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Incremental Adaptive Strategies Over
Distributed Networks

Cassio G. Lopes, Student Member, IEEE, and Ali H. Sayed, Fellow, IEEE

Abstract—An adaptive distributed strategy is developed based
on incremental techniques. The proposed scheme addresses the
problem of linear estimation in a cooperative fashion, in which
nodes equipped with local computing abilities derive local es-
timates and share them with their predefined neighbors. The
resulting algorithm is distributed, cooperative, and able to re-
spond in real time to changes in the environment. Each node is
allowed to communicate with its immediate neighbor in order to
exploit the spatial dimension while limiting the communications
burden at the same time. A spatial–temporal energy conservation
argument is used to evaluate the steady-state performance of the
individual nodes across the entire network. Computer simulations
illustrate the results.

Index Terms—Adaptive networks, consensus, cooperation, dif-
fusion algorithm, distributed processing, incremental algorithm.

I. INTRODUCTION

DISTRIBUTED processing deals with the extraction of in-
formation from data collected at nodes that are distributed

over a geographic area. For example, each node in a network
of nodes could collect noisy observations related to a certain
parameter or phenomenon of interest. The nodes would then in-
teract with their neighbors in a certain manner, as dictated by
the network topology, in order to arrive at an estimate of the
parameter or phenomenon of interest. The objective is to arrive
at an estimate that is as accurate as the one that would be ob-
tained if each node had access to the information across the en-
tire network. In comparison, in a traditional centralized solution,
the nodes in the network would collect observations and send
them to a central location for processing. The central processor
would then perform the required estimation tasks and broad-
cast the result back to the individual nodes. This mode of opera-
tion requires a powerful central processor, in addition to exten-
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Fig. 1. Distributed network with N nodes accessing temperature data.

Fig. 2. Monitoring a diffusion phenomenon by a network of sensors deployed
in the field.

sive amounts of communication between the nodes and the pro-
cessor. In the distributed solution, the nodes rely solely on their
local data and on interactions with their immediate neighbors.
The amount of processing and communications is significantly
reduced [1]–[3].

A. Applications

Let us illustrate these ideas with an example. Consider a col-
lection of nodes spread over a geographic area, as shown in
Fig. 1. Each node has access to a local temperature measurement

. The objective is to provide each node with information about
the average temperature across the network. In one distributed
solution to this problem (known as a consensus implementation
[4]–[6]), each node combines the measurements from its imme-
diate neighbors (those that are connected to it). The result of the
combination becomes this node’s new measurement, i.e.,

node 1

where denotes the updated measurement of node 1 at iter-
ation , and the ’s are appropriately chosen coefficients. Every
other node in the network performs the same operation and the
process is repeated. Under suitable conditions on the ’s and
network topology, all node measurements will converge asymp-
totically to the desired average temperature .

A more sophisticated application is to use measurements col-
lected in time and space by a group of sensors in order to monitor
the concentration of a chemical in the air or water (see Fig. 2).
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Fig. 3. Three modes of cooperation: (a) Incremental; (b) diffusion; and (c)
probabilistic diffusion.

These measurements can then be used to estimate the parame-
ters of the model that dictates the diffusion of the
chemical in the environment according to some diffusion equa-
tion subject to boundary conditions, e.g.,

where denotes the concentration at location at time
[7]. Another application of distributed processing is monitoring
a moving target in a region monitored by a collection of sensors
[8]. The sensors would share their noisy measurements through
local interactions in order to detect the presence of the target and
track its trajectory.

Such distributed networks linking PCs, laptops, cell phones,
sensors, and actuators will form the backbone of future data
communication and control networks. Applications will range
from sensor networks to precision agriculture, environment
monitoring, disaster relief management, smart spaces, target
localization, as well as medical applications [1], [8]–[10]. In all
these cases, the distribution of the nodes in the field yields spa-
tial diversity, which should be exploited alongside the temporal
dimension in order to enhance the robustness of the processing
tasks and improve the probability of signal and event detection
[1].

B. Modes of Cooperation

Obviously, the effectiveness of any distributed implementa-
tion will depend on the modes of cooperation that are allowed
among the nodes. Fig. 3 illustrates three such modes of cooper-
ation.

In an incremental mode of cooperation, information flows
in a sequential manner from one node to the adjacent node.
This mode of operation requires a cyclic pattern of collabora-
tion among the nodes, and it tends to require the least amount
of communications and power [2], [11], [12]. In a diffusion im-
plementation, on the other hand, each node communicates with
all its neighbors as dictated by the network topology [13]–[15].
The amount of communication in this case is higher than in
an incremental solution. Nevertheless, the nodes have access to
more data from their neighbors. The communications in the dif-
fusion implementation can be reduced by allowing each node to
communicate only with a subset of its neighbors. The choice of
which subset of neighbors to communicate with can be random-
ized according to some performance criterion. In this paper, we
focus on the incremental mode of collaboration.

C. Consensus Strategy

The temperature example that we mentioned before is a spe-
cial case of a more general strategy for distributed processing,
known as consensus (e.g., [4]–[6], and [16]). Broadly, consensus
implementations employ two time scales and they function as
follows. Assume the network is interested in estimating a cer-
tain parameter. Each node collects observations over a period
of time and reaches an individual decision about the parameter.
During this time, there is limited interaction among the nodes;
the nodes act more like individual agents. Following this initial
stage, the nodes then combine their estimates through several
consensus iterations; under suitable conditions, the estimates
generally converge asymptotically to the desired (global) esti-
mate of the parameter.

Let us consider another example of a consensus implementa-
tion, which will serve as further motivation for the contributions
in this work. Consider again a collection of nodes. Each node
has access to a data vector and a data matrix . The are
noisy and distorted measurements of some unknown vector ,
as follows:

Each node can evaluate the least-squares estimate of based
on its own local data . To do so, each node evaluates
its local cross-correlation vector and its autocor-
relation matrix . Then, the local estimate of
can be found from . This operation requires that
each node collects sufficient data into and . Once the local
quantities have been evaluated at the individual nodes,
one can apply consensus iterations at the nodes to determine
and , which are estimates of the overall (mean) quantities
and defined by [13], as follows:

and

A global estimate of is given by . For all prac-
tical purposes, a least-squares implementation in this manner is
an offline or nonrecursive solution. For example, if a particular
node collects one more entry in and one more row in , a
difficulty that occurs is how to update the current solution to
account for new data without having to repeat prior processing
and iterations afresh. In addition, the offline averaging limits the
ability of consensus-based solutions to track fast-changing en-
vironments, especially in networks with limited communication
resources.

D. Contributions

To address the aforementioned issues (need for adaptive
implementations, real-time operation, and low computational
and communications complexity), we propose a distributed
least-mean-squares (LMS)-like algorithm that requires less
complexity for both communications and computations and
inherits the robustness of LMS implementations [17]. The
proposed solution promptly responds to new data, as the
information flows through the network. It does not require
intermediate averaging as in consensus implementations; it
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neither requires two separate time scales. The distributed
adaptive solution is an extension of adaptive filters and can be
implemented without requiring any direct knowledge of data
statistics; in other words, it is model independent. While we
focus in this paper on LMS-type updates for simplicity, the
same ideas and techniques apply to other types of adaptation
rules.

Our objective is therefore to develop distributed algorithms
that enable a network of nodes to function as an adaptive entity
in its own right. Thus, recall that a regular adaptive filter re-
sponds in real time to its data and to variations in the statistical
properties of this data. We want to extend this ability to the net-
work domain [12], [18], [19]. Specifically, the purpose of this
paper is threefold:

1) to motivate a family of incremental adaptive algorithms for
distributed estimation inspired by distributed optimization
techniques [2], [20], [21];

2) to use the incremental algorithms to propose an adaptive
network structure composed of an interconnected set of
nodes that is able to respond to data in real time and to
track variations in the statistical properties of the data as
follows:

a) each time a node receives a new piece of information,
this information is readily used by the node to update
its local estimate of the parameter of interest;

b) the local estimates of the parameter are shared with
the immediate neighbors of the node in a process that
allows the information to flow to other nodes in the
network;

3) to analyze the performance of the resulting interconnected
network of nodes. This task is challenging since an adap-
tive network comprises a “system of systems” that pro-
cesses data cooperatively in both time and space. Different
nodes will converge to different mean-square-error (MSE)
levels, reflecting the statistical diversity of the data and the
different noise levels.

In summary, we propose an incremental adaptive algorithm
over ring topologies and derive closed form expressions for its
mean-square performance.

E. Notation and Paper Organization

In this paper, we need to distinguish not only between vectors
and matrices, but also between random and nonrandom quanti-
ties (see, e.g., [17]). Thus, we adopt boldface letters for random
quantities and normal font for nonrandom (deterministic) quan-
tities. We also use capital letters for matrices and small letters
for vectors. For example, is a random observation quantity,
and is a realization or measurement for it, and is a covari-
ance matrix while is a weight vector. The notation is used to
denote complex conjugation for scalars and complex-conjugate
transposition for matrices.

The paper is organized as follows. In Section II, a distributed
estimation problem is formulated and a framework for dis-
tributed adaptive processing is described, with the subsequent
derivation of a distributed incremental LMS algorithm. In
Section III, the performance of the temporal and spatial adap-
tive strategy is studied, providing closed-form expressions for
the mean-square behavior of the distributed algorithm. The

Fig. 4. Distributed network withN active nodes accessing space–time data.

theoretical results are compared with simulations in Section IV.
Section V points out future extensions that are currently being
developed.

II. ESTIMATION PROBLEM AND THE ADAPTIVE

DISTRIBUTED SOLUTION

There have been extensive works in the literature on incre-
mental methods for solving distributed optimization problems
(e.g., [2], [11], [20], [22], and [23]). It is known that whenever
a cost function can be decoupled into a sum of individual cost
functions, a distributed algorithm can be developed for mini-
mizing the cost function through an incremental procedure. We
explain the procedure as follows in the context of MSE estima-
tion.

Consider a network with nodes (see Fig. 4). Each node
has access to time realizations of zero-mean spa-
tial data , , where each is a scalar
measurement and each is a row regression vector.
We collect the regression and measurement data into two global
matrices, as follows:

(1)

(2)

These quantities collect the data across all nodes. The objec-
tive is to estimate the vector that solves

(3)

where the cost function denotes the MSE, as follows:

(4)

and is the expectation operator. The optimal solution of
(3) satisfies the orthogonality condition [17]

(5)

so that is the solution to the normal equations

(6)

which are defined in terms of the correlation and cross-correla-
tion quantities

(7)

If the optimal solution were to be computed from (6), then
every node in the network would need to have access to the
global statistical information . Alternatively, the so-
lution could be computed centrally and the result broadcast
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to all nodes. Either way, these approaches drain considerable
communications and computational resources and they do not
endow the network with the necessary adaptivity to cope with
possible changes in the statistical properties of the data.

We shall instead develop and study a distributed solution that
allows cooperation among the nodes through limited local com-
munications, while at the same time equipping the network with
an adaptive mechanism [12]. Specifically, in this paper we focus
on the incremental mode of cooperation, where the estimation
task is distributed among the nodes and each node is allowed to
cooperate only with one of its direct neighbors at a time. The
single-neighbor case is already challenging in its own right, and
the analysis will bring forth several interesting observations. Ex-
tensions to other modes of cooperation are possible [15], [18],
[19].

A. Steepest-Descent Solution

To arrive at the adaptive distributed solution we first review
the steepest-descent solution and its incremental implementa-
tion. To begin with, we note from (4) and (7) that the cost func-
tion can be decomposed as

(8)

where each is given by

(9)

(10)

and the second-order moment quantities are defined by

and
(11)

In other words, can be expressed as the sum of indi-
vidual cost functions , one for each node . Thus, the tra-
ditional iterative steepest-descent solution for determining
can be expressed in the form

initial condition

(12)

where is a suitably chosen positive step-size parameter,
is an estimate for at iteration , and denotes

the gradient vector of with respect to evaluated at .
For sufficiently small, we will have as
for any initial condition. An equivalent implementation can be
motivated as follows.

Let us define a cycle visiting every node over the network
topology only once such that each node has access only to its
immediate neighbor node in this cycle [2], [11], [21]. Let

Fig. 5. Data processing in the proposed adaptive distributed structure.

denote a local estimate of at node at time . Thus, assume
that node has access to , which is an estimate of at
its immediate neighbor node in the defined cycle (see
Fig. 5). If at each time instant we start with the initial condition

at node 1 (i.e., with the current global estimate
for ), and iterate cyclicly across the nodes then, at the

end of the procedure, the local estimate at node will coincide
with from (12), i.e., . In other words, the following
implementation is equivalent to (12):

(13)

Observe that in this steepest-descent implementation, the itera-
tion for is over the spatial index .

B. Incremental Steepest-Descent Solution

Although recursion (13) is cooperative in nature, with each
node using information from its immediate neighbor (repre-
sented by ), this implementation still requires the nodes to
have access to the global information in order to evaluate

. This fact undermines our stated objective of a fully
distributed solution.

In order to resolve this difficulty, we call upon the concept of
incremental gradient algorithms [11], [20], [21]. If each node
evaluates the required partial gradient at the local esti-
mate received from node , as opposed to , then
an incremental version of algorithm (13) would result, namely

(14)
This cooperative scheme relies only on locally available in-

formation, leading to a truly distributed solution. The scheme
requires each node to communicate only with its immediate
neighbor, thus saving on communication and energy resources
[2], [11].

C. Incremental Adaptive Solution

The incremental solution (14) relies on knowledge of the
second-order moments and , which are needed to
evaluate the local gradients . An adaptive implementation
of (14) can be obtained by replacing the second-order moments
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by instantaneous approximations, say of the
LMS type, as follows1:

(15)

by using data realizations at time . The approx-
imations (15) lead to an adaptive distributed incremental algo-
rithm, or simply a distributed incremental LMS algorithm of the
following form:

For each time repeat:

(16)

The operation of algorithm (16) is illustrated in Fig. 5. At
each time instant , each node uses local data realizations

and the weight estimate received from its
adjacent node to perform the following three tasks:

1) evaluate a local error quantity: ;

2) update its weight estimate: ;

3) pass the updated weight estimate to its neighbor node
.

This distributed incremental adaptive implementation generally
has better steady-state performance and convergence rate than
a nondistributed implementation that is based on using in
place of in the expression for (see Appendix A), i.e.,

(17)
This is a reflection of a result in optimization theory that the
incremental strategy (14) can outperform the steepest-descent
technique (13), [20], [21]. Intuitively, this is because the incre-
mental solution incorporates local information on-the-fly into
the operation of the algorithm, i.e., it exploits the spatial diver-
sity more fully. While the steepest-descent solution (13) has

fixed throughout all spatial updates,
the incremental solution (14) uses instead the successive up-
dates . More detailed comparisons be-
tween both implementations are provided in Appendix A.

In order to illustrate these observations, we run a simulation
comparing the excess mean-square error (EMSE) of the incre-
mental adaptive algorithm (16) and the stochastic implementa-
tion (17) at node 1, i.e., —see Figs. 6 and
7. The network has nodes pursuing the same unknown
vector , with , and relying
on independent Gaussian regressors with . The back-
ground noise is white and Gaussian with , and we
assume the data are related via for each
node. The curves are obtained by averaging over 500 experi-
ments. Fig. 6 shows the transient EMSE performance for both

1Other approximations are possible and they lead to alternative adaptation
rules [17].

Fig. 6. Transient EMSE performance at node 1 for both incremental adaptive
solution (16) and stochastic steepest-descent solution (17).

Fig. 7. Steady-state EMSE performance at node 1 as �! 0 for both the incre-
mental adaptive solution (16) and the stochastic steepest-descent solution (17).

algorithms, whereas Fig. 7 plots the steady-state values for de-
creasing step sizes, obtained by averaging the last 1000 samples
after convergence.

In terms of complexity, the incremental solution (16) requires
computations per node and also scalar transmis-

sions per node. As such, the algorithm is intrinsically simple and
is especially suitable for networks with low-energy resources.

III. PERFORMANCE ANALYSIS

An important question now is, how well does the adaptive in-
cremental solution (16) perform? That is, how close does each

(local estimate at node ) get to the desired solution
as time evolves? Studying the performance of such an intercon-
nected network of nodes is challenging (more so than studying
the performance of a single LMS filter) for the following rea-
sons:

1) each node is influenced by local data with local statistics
(spatial information);

2) each node is influenced by its neighbors through the in-
cremental mode of cooperation (spatial interaction);

3) each node is subject to local noise with variance (spa-
tial noise profile).

In the next section, we provide a framework for studying the
performance of such network by examining the flow of energy
through the network both in time and space. For instance,
we shall derive expressions that measure for each node the
steady-state values and as . It
will be shown that despite the quite simple cooperation strategy
adopted, in steady-state each individual node is affected by the
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whole network, with some emphasis given to local statistics.
Furthermore, as the step size is decreased asymptotically, both
quantities [mean-square deviation (MSD) and EMSE] approach
zero for every node in the network, which also drives the MSE
for every node asymptotically to the background noise level

.
In order to pursue the performance analysis, we shall rely on

the energy conservation approach of [17]. This energy-based ap-
proach needs to be extended to account for the space dimension
because the distributed adaptive algorithm (16) involves both
a time variable and a space variable . Moreover, we need
to deal with the energy flow across interconnected filters and
since each node in the network can now stabilize at an individual
MSE value, some of the simplifications that were possible in
the single node case [17] cannot be applied here. For example,
due to cooperation, the performance of every node ends up de-
pending on the whole network, an effect which we shall capture
by a set of coupled equations. In order to evaluate individual
node performance, weighting will be used to decouple the equa-
tions and to evaluate the quantities of interest in steady state.

The main result of this section is Theorem 1, further ahead,
which provides closed-form expressions for the performance of
each node in the network in terms of the so-called MSE, MSD,
and EMSE measures defined next.

A. Data Model and Assumptions

To carry out the performance analysis, we first need to as-
sume a model for the data as is commonly done in the literature
of adaptive algorithms. As indicated earlier, we denote random
variables by boldface letters. Thus, are realizations
of the random quantities . The subsequent analysis
assumes the following data model for :

A1) the desired unknown vector relates as

(18)

where is some temporally and spatially white
noise sequence with variance and independent of

for all ;
A2) is independent of for (spatial indepen-

dence);
A3) is independent of for (time indepen-

dence).

Linear models of the form (18) arise in several applications [7],
[13], [17], [24], [25]. The model (18) assumes that the network
is attempting to estimate an unknown vector . This is often
referred to as the stationary model. It captures the space di-
mension by assigning different signals at different
nodes . The time dimension is accounted for by sequentially
observing the temporal evolution of such signals. The signals

can be regarded simply as observations and mea-
surements, collected locally by the nodes or, for example, as
excitation/response pairs. The subsequent analysis can be ex-
tended to handle nonstationary models where also varies
with time ([17], [26]). For space limitations, we study here only

the stationary case. Nevertheless, the distributed adaptive solu-
tion (16) also applies to nonstationary scenarios. Moreover, as
is common in the study of traditional adaptive filters, we are
assuming that the regressors are spatially and temporally inde-
pendent to simplify the analysis. However, the distributed adap-
tive solution applies regardless of the assumptions, although the
analysis would be far more demanding.

B. Weighted Energy Conservation Relation

To proceed, we define the following local error signals at each
node :

weight error vector at time (19)

a priori error (20)

a posteriori error (21)

output error (22)

It should be noted that we are using traditional terminology
(e.g., as in [17]), except that now the terms “a priori” and
“a posteriori” have a spatial connotation as opposed to tem-

poral connotation. The vector measures the difference
between the weight estimate at node and the desired so-
lution . The signal measures the estimation error in
approximating by using information available locally,
i.e., . If were to converge to , then by (18)
we would expect , so that the variance of
would tend to . Thus, by evaluating how close
gets to , we can estimate the performance of node . Note
that the error can be related to the a priori error
by using the data model (18) as

(23)

Hence, , so that evaluating
is useful for evaluating .

We are interested in evaluating the MSD, the MSE, and the
EMSE in steady state for every node . These quantities are
defined as follows:

MSD (24)

EMSE (25)

MSE (26)

In order to arrive at expressions for these quantities, we shall
find it useful to resort to weighted norms as we now explain. In-
troduce the weighted norm notation for a vector

and a Hermitian positive definite matrix . Then, under
the assumed data conditions we have that

(27)
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In other words, we need to evaluate the means of two weighted

norms of in (27). To do so, we shall first establish that
there is a fundamental spatio–temporal energy balance relating
the error variables (19)–(21).

We start by defining weighted a priori and a posteriori local
error signals for each node as follows:

and (28)

for some Hermitian positive-definite matrix that we are free
to choose. As we shall see later, different choices for allow us
to evaluate and examine different performance measures [17],
[27]. We now seek an energy relation that compares the norms
of the following error quantities:

(29)

Using algorithm (16) and subtracting from both sides gives

(30)

Multiplying the previous equation from the left by gives

(31)

so that from the definitions (28)

(32)

and, subsequently

(33)

Substituting (33) into (30) and rearranging terms, we get

(34)

Equating the weighted norm of both sides of (34), we find that
the cross terms cancel out, and we end up with only energy
terms, i.e.,

(35)

Equation (35) is a space–time version of the weighted energy
conservation relation developed in [17] in the context of regular
adaptive implementations. This is an exact relation that shows
how the energies of several error variables are related to each
other in space and time. No approximations are used to derive
(35).

C. Variance Relation

We now proceed to show how the energy conservation rela-
tion can be used to evaluate the performance of each individual
node. First, we drop the time index for compactness of nota-
tion. Then, we transform the relation (35) into a recursion of

by substituting (32) into (35) and rearranging terms, as
follows:

(36)
Using (23) and taking expectations of both sides leads to

(37)

Using again the weighted error definitions (28), we can expand
(37) in terms of weighted error vectors and the regressor data as
follows:

(38)

Now, given that , the previous equa-
tion can be rewritten more compactly as

(39)

in terms of the stochastic weighting matrix

(40)

Invoking the independence of the regression data allows
us to write

(41)

so that (39) and (40) become

(42)

where is given by

(43)
and is now a deterministic matrix.

D. Gaussian Data

Recursion (42) is a spatial variance relation that will allow us
to evaluate the steady-state performance of every node . Note
that in (43) is solely regressor dependent, and, therefore, its
value is decoupled from (42). As a consequence, the study of
the network behavior relies solely on the evaluation of the three
data moments, as follows:

and
(44)

The evaluation of the third moment can be involved for non-
Gaussian data [17]. In this paper, we assume Gaussian data
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for simplicity. Thus, assume that the arise from a cir-
cular Gaussian distribution and introduce the eigendecomposi-
tion , where is unitary and is a diagonal
matrix with the eigenvalues of . Introduce further the trans-
formed quantities

Since is unitary, we have that and
, so that (42) and (43) can be rewritten in the

equivalent forms

(45)

(46)

The moments we need to evaluate are now , ,
and . The first two moments are straightforward
since

and (47)

The third moment is given for Gaussian regressors by [17]

(48)

where for circular complex data and for real data.
Substituting (47) and (48) into the variance relation (45), (46)
leads to

(49)

(50)

E. Diagonalization

Since is at our choice, we choose it such that both and
will become diagonal in (50). This suggests a more compact

notation in terms of the diagonal entries of and . Thus,
introduce the column vectors

(51)

where the notation will be used in two ways:
is a diagonal matrix whose entries are those of

the vector , and is a vector containing the main
diagonal of .

Using the diagonal notation, expression (50) can be rewritten
in terms of as

(52)

where the coefficient matrix is defined by

(53)

Moreover, expression (49) becomes

(54)

For the sake of compactness, the notation will be
dropped from the subscripts in (54), keeping only the corre-
sponding vectors

(55)

where we are restoring the time index for clarity, and we
are replacing by in order to indicate that the
weighting matrix can be node dependent.

F. Steady-State Behavior

Let and (a row vector). Then, for
(i.e., in steady state), the variance relation (55) gives

(56)

We want to use this expression to evaluate the performance mea-
sures, as follows:

MSD (57)

EMSE (58)

MSE (59)

with weighting vectors and . Observe, however, that (56) is a
coupled equation: it involves both and , i.e., information
from two spatial locations. The ring topology together with the
weighting matrices can be exploited to resolve this difficulty.

Thus, note that by iterating (56) we get a set of coupled
equalities

...

(60)

...

(61)

These equations can be solved for via a suitable choice
of the free parameters and proper manipulation of the
equations. Thus, note that (61) expresses in terms
of . Then, choosing in
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(60) gives

(62)
so that

(63)

Iterating in this manner, we end up with an equality involving
only , namely

(64)

It is convenient to define, for each node , a set of matrices
in terms of products of matrices

(65)
where the subscripts are all . The matrix can be
interpreted as the transition matrix that is necessary for the
weighting vector to reach node cyclicly through nodes

. With this definition, we can
rewrite (64) as

(66)

where the row vector is defined as

(67)

Likewise, the vector has the interpretation of the combined
effect of transformed noise and local data statistics reaching
node from other nodes over the ring topology.

Recall that we wish to evaluate and
. Thus, different choices of the weighting vector

in (66) should enable us to calculate the quantities that
describe the steady-state behavior of each node. Selecting the
weighting vector as the solution of the linear equation

, we arrive at an expression for the desired
MSD:

MSD (68)

Likewise, for the EMSE, we choose the weighting vector
as the solution of so that

EMSE (69)

We summarize the results in the following theorem. The
statement quantifies the performance of a spatio–temporal
distributed adaptive solution.

Theorem 1: Consider a distributed adaptive scheme of the
form (16) with space–time data satisfying the
model (18) and the assumptions A1)–A3) in Section III-A.
Assume further that the regressors are circularly Gaussian.
The steady-state performance of each node in the mean-square
sense is given by

MSD

EMSE

MSE

where and are defined by (65) and (67), respectively,
the vectors and are defined by (51) and (57), and

.

Analyzing these results, we find that the presence of the ma-
trix and the vector indicate that every node individually
experiences the influence of the entire network, with some em-
phasis given to the local statistics, as represented by and by

.
For small step sizes, , i.e., becomes a

diagonal matrix. As a result, matrix
will be diagonal as well and can be approximated by its domi-
nant terms, i.e.,

so that

and . From (68), we get

as , which reveals an interesting behavior. Despite the
quite simple cooperation mode (i.e., incremental), for small step
sizes, there is an equalization effect on the MSD throughout the
network, suggesting that the intermediate averaging procedures
in consensus implementations, as mentioned in the introduction,
can be avoided. This result has been confirmed in the simula-
tions, even though the step size there was relatively large (see
Fig. 10). Note that making drives the MSD to zero for
every node in the network. In the same vein, the EMSE for small
step sizes is given by

which also goes asymptotically to zero as , causing the
MSE to achieve the background noise level everywhere.

IV. SIMULATIONS

In this section, we provide computer simulations comparing
the theoretical performance to simulation results. Although the
analysis relied on the independence assumptions, all simulations
were carried out using regressors with shift structure to cope
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with realistic scenarios. Therefore, the regressors are filled up
as

(70)

In order to generate the performance curves, 100 independent
experiments were performed and averaged. The steady-state
curves are generated by running the network learning process
for 50 000 iterations. The quantities of interest, namely, MSD,
EMSE, and MSE, are then obtained by averaging the last 5000
samples of the corresponding learning curves. The measurement
data are generated according to the model (18) with the
(unknown) vector set as .

Two kinds of curves are presented. One kind depicts the
steady-state quantities as a function of the node for a partic-
ular choice of the step size . These curves can be used to guide
the design of the network. For instance, they tell the designer
how to adjust the step-size at a certain node to compensate
for a signal power increase in nearby nodes. Or even, how the
filters are affected by a noise power increase at some nodes in
the network. A second kind of curve depicts the behavior of
the steady-state quantities as a function of the step size for a
particular node. These curves evaluate the quality of the the-
oretical model [17]. Usually, large deviations between theory
and simulation are expected for bigger step sizes: that is, when
the simplifying assumptions adopted in the analysis are no
longer reasonable; therefore, curves like those in Figs. 13–15
have a strong theoretical appeal.

In this example, the network consists of nodes, with
each regressor of size (1 10) collecting data by observing a
time-correlated sequence , generated as

(71)

Here, is the correlation index and is a spa-
tially independent white Gaussian process with unit variance
and . It is straightforward to show that
the resulting regressors have Toeplitz covariance matrices ,
with correlation sequence ,

. The regressor power profile , the correla-
tion indexes and the Gaussian noise variances

were chosen at random and are depicted
in Fig. 8(a) and (b) and 9(a), respectively. The corresponding
signal-to-noise ratio (SNR) is plotted in Fig. 9(b).

One can see in Figs. 10–15 a good match between theory and
simulations, even for larger step sizes. Note also that despite the
diverse statistical profile, the MSD in Fig. 10 is roughly even
over the network, with a deviation of 0.25 dB at 20.5 dB.
On the other hand, the EMSE and the MSE are more sensitive
to local statistics, as depicted in Figs. 11 and 12. In Fig. 12,
one also sees that the MSE roughly reflects the noise power,
which indicates the good performance of the adaptive network:
in steady state if the adaptive node is performing well, is
a good estimate for . Therefore, from (23), we would have
that the residual error should be close to the background
noise.

(a) (b)

Fig. 8. (a) Regressor power profile. (b) Correlation index per node.

(a) (b)

Fig. 9. (a) Noise power profile. (b) Signal-to-noise ratio profile.

It would be desirable to drive the whole network to an equal-
ized performance, as in Fig. 10. A good step-size design, to-
gether with the cooperative scheme that has been proposed, may
take advantage of the spatial diversity provided by the adaptive
network. By properly tuning the step size at each node, a good
level of performance equalization could be achieved throughout
the network. For instance, the network could be driven to the
performance of nodes 11 and 16 in Fig. 12; nodes presenting
poor performance, or high noise level, can be assigned with
small step sizes, such that, in the limit case, they would become
simply relay nodes.

V. REMARKS AND FUTURE WORK

Several efforts have been pursued in the literature to develop
distributed estimation schemes based on consensus strategies. In
[13], a distributed approximate least-squares solution for a lim-
ited number of measurements was proposed, using one measure-
ment per node; the resulting solution is not adaptive. The orig-
inal formulation was extended for the multiple measurements
case in [14], and the solution lies on two time scales. Both algo-
rithms achieve asymptotically the least-squares solution. They
involve matrix products and matrix inversions at every node and
every iteration leading to computational complexity per
node and communication complexity per node.

In the context of Kalman filtering, some of the proposed
strategies for distributed estimation are not fully distributed and
rely on hierarchical architectures or central processing nodes
[28], [29]. By relying on consensus strategies for distributed
processing, some approximate distributed Kalman implemen-
tations are also available [16], [30]. However, they suffer from
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Fig. 10. MSD versus node—� = 0:03.

Fig. 11. EMSE versus node—� = 0:03.

Fig. 12. MSE versus node—� = 0:03.

limited response to fast changing processes when the commu-
nication network has limited resources. Moreover, in Kalman
filter implementations, one needs to model the process under
observation, e.g., as first-order Markov processes, as well as use
data statistics. Subsequently, the model has to be shared among
the nodes in order to take advantage of the a priori knowledge.

In a more general vein, particle filters are more flexible in
terms of process modeling. They account for nonlinear models
and non-Gaussian data through a set of filter candidates (or par-
ticles) that try to approximate the process under observation.
When properly designed, they may achieve accurate descrip-
tions of the process of interest. However, as in Kalman filtering,

Fig. 13. MSD versus �—node 7.

Fig. 14. EMSE versus �—node 7.

particle filters require a priori knowledge about the process, rep-
resented by probability distributions that are assumed known.
They are also computationally complex and challenging to im-
plement in a distributed manner. In [31], distributed particle
filters that rely on ring, or “chain,” topologies (trees are also
possible) are proposed under certain conditions on the proba-
bility distributions of the process. The resulting algorithms are
demanding in terms of computational complexity and commu-
nication resources, thus limiting the ability of the network to
respond efficiently to fast changing environments.

The results developed in this paper lead to good perfor-
mance allied with low communication and computational
requirements. The proposed distributed scheme requires
operations per iteration per node for both communications and
computations. The scheme inherits the robustness of LMS im-
plementations and promptly respond to new data. The solution
does not require two separate time scales. More sophisticated
cooperative modes (rather than the incremental mode) can also
be pursued, e.g., a diffusion mode of the form [15], [18]:

for a local combiner that consults nodes from the
neighborhood . This additional level of complexity
leads to more challenging and more interesting distributed
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Fig. 15. MSE versus �—node 7.

adaptive structures that can still be examined and studied by
the tools and framework developed in this paper, albeit with
more effort. This work can also be extended to operate over
the collaboration protocols proposed in [32] and [33] and to
other adaptive algorithms at the node level. We will extend the
current discussion to these more general scenarios in future
works.

APPENDIX A
COMPARING STEEPEST-DESCENT AND

ITS INCREMENTAL VERSION

We want to compare algorithms (14) and (13) to provide in-
sights about their stochastic counterparts. For simplicity, assume
that the statistical profile throughout the network is roughly sim-
ilar, i.e., , and , such that (14)
becomes

(72)

Subtracting both sides from and using (19) yields
, or, equivalently

(73)

so that

Incremental (74)

where is the global weight error vector. Now,
employing the eigendecomposition and defining
the transformed vector , we get

(75)

Similarly, for the steepest-descent algorithm (13), we have

(76)

so that and

Steepest-Descent (77)

Fig. 16. Modes of convergence for algorithms (13) and (14).

Writing (77) in terms of the transformed vector, we arrive at

(78)

From (75) and (78), we find that the modes of convergence
of the algorithms are given by

(79)

for . Fig. 16 shows both modes of convergence
for the case , where is the normalized step
size. Note that for larger step sizes, the incremental algorithm
has a faster convergence rate than the steepest-descent solution.
The incremental algorithm has a fast convergence rate even for
small step sizes, which supports why its corresponding incre-
mental adaptive version has better convergence rate together
with a smaller MSE in steady state. Furthermore, the stability
range for the incremental algorithm is wider, leading to more
robust implementations.

As a matter of fact, for diminishing step sizes, the incremental
solution (14) and the steepest-descent solution (13) tend to the
same behavior also with diverse statistical profiles over the net-
work. To observe this fact, we first note from (9) that the
partial gradient is given by

(80)

Inspecting (80), we note that the following equality holds for a
scalar and any two column vectors and :

(81)

where is computed relative to . Now, we iterate the in-
cremental solution (14) starting with , as follows:

...

(82)
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Fig. 17. Plot of ratio � (i) at node 1 for algorithms (16) and (17).

Substituting (82) into the argument of in (14) gives

(83)

Using relation (81) with the choices and
leads to

(84)

Therefore, the incremental algorithm can be written as a sum of
the steepest-descent update plus extra terms. As , the
term dominates the term, and the incremental algorithm (14)
and the standard gradient (13) tend to the same behavior. The
ratio

(85)

is plotted in Fig. 17 for the incremental adaptive solution (16)
and the stochastic steepest-descent (17), both at node 1. The
same settings as the example presented in Figs. 6 and 7 are used,
and 200 experiments are run, with throughout the
network. As , both algorithms exhibit similar behavior,
as suggested by (84).
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