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An Efficient Carrier Phase Synchronization Technique
for High-Order M-QAM–OFDM

Ki Yun Kim, Qiyue Zou, Hyung Jin Choi, and Ali H. Sayed

Abstract—In this correspondence, we propose a blind carrier phase syn-
chronization algorithm for high-order M-ary quadrature amplitude mod-
ulation–orthogonal frequency division multiplexing (M-QAM–OFDM)
systems, which can effectively recover residual frequency offset (RFO) in
the presence of intercarrier interference (ICI). The proposed algorithm
performs frequency and phase synchronization by using post-fast Fourier
transform (FFT) demodulated signals without the aid of reference sig-
nals (e.g., pilots, guard intervals, and virtual carriers), and is simple to
implement. By analyzing its open-loop characteristics, we show that the
proposed algorithm is superior to the conventional decision-directed (DD)
scheme for high-order M-QAM–OFDM systems.

Index Terms—Intercarrier interference (ICI), M-ary quadrature
amplitude modulation–orthogonal frequency division multiplexing
(M-QAM–OFDM), phase noise, residual frequency offset (RFO),
synchronization.

I. INTRODUCTION

One significant disadvantage of orthogonal frequency division mul-
tiplexing (OFDM) over single-carrier systems is its high sensitivity
to carrier frequency offset (CFO), which is caused by Doppler shifts
and/or mismatches between the oscillators at the transmitter and re-
ceiver [1], [2]. CFO destroys the orthogonality among subcarriers and
gives rise to intercarrier interference (ICI), thus resulting in severe bit
error rate (BER) degradation. CFO becomes particularly critical for
higher order constellations.
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Various methods have been proposed for estimating CFO. Most
existing techniques are based on feedforward schemes that exploit
pilot symbols or cyclic prefixes for fast frequency synchronization
[3], [4]. However, in continuous transmission systems like digital
video broadcasting–terrestrial (DVB–T), where high bandwidth ef-
ficiency is crucial, nondata-aided feedback approaches are preferred
[5]–[8]. In particular, decision-directed (DD) schemes combined
with closed-loop control have been traditionally used to track and
compensate for residual frequency offset (RFO) [5]–[9]. However,
the performance of DD schemes degrades significantly in high-order
M-ary quadrature amplitude modulation–orthogonal frequency divi-
sion multiplexing (M-QAM–OFDM) systems, because its acquisition
range of RFO shrinks severely with the increase of the M-QAM order
[9]. In this correspondence, we extend the work in [10] and propose a
so-called quadrant-decision (QD) algorithm, which provides more ro-
bustness in RFO acquisition and a larger detection range of phase error
than the conventional DD method in high-order M-QAM–OFDM.

II. SIGNAL MODEL

Consider that in an OFDM system the mth OFDM symbol Xm(k),
k = 0; 1; . . . ; N�1, is ready for transmission. The OFDM modulation
obtains a block of time-domain symbols xm(n), n = 0; 1; . . . ; N �1.
Let h(n) be the discrete-time impulse response function of the equiva-
lent baseband channel. Assume that h(n) has length L, i.e., h(n) = 0
if n 6= 0; 1; . . . ; L�1. Ideally, if the cyclic prefix length is no less than
L�1, the received time-domain symbols ym(n), n = 0; 1; . . . ; N�1,
are then given by the circular convolution of xm(n) and h(n) plus ad-
ditive white Gaussian noise wm(n), i.e.,

ym(n) =

N�1

l=0

h(l)xm((n� l)N)+wm(n); n = 0; 1; . . . ; N �1

(1)
where (n� l)N stands for ((n� l) modN). However, in the presence
of RFO, we have

ym(n) = e
j(2��n=N+� )

N�1

l=0

h(l)xm((n� l)N) +wm(n);

n = 0; 1; . . . ; N � 1 (2)

where � is the normalized carrier frequency offset and �0 is the initial
phase error.1 After performing the Fourier transform on ym(n), we get

Ym(k) = Im(k) [H(k)Xm(k)]

=

N�1

l=0

H(l)Xm(l)Im((k� l)N) +Wm(k) (3)

where Ym(k) is the received symbol in the kth subcarrier, H(k) is
the channel response of the kth subcarrier and is given by the Fourier
transform of h(n), and Im(k) is the Fourier transform coefficients of
the carrier phase error components ej(2��n=N+� ), n = 0; 1; . . . ; N �
1. Since �0 is usually different from symbol to symbol, Im(k) is also
different from symbol to symbol. It can be shown that

Im(k) =
1

N

N�1

n=0

e
j(2��n=N+� )

e
�j(2�kn=N)

=
ej� 1� ej2�(��k)

N (1� ej(2�=N)(��k))

=
sin[�(�� k)]

N sin[ �
N
(�� k)]

e
j(�(N�1)(��k)=N+� ) (4)

1Usually, � is different from symbol to symbol.
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Fig. 1. Block diagram of the conventional DD phase detector.

for k = 0; 1; . . . ; N � 1. Expression (3) can be rewritten as

Ym(k) =H(k)Xm(k)Im(0)

+

N�1

l=0; l 6=k

H(l)Xm(l)Im((k� l)N) +Wm(k);

k = 0; 1; . . . ; N � 1 (5)

where H(k)Xm(k)Im(0) is the desired signal term and
N�1
l=0; l6=kH(l)Xm(l)Im((k� l)N) is the ICI term. In the absence of

RFO, i.e., where � = 0, (5) becomesYm(k) = H(k)Xm(k)+Wm(k).
If � 6= 0, the desired signal component is

H(k)Xm(k)Im(0) = H(k)Xm(k)
sin (��)

N sin ��
N

ej(�(N�1)�=N+� )

(6)
where sin (��) = (N sin(��=N)) and exp(j (�(N � 1)�=N + �0))
represent the amplitude and phase distortions to Xm(k), respectively.
From (6), it can be seen that the signal amplitude reduction increases
as � becomes larger and that the amount of phase rotation is nearly
equal to �� if N is sufficiently large. The ICI term consists of in-
terferences from other subcarriers and will be assumed to behave
like additive Gaussian noise. Consequently, as the frequency offset
� becomes larger, the amplitude of the desired signal component
H(k)Xm(k)Im(0) decreases and the unwanted ICI becomes bigger.
These facts make the conventional DD method perform poorly in large
RFO scenarios.

In general, the M-QAM signalXm(k) has random characteristics. If
XI
m(k) and XQ

m(k) represent the I and Q channels of Xm(k), respec-
tively, then E[XI

m(k)] = E[XQ
m(k)] = 0 and E[Xm(k)X�

m(l)] =
�2X�k;l, where �2X is the average power of the transmitted signals. This
means that the modulated subcarrier signals have zero mean and are un-
correlated with each other.

III. PROPOSED SYNCHRONIZATION ALGORITHM

A. Conventional DD Scheme

Before describing the proposed quadrant decision (QD) scheme, we
first explain the traditional DD algorithm as shown in Fig. 1. Assuming
that the channel is perfectly equalized and coarse CFO is already com-
pensated for, the signal Zm(k) = Ym(k)=H(k) is processed by DD
processing to generate the decision signal Xm(k), which is the closest
QAM signal in the transmitted M-QAM constellation. From Zm(k)

Fig. 2. Block diagram of the proposed QD phase detector.

and the corresponding decision Xm(k), the phase difference of each
subcarrier signal is estimated by the following [5], [6], [9]:

�m(k) = arctan
ImfZm(k)X�

m(k)g

RefZm(k)X�
m(k)g

: (7)

In practical implementations, �m(k) is often approximated by
ImfZm(k)=Xm(k)g to avoid the calculation of arctan in (7) [5]. This
method is simple to implement but its accuracy is worse than (7),
and it can only be applied in closed-loop implementations. Averaging
the phase differences over a subset 
 of modulated subcarriers then
produces an estimate of the common phase error for the mth OFDM
symbol

�m;ave =
1

L0
k2


�m(k) (8)

where L0 is the size of 
. The estimated phase error �m;ave is then
used to derotate the FFT-output signals to compensate for the common
phase error and is fed into the carrier tracking loop to control the RFO.

B. Proposed QD Scheme

The block diagram of the proposed QD algorithm is shown in Fig. 2.
The power detector selects symbols with jZm(k)j � � and jH(k)j � 
(usually this can be implemented as jZm(k)j2 � � 2 and jH(k)j2 � 2

in order to avoid the square root operation). The selected subcarrier
signals are considered to have relatively higher signal-to-noise ratio
(SNR), and these symbols are located at the four corners of the constel-
lation square. For illustration purposes, a 64-QAM constellation with
� = 0:05 is plotted in Fig. 3. The constellation illustrates the effects of
amplitude reduction and phase rotation due to RFO, as mentioned be-
fore. The ICI components distort the constellation like additive white
Gaussian noise [5]. If we only consider the signal points outside the
circle, they look like a scattered quaternary phase-shift keying (QPSK)
constellation with some phase rotation and noises. Based on this obser-
vation, if the selected signals in each quadrant are averaged, the results
tend to converge to points on the diagonal axes of the rotated constella-
tion. This implies that a QPSK-like constellation can be obtained, from
which we can evaluate the amount of common phase error.

In order to reduce the complexity of calculation at each quadrant, we
use a quadrant detector to decide the quadrant of each demodulated sub-
carrier signalZm(k). The signals in the second, third, and fourth quad-
rants, which are detected by the quadrant detector, are rotated into the
first quadrant to calculate phase difference by the following operations:

1) first quadrant: retain the signal;
2) second to first : fZI

2;m(k)+jZQ
2;m(k)ge�j(�=2) = ZQ

2;m(k)�

jZI
2;m(k);

3) third to first : fZI
3;m(k) + jZQ

3;m(k)gej� = �ZI
3;m(k) �

jZQ
3;m(k);

4) fourth to first : fZI
4;m(k)+ jZQ

4;m(k)gej(�=2) = �ZQ
4;m(k)+

jZI
4;m(k);
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Fig. 3. The 64 QAM constellation with ICI.

whereZI
i;m(k) andZQ

i;m(k) are, respectively, the I andQ components
of the signal Zi;m(k) detected in the ith quadrant. The operations are
simply performed by proper polarity inversion and exchange of po-
sitions of real and imaginary parts of Zi;m(k) without multiplication
operation as shown in Fig. 2. Then, we sum the resulting signals in the
first quadrant to obtain

Z
I
m=

k2


Z
I
1;m(k)+ZQ

2;m(k)�ZI
3;m(k)�ZQ

4;m(k) (9)

Z
Q
m=

k2


Z
Q
1;m(k)�ZI

2;m(k)�ZQ
3;m(k)+ZI

4;m(k) (10)

where Z
I
m and Z

Q
m are the real and imaginary parts of the summation.

The estimate of the phase error 	m can then be computed as the phase
differences between the diagonal axes of the rotated and desired con-
stellations, i.e.,

	m = arctan
Z
Q
m

Z
I
m

�
�

4
: (11)

The estimated phase error	m of themth M-QAM–OFDM symbol can
be utilized for phase compensation and/or residual frequency compen-
sation. In [5] and [6], the estimated phase error obtained from using the
DD scheme is used for not only compensation of phase offset caused
by RFO but also the phase noise compensation. In a similar manner, the
proposed QD algorithm can be used for compensation of phase noise
and other phase impairments, but in this correspondence, we focus on
RFO compensation.

IV. PERFORMANCE ANALYSIS

In this section, the performance of the proposed QD algorithm is an-
alyzed. We first assume that the receiver has perfect information about
the channel, and then generalize the results to the case when the channel
estimates have errors. Since the ICI component is given by a summa-
tion of many independent identically distributed (i.i.d.) terms, the fol-
lowing analysis assumes that it is Gaussian distributed. Also, H(k),
k = 0; 1; . . . ; N � 1, are assumed to be i.i.d. complex circularly sym-
metric Gaussian with mean zero and variance �2H . Hence, jH(k)j2 is
exponentially distributed as

jH(k)j2 �
1

�2H
e
�(1=� )jH(k)j

: (12)

In addition, the frequency offset and initial phase error are regarded as
deterministic components in the analysis.

A. Perfect Channel Information

If the channel response H(k) is exactly known by the receiver, it
follows from (5) that

Zm(k) =
Ym(k)

H(k)
= Im(0)Xm(k)

+

N�1

l=0; l 6=k

H(l)

H(k)
Xm(l)Im((k� l)N) +

Wm(k)

H(k)
: (13)

Let �2W be the variance of Wm(k) and

�
2
1 =E

jH(l)j2

jH(k)j2
jH(k)j2 � 

2
; l 6= k

�
2
2 =E

1

jH(k)j2
jH(k)j2 � 

2
: (14)

Conditioned on the transmitted symbol Xm(k), Zm(k) is distributed
as

Zm(k) � CN Im(0)Xm(k); �2X�
2
1

N�1

k=1

jIm(k)j2 + �
2
W�

2
2

(15)
where CN (�; �2) denotes the complex circularly symmetric Gaussian
distribution with mean � and variance �2.

Recall that the exponential integral function Ei (x) is defined as

Ei (x) = �
1

�x

e�u

u
du: (16)

Then, �22 and �21 can be represented by

�
2
2 =E

1

jH(k)j2
jH(k)j2 � 

2

=
1

�2H

1

 =�

1

x
e
�x
dx = �

1

�2H
Ei �

2

�2H
(17)

and

�
2
1 =E

jH(l)j2

jH(k)j2
jH(k)j2 � 

2
; l 6= k

=E jH(l)j2 E
1

jH(k)j2
jH(k)j2�2 =�Ei �

2

�2H
:

(18)

By (4), we have

N�1

k=1

jIm(k)j2 = 1� jIm(0)j2 = 1�
sin2(��)

N2 sin2 ��
N

(19)

which leads to

Zm(k) � CN
sin (��)

N sin ��
N

e
j(�(N�1)�=N+� )

Xm(k);

�
2
X�

2
1 1�

sin2(��)

N2 sin2 ��
N

+ �
2
W�

2
2 : (20)

Here, Xm(k) might be any symbol in the M-QAM constellation. As-
sume there areM constellation symbols xi, i = 1; 2; . . . ;M , and they
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are transmitted with equal probability. We need to compute the contri-
bution of each constellation point to the output of the QD scheme. To
do so, we denote the selected region in the first quadrant by

A(�) = fz : jzj � �; Re fzg � 0; Im fzg � 0g : (21)

For a general circularly symmetric complex Gaussian distribution
p(z ; x; �2) with mean x and variance �2, i.e.,

p(z ; x; �2) =
1

��2
e�(1=� )jz�xj (22)

we define its associated truncated distribution over the region A(� ) as

p(z ; x; �2; � ) =
p(z ; x; �2)

P (x; �2; � )
; z 2 A(� )

0; z =2 A(� )

(23)

where the parameters x and �2 are the mean and variance of the orig-
inal Gaussian distribution, and P (x; �2; � ) is the total probability of
p(z ; x; �2) in A(� ), i.e.,

P (x; �2; � ) =
1

��2 A(�)

e�(1=� )jz�xj dz: (24)

It can thus be shown that the received symbols Z1;m(k) in A(� ) are
distributed according to

Z1;m(k)

�

M

i=1

cip z ;
sin (��)

N sin ��
N

ej(�(N�1)�=N+� )xi;

�2X�
2
1 1�

sin2(��)

N2 sin2 ��
N

+ �2W�22 ; � (25)

where (26), shown at the bottom of the page, accounts for the weight of
each constellation point in the distribution of Z1;m(k). For any given
triple (x; �2; � ), let �(x; �2; � ) and �(x; �2; � ) be the mean and vari-
ance of the distribution p(z;x; �2; � ), respectively, i.e.,

�(x; �2; � ) = Ep(z;x;� ;�)[z] (27)

and

�(x; �2; � ) = Ep(z;x;� ;�)jzj
2 � j�(x; �2; � )j2 (28)

whereEp(z;x;� ;�)[�] means the expectation is taken with respect to the
distribution p(z;x; �2; � ). The mean �m and variance �m of Z1;m(k)
are then given by

�m =E[Z1;m(k)]

=

M

i=1

ci�
sin (��)

N sin ��
N

ej(�(N�1)�=N+� )xi;

�2X�
2
1 1�

sin2(��)

N2 sin2 ��
N

+ �2W�22 ; � (29)

and

�m

= var [Z1;m(k)]

=

M

i=1

ci�
sin (��)

N sin ��
N

ej(�(N�1)�=N+� )xi;

�2X�
2
1 1�

sin2(��)

N2 sin2 ��
N

+ �2W�22 ; �

+

M

i=1

ci �
sin (��)

N sin ��
N

ej(�(N�1)�=N+� )xi;

�2X�
2
1 1�

sin2(��)

N2 sin2 ��
N

+�2W�22 ; � � �m

2

:

(30)

To compute the mean and variance of Zm = Z
I
m + jZ

Q
m [see (9)

and (10)], we notice that the average number of selected symbols in all
the four quadrants is 4P0j
j, where j
j is the number of subcarriers
used for the estimation and

P0 =Pr jZ1;m(k)j2 � � 2; jH(k)j2 � 2

=Pr jZ1;m(k)j2 � � 2 H(k)j2 � 2 Pr jH(k)j2 � 2

=
1

M

M

i=1

P
sin (��)

N sin ��
N

ej(�(N�1)�=N+� )xi;

�2X�
2
1 1�

sin2(��)

N2 sin2 ��
N

+�2W�22 ; � e� =�

is the probability that a transmitted symbol enters the selected region
in the first quadrant. Applying the Wald’s equation obtains

E Zm = 4P0j
j�m and var Zm = 4P0j
j�m: (31)

ci =

P
sin (��)

N sin ��
N

ej(�(N�1)�=N+� )xi; �
2
X�

2
1 1�

sin2(��)

N2 sin2 ��
N

+ �2W�22 ; �

M

i=1

P
sin (��)

N sin ��
N

ej(�(N�1)�=N+� )xi; �2X�
2
1 1�

sin2(��)

N2 sin2 ��
N

+ �2W�22 ; �

(26)
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When j
j ! 1, by the strong law of large numbers, we have

Z
I

m

4P0j
j
! Ref�mg and

Z
Q

m

4P0j
j
! Imf�mg (32)

almost surely. Hence, as j
j ! 1

	m = arctan
Z
Q

m

Z
I

m

�
�

4
! arctan

Imf�mg

Ref�mg
�
�

4
(33)

almost surely. When j
j is large but finite, we approximate 	m by
using its Taylor series expansion2

	m = arctan
Z
Q

m

Z
I

m

�
�

4

= arctan

Z

4P j
j

Z

4P j
j

�
�

4

� arctan

E[Z ]

4P j
j

E[Z ]

4P j
j

�
�

4

+
1

1 +
E[Z ]

E[Z ]

2

�Z
Q

m

E[Z
I

m]
�
E[Z

Q

m]�Z
I

m

E[Z
I

m]
2

= arctan
Imf�mg

Ref�mg
�
�

4
+

1

1 + Imf� g
Ref� g

2

�
�Z

Q

m

4P0j
jRef�mg
�

4P0j
jImf�mg�Z
I

m

(4P0j
jRef�mg)
2 (34)

where �Z
I

m = Z
I

m � E[Z
I

m] and �Z
Q

m = Z
Q

m � E[Z
Q

m] are i.i.d.
Gaussian with mean zero and variance 2P0j
j�m. This approximation
then leads to the following approximation:

E[	m] � arctan
Imf�mg

Ref�mg
�
�

4

and

var [	m] �

�

8P j
j

Ref�mg2 + Imf�mg2
: (35)

Moreover, the mean squared error (MSE) is given by

MSE =E 	m � �0 +
�(N � 1)�

N

2

=var [	m] + E [	m]� �0 +
�(N � 1)�

N

2

�

�

8P j
j

Ref�mg2 + Imf�mg2

+ arctan
Imf�mg

Ref�mg
�
�

4
� �0 +

�(N�1)�

N

2

:

(36)

2That is
arctan

x

y
�arctan

x

y
+

1

1+

1

y
(x�x )�

x

y
(y�y ) :

B. Imperfect Channel Information

If H(k) is obtained through some training-based method, the esti-
mated channel response H(k) is subject to some errors. Let

H(k) = H(k) + �H(k); k = 0; 1; . . . ; N � 1 (37)

where �H(k)models the estimation error and has mean zero and vari-
ance �2�H . Assume that �H(k) is also circularly symmetric complex
Gaussian and is independent of H(k). It then follows that H(k) =
H(k) � �H(k) is also Gaussian and has mean zero and variance
�2
H

= �2H + �2�H . Substituting (37) into (5) gives

Ym(k) = H(k)Xm(k)Im(0) +

N�1

l=0; l 6=k

H(l)Xm(l)Im((k� l)N)

+

N�1

l=0

�H(l)Xm(l)Im((k� l)N) +Wm(k) (38)

where H(k)Xm(k)Im(0) is the desired signal component,
N�1
l=0; l6=kH(l)Xm(l)Im((k � l)N) is the ICI component, and
N�1
l=0 �H(l)Xm(l)Im((k � l)N) + Wm(k) is the effective noise

component. Let

W
0
m(k) =

N�1

l=0

�H(l)Xm(l)Im((k� l)N) +Wm(k): (39)

Assume that W 0
m(k) is also Gaussian. It has zero mean and variance

�
2
W = �

2
X�

2
�H + �

2
W : (40)

This analysis shows that the channel estimation errors have two ef-
fects. One is to increase the noise variance from �2W (in the absence
of channel estimation errors) to �2W , and the other is to increase the
variance of the channel coefficients from �2H to �2

H
. Therefore, the per-

formance of the proposed algorithm for this scenario can still be com-
puted by using the equations derived in Section IV-A. Specifically, by
changing �2W and �2H to �2W and �2H , respectively, (35) and (36) give
the mean and MSE of 	m.

The aforementioned analysis shows how the performance of the pro-
posed algorithm can be computed by theory, providing a method to se-
lect the optimal values for the thresholds � and . Fig. 4(b) compares
the computer simulated performance and the theoretically predicted
performance by (36). It can be seen that the simulation and analysis
match each other very well.

V. COMPUTER SIMULATION RESULTS

In the simulations, the channel response has length 6 and each tap is
independently Rayleigh distributed. The SNR at the receiver is defined
as

SNR =
E[jH(k)j2jXm(k)j

2]

E[jWm(k)j2]
=

�2H�
2
X

�2W
: (41)

The S-curves of the conventional DD scheme for different M-QAM
constellation sizes are plotted in Fig. 4(a). The S-curve is generally
used for evaluating phase detector performance by representing the ex-
pectation of the error signals for a given frequency offset �. Ideally, it
is desirable that the S-curve exhibits a longer linear relationship over
frequency offsets. The figure shows that the S-curves have a linear re-
lationship in the region centered around � = 0. However, the linear
range of the S-curves shrinks as the constellation size becomes larger.
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Fig. 4. Open loop characteristics. (a) S-curve of the DD method for N = 256,
SNR = 20 dB and perfect channel information. (b) MSE of the QD method for
N = 64 (� = 1:4), N = 256 (� = 1:9), N = 1024 (� = 1:9),
N = 2048 (� = 1:9),  = 0:25, 64QAM, SNR = 20 dB, and perfect
channel information. (c) Comparison of the MSE of different algorithms for
N = 2048, 64QAM, SNR = 20 dB, � = 1:9, and  = 0:25.

In Fig. 4(a), the zero crossing occurs at about � = �0:25, which cor-
responds to the maximum distinguishable phase rotation in the com-
plex plane. Fig. 4(b) shows the MSE characteristics of the QD phase
detector for different FFT sizes. Since its output 	m is expected to
be identical to the common phase rotation �(N � 1)�=N , the MSE
between 	m and ��(N � 1)=N is computed in order to verify the

effectiveness of the QD algorithm. Even though the QD method with
larger FFT sizes has better performance in terms of the MSE, it can
also be applied to smaller FFT sizes by using the closed-loop control
technique. In Fig. 4(c), three algorithms are compared. They are the
conventional DD method, the DD outer method, and the proposed al-
gorithm, where the DD outer method is the DD method performed on
the outer symbols selected by the proposed power detector. The QD al-
gorithm exhibits lowest MSE and largest linear frequency acquisition
range. The DD outer method is better than the DD method, but worse
than the QD method in terms of acquisition range. Fig. 4(c) also shows
the performance of the DD and QD algorithms when the channel esti-
mates are imperfect with error variance �2�H = 0:01�2H .

VI. CONCLUSION

In this correspondence, we proposed a new QD carrier phase
synchronization algorithm for M-QAM–OFDM systems by using
post-FFT demodulated signals. Since the algorithm does not require
any reference signals, it saves bandwidth. Compared to the conven-
tional DD scheme, the QD algorithm is more robust to the ICIs and
provides a larger frequency offset acquisition range. Furthermore,
the proposed method is simple to implement by using addition and
comparison operations. The QD algorithm can also be effectively used
in ICI cancellation and phase noise elimination. Optimal selection of
the threshold values � and  will be pursued in future work.
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