptive algorithm that requires operations.

In this paper, we show that fast fixed-order adaptive
filters for general orthonormal models can be derived in the
least-squares domain, thus leading to fast RLS Laguerre adap-
tive schemes. One of the advantages of using a least-squares-
based adaptive scheme is that these tend to exhibit faster con-
vergence rates and smaller misadjustments than gradient-based
adaptive schemes.

II. RLS ALGORITHM

We start by reviewing the standard least-squares problem and
its recursive solution. Given a column vector and a
data matrix , the exponentially weighted least
squares problem seeks the column vector that solves

(1)

where is a positive-definite regularization matrix, and

is a weighting matrix that is defined in terms of a forgetting
factor . The symbol * denotes complex conjugate
transposition.
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The individual entries of the measurement vectorwill be
denoted by , and the individual rows of the data matrix

will be denoted by , i.e.,

...
...

Let denote the optimal solution of (1). It is given by

(2)

in terms of the coefficient matrix

(3)

Let denote the vector

(4)

which we refer to as theregularizedprojection (or simply pro-
jection) of onto the range space of , which is written as

.
Define further two estimation error vectors: thea posteriori

error vector

and thea priori error vector

where is the solution to a least-squares problem similar
to (1) with data up to time (and with replaced
by )

(5)

The minimum cost of (1) is denoted by , and it is given by1

(6)

The last entries of and are called thea posteriorianda
priori estimation errors at time , and they are given by

These are related by a conversion factor, i.e.,

(7)

where

(8)

1We may note that in the absence of regularization(� = 0), the expres-
sion for the minimum cost can also be expressed in the equivalent form�(N) =
e W e . This follows from the orthogonality propertŷy W e = 0.
However, when regularization is present, we need to use (6) instead. This fact
distinguishes the derivations we will provide for the updates of the minimum
costs of the so-called forward and backward prediction problems from those
that assume no regularization. More on this later.

The well-known RLS algorithm allows us to update recur-
sively as follows:

(9)

(10)

(11)

(12)

where , and . It also holds that
2

The computation of the gain vector in the above so-
lution relies on the propagation of the (Riccati) variable.
This method of computation requires operations per it-
eration. Fast RLS schemes, on the other hand, avoid the
propagation of and evaluate the necessary gain vector in a
more efficient manner. It turns out that the choice ofplays a
crucial role in the derivation of such fast schemes, as we now
explain.

Assume for the time being that there exists a square matrix
that relates two successive regression vectors as

(13)

Using (10), we can then relate two successive gain vectors
as follows. Define the normalized gain vector

(14)

Then

Subtracting this equality from , we find
that

(15)

This equation shows that in order to update the normalized gain
vector from time to time , it is notnecessary to evaluate
the individual but only the difference

(16)

It turns out that such differences can be updated quickly for
certain choices of and (as shown in [8] and [9] in a more
general state-space context), and this fact can be used to derive
fast RLS schemes for input data vectors with or without shift
structure, as we will explain.

III. B RIEF OVERVIEW OF IIR AND ORTHONORMAL BASIS

STRUCTURES

The objective in this section is to motivate the use of or-
thonormal filter structures. Thus, consider a stable transfer func-
tion

2We remark that without the factor� in the cost (1), the above RLS re-
cursions would not correspond to an exact least-squares solution.
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and assume that we want to estimate from noisy ob-
servations of the output signal, say, , in response to an
input sequence . Using the -transform notation, we can
write

or, equivalently

so that the available measurements satisfy

(17)

There are two common techniques for estimating the param-
eters from :

A. Equation-Error Method

Here, we replace the on the right-hand side of
(17) by so that

(18)

where is a colored noise that is obtained by filtering
through . If we ignore the dependency of the spectrum
of on the , then model (18) can be assumed to be
linear in the parameters , which can be estimated via
any linear estimation procedure (e.g., LMS) to find

(19)

A major problem with this formulation is that the estimates
become biased due to the color of the noise and

its dependency on .

B. Output-Error Method

Here, we replace the on the right-hand side of
(19) by so that the estimate is now computed
via

where the are still updated via an instantaneous-gra-
dient algorithm. One of the main drawbacks of this formulation
is the existence of multiple local minima in the corresponding
mean-squared-error surface. This implies that an adaptive so-
lution can be trapped before achieving “optimality.” An alter-
native method to overcome the problem of local minima is to
employ the so-called Steiglitz–McBride (SM) error formulation
[19], which in many cases presents global convergence.

Nevertheless, regardless of which error formulation is used,
there are still major disadvantages in considering an adaptive
IIR solution for practical purposes. These include

Fig. 1. Transversal Laguerre network.

• the necessity to monitor the poles since they can become
unstable during the process of convergence of the algo-
rithm;

• the convergence can be very slow compared with an adap-
tive FIR implementation.

These two facts constitute a major impairment facing the em-
ployment of adaptive IIR filters in practice.

C. A Priori Information on System Dynamics

One way to overcome these difficulties is to choose a fixed
IIR model structure of the form

(20)

where
parameters to be estimated;
rational transfer functions;
model order.

Note that in this formulation, the output signal does not depend
on its past values. Moreover, in this case, the estimates
will not be biased by measurement noise.

A useful modeling structure is the so-called (complex) La-
guerre model, where the are chosen as the orthonormal
set

(21)

Fig. 1 shows the corresponding network. Laguerre functions
have been studied extensively in recent works on system identi-
fication and control [13], [16] and have also been suggested for
echo cancellation purposes [22].

In this paper, we consider an extention of the Laguerre model
that allows to incorporate prior information on avariety of poles,
say, . That is, we consider

(22)

This orthonormal network is illustrated in Fig. 2. This model
was proposed in [21] in the context of system identification, and
it preserves orthonormality of the . Note that the Laguerre
model is obtained by setting all the poles to . There are
three main reasons for considering the use of such orthonormal
structures in adaptive filtering.

1) When the system to be modeled has poles, an adaptive
FIR filter can exibit poor performance in comparison with
an adaptive structure based on rational functions.
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Fig. 2. Transversal orthonormal structure for adaptive filtering.

2) Unlike the conventional IIR adaptive methods, which
present serious problems of stability, local minima, and
slow convergence, the use of prior information offers a
stable and global solution, due to fixed poles location.

3) Orthonormality guarantees good numerical conditioning
for the underlying estimation problem, in contrast with
other equivalent system descriptions. That is, note that
one could have chosen to represent the transfer func-
tion according to a partial-fraction description or a
fixed-denominator model. However, such representations
can be numerically ill-conditioned in comparison with the
orthonormal structure. Moreover, the statistical properties
of the regressors in a nonorthonormal model could lead
to data covariance matrices with large eigenvalue spread,
and the training of the coefficients could be ad-
versely affected.

IV. FAST ARRAY ALGORITHM FOR ORTHONORMAL FILTER

STRUCTURES

We now discuss how a fast least-squares adaptive filter can
be derived for trainning the structure of Fig. 2.

Thus, consider the orthonormal filter structure of Fig. 2 with
transfer function [from to ] given by

(23)
The input to the orthonormal filter at time is denoted by ,
and the coefficients that combine the outputs of the successive
lowpass sections are denoted by . Let

(24)

denote the regression vector at time. Observe that the indi-
vidual entries of are not time-delayed versions of each other.
However, as we now verify, two successive regression vectors

satisfy a relation similar to (but not exactly of the
same form as) (13) for some. (Later, we will show that we can
handle the slight discrepancy in the relation by properly defining
extended vectors.)

Fig. 3. Equivalent orthonormal structure.

To see this, consider the equivalent orthonormal network de-
picted in Fig. 3. Then

(25)

where .
Using (25), we can easily relate all the entries of two suc-

cessive regression vectors and by writing their corre-
sponding difference equations (for example, the following rela-
tions hold for the first three entries of ):

In matrix form, we can express these relations as

(26)

where is the matrix (say, for )

(27)

and

Except for the additional terms and
, (26) is of the same form as (13). This slight difference in

the nature of the relations can be handled by properly defining
extended quantities.

Thus, note that using (10) and (14), we can write

(28)
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Likewise

(29)

where the second equality follows from (26). Subtracting (28)
from (29), we obtain

(30)

This relation shows that in order to update the scaled gain vector
from to , we only need to know how to update the
difference

(31)

We now verify that it is possible to update the differences
efficiently for all .

For this purpose, we first note that for the case of prewin-
dowed input data [i.e., for and zero initial
conditions], we obtain at the initial time instant

(32)

Assume that is chosen such that the above difference has low
rank (say , where is independent of —see Section V-C).
We can then factor as

(33)

where is , and is an signature matrix
with as many s as has positive or negative eigen-
values. We will show that when this holds, successive differ-
ences for will not exceed and, more impor-
tantly, that the inertia of all these successive differences can also
be taken as . In other words, by forcing the initial difference
(32) to have low rank and a certain inertia, we end up forcing
all successive differences to have a similar property. This fact is
essential to the derivation of a fast algorithm.

A. Fast Array Algorithm

To establish the above claims we proceed by induction. As-
sume that the difference at time can be factored as

for some matrix . Define
further, for compactness of notation, the extended quantities

and

Now, implement a -unitary transformation matrix ,
i.e., satisfies that transforms the
following prearray to the form

(34)

where
positive scalar;
column vector;
matrix.

Then, we claim that we can make the identifications

and show that . (This last equation means
that the inertia of can be taken as and that the
above array algorithm provides the desired low rank factor

as well.)
To determine the as above, we proceed as follows.

Using the -unitarity of , we obtain from (34) that the
following equality holds:

(35)

Equating the (1, 1) entries on both sides of this equality, we find
that should satisfy

(36)

This allows us to identify as . Likewise,
equating the (2, 1) block entries on both sides of (34), we obtain

Comparing with (30) and using the value of, we conclude that
we can make the identification .

Finally, equating the (2, 2) entries on both sides of (35), we
find that should satisfy

(37)
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which allows us to identify as and to take the inertia
of the difference as . The resulting fast algorithm
can be summarized as follows.

(Fast Array RLS) Consider input regression vectors arising from the orthonormal

filter structure of Fig. 2 as in (24). The solution to the minimization problem (1) can be

recursively computed as follows. Start with

and from the factorization (32) and (33), and repeat for each

where is a -unitary matrix that produces the zero entries in the above post-

array, and is . The transformation matrix and the multiplication

by the matrix defined in (27) can be implemented according to the procedure described

in Sections IV-B and VI. Moreover

In Section V-C, we discuss the choice ofand the values of and . More specifically

is chosen as the unique positive-definite solution of the Lyapunov equation

as defined later in (77). Then, as described by (79)–(83) and (85)

and .

Note that when , we have , and the algorithm col-
lapses to the fast array RLS algorithm for the usual FIR input
data structure; see, e.g., [26] and [27]. In Section VI, we will fur-
ther exploit the structure of to show that the matrix product

can be obtained efficiently in opera-

tions.

B. Some Implementation Issues

Although, from a theoretical point of view, any -uni-
tary matrix that produces the zero entries in the first row of
the post-array in (34) will do, we have noticed that different im-
plementations lead to different numerical behavior. To see this,
consider for simplicity the case and .
Then, the pre- and post-arrays will be of the generic forms

In order to create the zero pattern in the first row of the post-
array, the -unitary rotation can be constructed based
solely on the first row of the pre array, which means that only
the information that is needed to update to
is required to determine. In other words, no information from
the other equations is used to update the rest of the entries of the
array. We have observed in simulations (see Section VIII) that

even for , this type of construction can cause the algorithm
to diverge in finite precision.

To improve the numerical behavior of the array algorithm, we
propose to construct as follows. First, create a zero entry in
the first row of the post-array by means of a circular (Givens)
rotation, using the entries (0, 0) and (0, 1) of the pre-array (as
indicated by the arrows)

Givens

Now, note that the additional hyperbolic rotation that is needed
to zero out the remaining entry in the first row of the post-array
also results in a zero entry in the position of the post-
array. Rather than determining this hyperbolic rotation by using
the entries (0, 0) and (0, 2) of thefirst row of the pre-array, we
propose instead to determine the hyperbolic rotation by using
the entries and of the last row of the
pre-array. That is

Hyperbolic

This choice seems to be more reasonable since in this case, the
rotation matrix is determined by using all the equations that
constitute the algorithm. We have verified by simulations (in
Matlab precision) that this method of constructingis more
reliable in terms of numerical errors (see Fig. 11).

It is important to clarify that the method or even the type of
rotations used in these recursions are not entirely responsable
for the numerical behavior of the fast RLS algorithm. In Sec-
tion VII, we will invoke the concepts ofbackward consistency
andminimalityand comment on some stability issues for such
fast RLS recursions, as done in [28]–[30].

V. EXTENDED FAST TRANSVERSAL FILTER

The recursions of Section IV provide a fast algorithm in
array form. Its cost is per iteration plus the additional
cost for implementing the rotations. An alternative description,
which is often more efficient and relies on a set of explicit
equations, can be given. This description is obtained by em-
ploying an alternative factorization for (31) that is motivated
by introducing the so-called forward and backward prediction
problems. These problems will further allow us to provide an
interpretation for the columns of in terms of forward and
backward prediction filters.

Before proceeding, we should remark that since, in the re-
mainder of this paper, we need to deal with order-recursive re-
lations, it becomes important to explicitly indicate the size of all
quantities involved (in addition to a time index). For example,
we will write instead of to indicate that it is a vector
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of order that is computed by using data up to time. We
will also write instead of to indicate that it is a ma-
trix with row vectors of size and with data up to time so
that problem (1) becomes

and its solution is . In a similar vein, we write

A. Forward Estimation Problem

Consider the input data matrix

...
...

.. .
...

whose coefficient matrix is defined by

Now, suppose that one more column is appended to from
the left, i.e.,

(38)

and let

where and are assumed to be related via

(39)

Then, it is straightforward to verify that

Inverting, we obtain

(40)

where is the solution to the reg-
ularized forward prediction least-squares problem

(41)

This problem projects onto in a regularized
manner. Let

denote the resulting (forward) estimation error vector. The quan-
tity is defined as

(42)

where is the resulting minimum cost (cf. (6))

Of course, the optimal solution of the forward prediction
problem (41) can be updated recursively via an RLS algorithm
of the form

(43)

(44)

(45)

(46)

where and is the last entry of
.

Substituting (40) into (44), it is immediate to see that we ob-
tain the order update

(47)

where is thea priori forward prediction error defined
via

where is the last entry of .
A similar order-update can be obtained for by substi-

tuting (40) into (45):

(48)

Note that (47) and (48) require the computation of the ,
which admits the well-known recursion

(49)

Combining this recursion with (48), we obtain an alternative
order update for

(50)

B. Backward Estimation Problem

Similarly to the forward estimation problem, assume now that
one more column is appended to from the right, i.e.,

(51)

Define the corresponding coefficient matrix
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where and are assumed to be related by

(52)

for some row vector and scalar to be specified. Then, using
(51), we have the equation shown at the bottom of the page.
Again, inverting both sides, we get

(53)

This equation has two main differences with respect to (40).
First, the vector is the sum of two quantities

(54)

where is given by

(55)

and is the solution to the (backward) least-squares
problem

(56)

The resulting minimum cost is

Problem (56) projects onto , and the resulting
(backward) estimation error vector is given by

Note that can be updated via a standard RLS algorithm
via

(57)

(58)

(59)

(60)

with an associateda priori backward prediction error

Substituting (60) into (55), we obtain a recursive relation for
(which is analogous to the time-update for )

This equation, combined with the time update (57) for ,
implies the following time-update for

where , and

In addition, the quantity in (53) is defined by

It is easy to obtain a time-update for this term. To see this, let us
first define the quantities

(61)

(62)

(63)

so that

The first term on the right-hand side of the above equation can
be updated similarly to

(64)

Now, multiplying the time updates for and by from
the left, the following equations can be obtained:

(65)

(66)

Adding (64)–(66), we get, after combining terms

(67)

Observe that the variables do notcorre-
spond to the exact values of the minimum costs for the back-
ward and forward prediction problems (41) and (56). Only when

and , they tend to coincide with the actual values
.

Now, multiplying (53) from the right by , we ob-
tain, similar to the forward estimation problem

(68)

where . The quantity
is usually referred to as therescue variableand can be directly
obtained as the last entry of (to be computed further
ahead).

Proceeding similarly to the derivation of (48), we also obtain

(69)
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Combining (67) and (69), we arrive at the following order up-
date for

(70)

Note that the variables and play roles similar
to thea priori anda posterioribackward prediction problems.
However, although all the quantities related to the backward pre-
diction problems satisfy identical recursive equations, here, they
have different interpretations.

C. Exploiting Data Structure

We remarked earlier in Section II that a fast algorithm would
update the gain vector to without relying on the ex-
plicit update of to . In (47), we showed how to order
update to , and using (68), we know how to order
downdate to . Thus, in order to obtain a di-
rect update from to , we still need to know how
to relate and . It turns out that in order to
relate these two variables, we need to call on the structure of the
regressors. Thus, consider again the extended quantities defined
in (26)

and let denote any invertible matrix that relates them

That is, from this relation, it follows that

where

and

We then get

Note that if we could choose as

(71)

we then obtain a simple relation between

(72)

From (72), we can obtain similar relations between the quan-
tities and .

Thus, multiplying both sides of (72) by from the right,
we get

(73)

If we further multiply (73) by from the left and subtract
1 from both sides, we find

(74)

which implies that

(75)

as desired.
In order for (72) to hold, we still need to show how to choose

, and in (52) in order to satisfy (71). Substituting (52)
and (39) into (71), we get

(76)

Now, consider the matrix in (26) and (27) and partition
as

(see the structure of in Section VI), where we have the
equations shown at the bottom of the next page. Expanding (76),
we find that should satisfy

(77)

Therefore, if , this Lyapunov equation admits a
unique positive definite solution . This is because all the
eigenvalues of are either or 0, and the pair is
controllable. From (76), we then obtain

(78)

Substituting the above expressions into the definitions of the
initial quantities

we get the following initial conditions:

(79)

(80)

(81)

(82)

(83)

In summary, the time update of the gain vector , which
is necessary to update the optimal solution
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Fig. 4. Schematic procedure for computing the normalized gain vector.

can be efficiently performed in three steps:

1) order update [see (47)];
2) time update [see (75)].
3) order downdate [see (68)].

Fig. 4 illustrates the above procedure for updating the normal-
ized gain vector.

Note that when , we have , and therefore,
, in which case, the recursions collapse

to the FTF algorithm [2]. Moreover, (75) is the only recursion
that uses the fact that the input data has structure. Table I lists
the resulting algorithm.

Remark: The above results also provide us with an initial
rank-two factorization for the array algorithm of Section IV.
To see this, substitute the expressions (53) and (31) for

into (31) to get

(84)

where

(85)

This expression provides an interpretation for the columns of
in terms of the filters .

VI. EVALUATION OF THE PRODUCT

The fast algorithms in array and explicit forms require the
computation of the product of a vector by the matrix. For

TABLE I
EXTENDED FAST ADAPTIVE FILTER FOR

ORTHONORMAL STRUCTURES

example, consider the product in the fast algorithm
of Table I. Our goal in this section is to show that this product

and
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can be evaluated efficiently by a network similar to the one of
Fig. 3.

To begin with, recall from the discussion in Section IV that
every network structure as in Fig. 2 gives rise to a relation of the
form

(86)

In other words, the entries of two successive regressors are re-
lated as above or, more compactly, recursively, as given by

This suggests that matrix-vector products of the form
can be efficiently computed as follows:

(87)

where denote the entries of

...
...

A similar recursion can be used to evaluate the entries of
. To see this, we will elaborate further on the

relation between and .
Thus, recall that for , we have

and is given at the bottom of the page.

Now, note that and have similar structures. In partic-
ular, the submatrices and (which are defined
by the rows lying between the horizontal lines) are related as fol-
lows. Introduce a matrix that is formed by replacing the
in by their complex conjugates

Then, thesecondcolumns of and will differ by a scaling
factor, i.e.,

and all other columns will coincide.
Let and denote the top and last two rows of,

respectively. Let us also partition as

In this way, we can express the product as

(88)

(89)

where we have defined

and where the zero entry that appears in the center submatrix
will cancel the center part of the first column of (for
)

and denotes the second entry of .
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Now, comparing and , we find that they are iden-
tical, except that the in are replaced by . There-
fore, matrix-vector products of the form can be evaluated
in the same manner as [i.e., as in (87) with replaced
by ]. We thus find that the matrix product
can be computed efficiently via

(90)

In summary, the matrix-vector product can be
computed efficiently as follows.

1. Define the vector

2. Start with and repeat for to

This computes the center submatrix in the product (88).

3. Compute the first entry of as

4. Compute the inner product

5. Compute the last entry of via

Step 5 is simple since, except for the last entries, the last two
rows of differ only by a scaling factor .

In the special case of a Laguerre model,has a lower trian-
gular Toeplitz-like structure

(91)

which simplifies (90) to

Another possibility for the computation of the above matrix
product is to rely on fast transform techniques by embedding a
Toeplitz matrix into a larger circulant matrix, which can
then be diagonalized by a DFT, DHT, or any trigonometric trans-
form matrix (note that the submatrix is Toeplitz).
A second technique is to expressas the sum of circulant and
skew-circulant matrices, which again can be diagonalized by
these transforms (see [25]).

The cost of the usual FIR FTF algorithm is known to be
operations. Here, due to steps 2 and 3 in the general

model case, this computation simply amounts to oper-
ations.

VII. STABILITY ISSUES

It is well known that the original fast fixed-order RLS recur-
sions for shift structure data (FTF [2]), both in array and ex-
plicit forms, are unstable when implemented in finite precision
arithmetic. Early mentions of such instability problems were re-
ported in [2] and [3], even though the general idea behind the
fast fixed-order algorithms had already been put forward in [4].

Of course, the numerical effects depend on the accuracy
of the digital processor employed. However, increasing the
wordlengthdoes notcompletely solve the divergence problem.
This can be verified by running simulations of the FTF algo-
rithm in Matlab precision. It may take a while to diverge, but
divergence will almost inevitably occur. The unstable behavior
of the fast fixed-order RLS recursions can be better understood
through the concepts ofbackward consistencyandminimality,
which is explained in [28]–[30] and which we briefly discuss
here. Our goal is to extend the results of the FTF algorithm in
[28]–[30] to the general case of orthonormal models.

A. Backward Consistency

The error propagation in fast RLS algorithms is originated in
the prediction part of the recursions. The main idea is to rep-
resent the propagated quantities of the prediction section as the
states of a nonlinear system, say

(92)

where is the input signal, and is a memoryless nonlin-
earity that depends on the algorithm used. In the case of the FTF
algorithm, the states are

(93)

Now, consider the perturbed system

(94)

where is due to quantization. Then, state error
will remain bounded if (92) is exponentially stable for

all states contained in a certain stability region (the
solution manifold) and if the perturbationdoes not push
outside .

Now, let be the stability domain of the perturbed
system (94). An algorithm is said to bebackward consistentif
the computed solution of a problem is the exact solution to a
perturbed problem. The procedure for stability analysis is to
check if for all , in which case, its time
recursions will be exponentially stable (see [29]).

B. Minimality

The answer to whether the fast fixed-order RLS filters are
stable or not relies on the fact that these represent systems with
nonminimaldimension, in which case, , as
shown in [28] and [29] for the FIR case. Our goal is to define
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a similar stability domain for the FTF algorithm for the
general model (22) by specifying the minimal components of
the state vector .

Thus, consider (37), which is written as

(95)

and note that (12) can be written as

(96)

Substituting (96) into (95), we obtain the following rank-3 rela-
tion:

(97)

where in the case of the FTF, is defined in (85). This fac-
torization is analogous to (8) in [29] and suggests that
variables are needed to propagate the solution. However, this is
actually more than the necessary to represent these variables. To
see this, consider a row vector that contains the basis functions

of (22), which is given by

where

and note that the following relation holds:

(98)

Now, multiply (97) by from the left and from the
right, and define the following generating functions:

(99)

(100)

and similarly for . We then obtain
the following relation:

(101)

This equation extends (10) of [29] (see also [31, pp. 697])
to the case of (weighted) orthonormal bases [see (98)]. Now,
choose , and note that because is positive definite,
the right-hand side of (101) satisfies

which implies that must not have zeros inside the unit
circle. Note also that by choosing , we have that

(102)

Therefore, is seen uniquely defined from
as the spectral factor of the right-hand side of

(102) that has all its zeros outside the unit circle and all its
poles inside the unit circle. The quantity is inferred by
normalizing the last coefficient of to unity.

Now, in order to completely characterize the minimal compo-
nents of the FTF algorithm, we further need to establish one last
relation. Thus, consider the analogous of (50) for the backward
prediction problem:

(103)

Using the fact that [see (74)], we
have the following time update relation for

Solving for , with the initial conditions , and
as defined in (79) and (80), we obtain

(104)

Note that for shift data structure, and
, so that (104) collapses to the well-known

relation

(105)

Equations (102) and (104) imply that, in fact, only de-
grees of freedom are needed to represent the solution [i.e.,
coefficients of coefficients of
and ]. This is because can be obtained from
the spectral factorization (102), and is inferred by nor-
malizing the last coefficient of (in the orthonormal basis
representation) to unity.
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Therefore, the set is represented by the variables such that

i) spectral factorization (102) is verified with respect to the
orthonormal basis defined in (100);

ii) with having all its zeros outside the unit circle and
all poles inside the unit circle;

iii) likelihood variable obtained from (104) satisfies
.

In this case, the minimal components of the state vector
are

and the error between the actual and computed quantities

is interpreted as a perturbation that leads the state outside the
stability domain .

The rescuing mechanismsproposed in [3] represent a rough
way of projecting the state back onto the manifold
once the likelihood variable becomes negative. The approach
used in [3] amounts to monitoring the quantity (we describe the
procedure for our algorithm)

which appears in the denominator of (70). If it is positive, the
algorithm continues its flow. Otherwise, we restart the algorithm
as follows:

that is, the algorithm is reinitialized with the current optimal
solution. In our simulations, however, we noticed that the use of
(104) in the rescuing section provides a more reliable solution:

Fig. 5 illustrates the use of this rescue mechanism applied to
the extended fast RLS algorithm. We used an -tap filter

Fig. 5. (a) Extended FTF with no rescuing. (b) Original rescuing mechanism.
(c) Rescuing based on (104).

with in Matlab precision. It can be seen that after
450 iterations, the filter without a rescue mechanism becomes
unstable. We observed that the rescuing mechanism that makes
use of (104) appeared to be more robust to finite precision than
the original rescuing mechanism of [3].

Another approach for addressing the stability problem of the
FTF algorithm was proposed in [27]. Although the resulting al-
gorithm is claimed to be numerically stable, the method of anal-
ysis employed and the corresponding “stabilized” solution are
valid only under some restrictive conditions, and instability can
still occur in practice.

The idea behind the analysis in [27] was based on introducing
redundancy into the computation of certain quantities, i.e., on
computing some variables of the FTF algorithm in two different
ways. In so doing, it is possible to obtain measurements of the
numerical errors accumulated in these quantities. These mea-
surements are then used in a feedback mechanism in order to
“stabilize” the recursions.

Unfortunately, this stabilization procedure assumes a re-
stricted class of stationary signals. Moreover, the forgetting
factor has to be chosen very close to unity in order to
avoid divergence (this is also the case for the nonstabilized
algorithm). This condition hinders its use in important practical
circumstances, as for example, in high-order adaptive filtering
schemes and in cases of nonstationary enviroments.

VIII. SIMULATION RESULTS

In this section, we run some system identification examples
using a Laguerre adaptive structure. In all experiments, the La-
guerre pole was optimized offline by adjusting the pole location
and running the experiment until maximum cancellation was ob-
served. (We remark that an efficient method to find the optimal
pole position for a certain system is currently an open problem,
and it is beyond the scope of this work.)

Example 1—IIR System Identification:Fig. 6 compares the
MSE performance (obtained by averaging over 100 runs of the
experiment) of the fast Laguerre filter with the fast FIR filter
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Fig. 6. Comparison of a six-tap fast Laguerre filter with a 500-tap fast FIR
filter.

Fig. 7. Echo path impulse response.

(both implemented in explicit forms). The model used for the
system identification example in Fig. 6 is the same from [24])

The input to the unknown model was taken as colored noise, and
the signal-to-noise ratio (SNR) at the output was 50 dB. The
Laguerre filter was implemented with six taps, with the pole
located at , and the FIR filter with 500 taps. Both
filters used . We see from the figure that the La-
guerre-RLS algorithm presents faster convergence and achieves
a lower MSE level compared with the fast FIR-RLS algorithm.

Example 2—Typical Echo Path Identification:Fig. 7 shows
a typical echo path for line echo cancelers. Here, the pole loca-
tion of a Laguerre structure with 50 taps was fixed at .
The corresponding fast FIR filter was simulated with 200 taps.
Fig. 8 illustrates the learning curve for both schemes. Note that

Fig. 8. Comparison of a 50-tap fast Laguerre filter with a 200-tap fast FIR
filter for a typical line echo impulse response.

Fig. 9. Another echo path impulse response.

the Laguerre filter provides better cancellation during the initial
iterations of the algorithm.

Example 3—Performance of Different Algorithms:Fig. 9
shows another typical echo path for line echo cancelers.

Here, the simulation was performed in order to attain the test
scenario specified in the G.168 standard [33] for echo cancelers.
The input used for the adaptive echo canceler was a composite
source signal. The performance criterion is theecho return line
enhancement(ERLE), which is defined as

ERLE

where is a window of length 6000 (it has to be greater than
5600) according to the G.168 standard.

The simulation was run with normalized LMS (NLMS), fast
FIR-RLS, and fast Laguerre-RLS algorithms, with . The
Laguerre pole location was set to . No measurement
noise was added at the output, and the number of coefficients
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Fig. 10. ERLE for the NLMS, fast FIR-RLS, and fast Laguerre-RLS
algorithms.

Fig. 11. Simulations when two methods of implementing the hyperbolic
rotations are used.

in each adaptive filter was set such that approximately 45 dB
cancellation was obtained. Fig. 10 shows the resulting ERLE.
The NLMS and fast FIR-RLS adaptive algorithms achieve 45
dB cancellation using 174 taps for the adaptive filters. The fast
Laguerre-RLS achieves the same cancellation with 50 adaptive
coefficients.

Fig. 11 illustrates the effect of using two methods of imple-
menting the hyperbolic rotations in the array-based algorithm as
described in Section IV-B. We have observed that the proposed
method is more reliable than the standard method of computing
the rotation matrix , although it can still encounter some nu-
merical difficulties. In the array form, for , and using
Matlab precision, we did not notice such problems even over
long simulations. [Actually, even the fast array algorithm for re-
gression vectors with shift structure is also unstable for
if the rotations are not implemented with care.]

IX. CONCLUSION

We have shown that the fast fixed-order RLS algorithms
are not limited to tapped-delay-line data structures, as original
derivations in the literature suggest. The approach here, fol-
lowing [8] and [9], shows that for more general data structures,
we can derive fast filters in both array and explicit forms.
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