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Abstract—Consider the problem of signal detection via multiple dis-
tributed noisy sensors. We study a linear decision fusion rule of [Z. Quan,
S. Cui, and A. H. Sayed, “Optimal Linear Cooperation for Spectrum
Sensing in Cognitive Radio Networks,” IEEE J. Sel. Topics Signal Process.,
vol. 2, no. 1, pp. 28–40, Feb. 2008] to combine the local statistics from
individual sensors into a global statistic for binary hypothesis testing. The
objective is to maximize the probability of detection subject to an upper
limit on the probability of false alarm. We propose a more efficient solution
that employs a divide-and-conquer strategy to divide the decision opti-
mization problem into two subproblems. Each subproblem is a nonconvex
program with a quadratic constraint. Through a judicious reformulation
and by employing a special matrix decomposition technique, we show that
the two nonconvex subproblems can be solved by semidefinite programs
in a globally optimal fashion. Hence, we can obtain the optimal linear
fusion rule for the distributed detection problem. Compared with the like-
lihood-ratio test approach, optimal linear fusion can achieve comparable
performance with considerable design flexibility and reduced complexity.

Index Terms—Distributed detection, hypothesis testing, nonconvex opti-
mization, semidefinite programming.

I. INTRODUCTION

Distributed detection techniques that use processed measurements
from multiple spatially distributed sensors have a wide variety of
applications in military surveillance, environmental monitoring, and
wireless communications. In a distributed detection system, multiple
sensors work collaboratively to distinguish between two or more hy-
potheses [3], [4]. Specifically, each sensor compresses its observations
into a local statistic and then sends this information to a fusion center,
which is responsible for making the final decision. A distinct feature
that makes distributed detection challenging is that local observations
need to be compressed individually before they are jointly processed
by the fusion center. This feature is due to the large volume of data
observed at local sensors as well as the limited channel capacity
between the fusion center and sensors.
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The likelihood-ratio test (LRT) is an optimal fusion rule for
both hard and soft decision combining techniques according to the
Neyman–Pearson criterion. A large portion of the literature on dis-
tributed detection has focused on the hard-decision fusion where each
local sensor makes a local decision via the LRT and then sends the
binary decision to the fusion center for global decision making [3]–[5].
Finding the local optimal decision rules is difficult since the thresholds
at local sensors are coupled with each other. For independent observa-
tions, the optimality of the LRT at local sensors has been established
[5], [6]; while computing the optimal local thresholds for correlated
observations is an NP-complete problem [7], [8], one has to turn to
suboptimal solutions [9]. To circumvent the need for optimizing local
thresholds, each sensor can instead send a soft decision (summary
statistic) to the fusion center in which only one optimal test needs to
be performed.

In this correspondence, we study a linear fusion rule for distributed
detection. The linear fusion rule is motivated by at least two advan-
tages. First, linear fusion has less computational complexity, i.e.,����,
than that of the quadratic LRT detector, i.e., �����. Second, the per-
formance and the threshold of a linear fusion rule can be obtained nu-
merically while the computation of the threshold and the performance
of an LRT are mathematically intractable. To find the threshold for the
expected performance of an LRT detector, one usually has to use Monte
Carlo simulation, which is time consuming when the error probability
is less than ����. The linear fusion rule has been proposed and opti-
mized by using the bisection search to solve a sequence of quadrati-
cally constrained quadratic programs (QCQPs) in the context of cog-
nitive radio design in [2]. Here, we consider a more general case—the
optimal design of linear fusion for distributed detection. We propose
a fast algorithm to solve for the optimal solution via semidefinite pro-
gramming (SDP). In essence, we show that the optimal linear fusion
rule can be characterized by a rank-one solution of the formulated SDP
problem.

Notation: �� denotes the set of ��� symmetric matrices; ����� de-
notes the trace of a matrix; ������ denotes the determinant of a matrix;
�	
���� denotes a diagonal matrix;���� denotes the complementary cu-
mulative distribution function, i.e., ���� � ��

�
�

��

�
��� ���	 ;

� ��� denotes the matrix inequality, i.e., � � ���� signifies that
� � � is positive definite (semidefinite).

II. SYSTEM MODEL

Consider a network of 
 distributed sensors, each of which is ob-
serving a phenomenon under the two hypotheses �� and ��. Let ��
denote the observation at the ��� sensor. Each sensor employs the map-
ping rule � � ������ and transmits � to the fusion center. Based on
the received information � � ��� �� � � � � � �� , the fusion center
makes the global decision on one of the two hypotheses.

Suppose that the received vector � at the fusion center can be treated
as a realization generated from an 
 -dimensional normal (Gaussian)
distribution under each hypothesis, i.e.,

� � 	 ����������� � ��

	 ����������� � ��

(1)

where ���������� and ���������� are the mean vector and covariance ma-
trix of � under ������. Note that ���� � � and ���� � �. This model
is useful, for example, in radio astronomy, sensor networks, and other
applications in which the background noise is normally distributed ac-
cording to the central limit theorem; see [2] on how such a model can be
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motivated in a practical distributed detection system. Hence, the prob-
ability distribution function (pdf) of � can be written as

������� �
�

���������	��� �


��

���� ��

�
��� �����

� 


��� ��� ����� (2)

where � � � �. The detection performance can be evaluated in terms of
the probability of false alarm, �� � �� ��� �� �����������, and the
probability of detection, �� � �� ��� �� �����������. According to
the Neyman–Pearson criterion, an optimal detector will maximize ��
with an upper limit on �� , i.e.,

��� �� ��	� �� � �� (3)

A. Likelihood-Ratio Test

LRT has been shown to be the optimal fusion rule [10], which is
obtained by first computing the likelihood ratio

�������

�������
�

��	��� �


��

��	��� �


��
���

� �

�
�
� 


��� �


��� �� �����




��

� � �����



��

� � (4)

and then taking the logarithm, and comparing with a decision threshold:

���� � �
� 


��� �


��� �� � �����




��

� ������


��� �

�

�

	����

(5)
Since ���� has a quadratic form, the evaluation of its pdf requires mul-
tidimensional integrations, and potentially involves complicated deci-
sion regions. Consequently, the analysis of the detection performance
��� � ��� and the choice of the optimal threshold 	��� are generally
mathematically intractable.

B. Linear Fusion

To circumvent this difficulty, we propose a linear fusion rule


 ��� �

�

���

���� � �
�
�

�

�

	 (6)

where � � ���� ��� � � � � �� �� are the weight coefficients. Since
the linear combination of multiple Gaussian random variables is still
Gaussian, it can be verified that


 ��� � � �
�������

�


�� � ��

� �
�������

�


�� � ��.
(7)

Accordingly, the probabilities of false alarm and detection can be ex-
pressed as

�� � � �
 ��� � 	���� � 
	 �������	
��


��

(8)

and

�� � � �
 ��� � 	���� � 
	 �������	
��


��

� (9)

Our objective is to find the optimal weight vector� that maximizes ��
subject to some constraint on �� .

III. SEMI-DEFINITE PROGRAMMING FORMULATION

In this section, we show how to optimize the linear fusion rule (6)
via SDP formulation. From (8), we first express 	 as a function of the
required probability of false alarm (by setting �� � �) and the weight
coefficients �:

	 � �
����� ��� ��� ��


��� (10)

Plugging (10) into (9) gives an unconstrained optimization problem:

���
�

�� � 
�����

	
��


�� ��� ����� � �����	

��


��
� (11)

Since�
� is a monotonically non-increasing function, maximizing��
is equivalent to minimizing the term inside the-function in (11). Con-
sequently, (3) can be converted into an equivalent form:

���
�

���� �
�����

	
��


�� � ����� � �����

�
�	

��


��
� (12)

Solving (12) is difficult since it is a nonconvex problem. To find
the globally optimal solution, we can employ a divide-and-conquer
strategy to exploit the special problem structure. Hence, we solve
this nonconvex optimization problem via tackling the following two
subproblems.1

A. �� � ���

First, consider the case in which �� � ���, i.e., ���� � . It has
been shown in [2] that in this case problem (12) is equivalent to

���
�

����� ��


��� ����� � �����
�
�

��	� �
�


�� � � (13)

where � � ��
	
��


��. By introducing a new variable

� � �����
	
��


�� � ����� � �����

�
�, we can transform (13)

into

���
�

��

��	� � � ����� ��


��� ����� � �����
�
�� � � 

�
�


�� � � (14)

where we utilize the fact that minimizing �� is equivalent to mini-
mizing � when � is nonnegative. If the above problem is feasible, we
will be able to solve (14) and hence (12); otherwise, we turn to use the
problem formulation in (22) for Case B. We show in Appendix A that
(14) is equivalent to

���
�

��

��	� �� ����� � �����
�
�

�

� �������


��� � � 

�
�


�� � � (15)

which is a nonconvex quadratic program subject to two quadratic con-
straints and a linear constraint.

Let � � �
� �

�
. Problem (15) can be written as

���
�

�
�
��

��	� �
�
��� � � �

�
�� � � (16)

1Please note that to apply the proposed approach, we do not need to know
whether the resulting detection probability is below or above 1/2. A simple
method is to solve both subproblems, within which the better solution will be
the exactly optimal.
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where

� �
�
���

�
���

�
��� �

(17)

�� �
����� � ����� ����� � �����

� ����������� ���� � ����
����� � �����

� �
(18)

and

� �
���� �

���

�
��� �

(19)

with �, ��, and � � ����. Since � � � and � � �, an optimal
solution of (16) must satisfy ���� � �. Thus, (16) is equivalent to

��	
�

�
�
��


��� �
�
��� � �� �

�
�� � �� (20)

Applying SDP relaxation [11] with the hidden rank-one constraint� �
��

� � ���� eliminated, we obtain a standard SDP problem as fol-
lows:

��	
���

�� ����


��� �� ����� � �� �� ���� � �

� � � (21)

which has linear equality constraints and a matrix nonnegativity
constraint on the unknown matrix �. Recall that �� ���� �

���

���

���

���
������ is in the form of a generalized real-valued

linear function on ����, which shows that SDP is a generalized
framework of linear programming over matrices.

As a result, (21) is a relaxation of (20) since we have removed the
rank-one constraint. We will show in Section IV that there exists at least
one rank-one solution for (21) such that its optimal value is equal to the
globally optimal value of (20). Hence, this rank-one solution is also the
optimal solution of (16).

B. �� 	 �


For the case where �� 	 �
, i.e., ���� � �, problem (12) can be
written as

���
�

������� 	�����	� ����� � �����
�
	


��� 	
�����	 � � (22)

by which we could also obtain a positive objective function. By
defining  � �������

�
	�����	� ����� � �����

�
	 in a similar way as

in Case A, we can transform (22) into an equivalent form as

���
�

�


��� � ����� � �����
�
	

�

� ������	�����	�  	 �

	
�����	 � ��

Defining the matrix

�� �
����� � ����� ����� � �����

� ����������� � ����� � �����

� ����� � �����
� �

(23)

and considering (17)–(19), we can show that (23) is equivalent to

���
�

�
�
��


��� �
�
��� � �� �

�
�� � �� (24)

Like (21), the SDP relaxation of (24) is given by

���
���

�� ����


��� �� ����� � �� �� ���� � �

� � � (25)

whose rank-one solution solves (22). In particular, the way to construct
the desired rank-one solution will be discussed in the following section.
Throughout the rest of the correspondence, we assume that the prob-
lems satisfy the Slater’s regularity condition [11].

IV. RANK-ONE SOLUTION

The rank-one solutions for our particular problems in (21) and (25)
can be obtained by employing a special rank-one decomposition tech-
nique proposed in [12].

Lemma 1: Let � � ���� � � be a matrix with rank �. Given an
arbitrary matrix � � ��, � can be decomposed into

� �

�

���

���
�
� (26)

where the decomposed vectors ��� ��� � � � ��� satisfy

�
�
� ��� �

������

�
� � � �� � � � � � �� (27)

Interested readers are referred to [12] for the proof of Lemma 1.
From the proof one can see the rank-one decomposition procedure,
which we summarize in Algorithm 1. This matrix decomposition tech-
nique has been used in [12] to solve nonconvex quadratic programs
with two quadratic constraints. However, the method in [12] is not di-
rectly applicable to solving the problems (21) and (25). In the sequel,
we will show how to develop the optimal rank-one solutions for (21)
and (25).

Algorithm 1: Matrix Decomposition Procedure

Input: � � �, and � � ��.
Step 1: Apply any decomposition that yields

� �

�

���

���
�
� � e.g., eigendecomposition.

Step 2: If ��� ��� � ������
� for all � then output ��� � � � ���
and return; otherwise find �� � such that ��� ��� 	 ������
�
and ��� ��� � ������
�.
Step 3: Determine � such that

��� � ����
�
���� � ���� �

�� � ��� ������

�
�

Step 4: �� �� ��� � ����
 � � ��,

�� ��
����� � ���

� � ��
�

Step 5: Repeat Step 2.

In this algorithm, it can be shown by contradiction that there always
exist an underfit vector and an overfit vector in pairs. It is also indicated
in [12] that convergence to the desired condition (27) is guaranteed for
a finite number of iterations.

Theorem 1: There exists at least one rank-one matrix that optimizes
(21).
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Fig. 1. The ROC curves of linear fusion and LRT. For two nodes, ��� � ��� ��,
��� � ��� ��, ��� � ��� �� �� ��, and ��� � ��� ���� ������. For three nodes,
��� � ��� �� ��, ��� � ��� �� ��, ��� � ��� �� �� �� �� �� �� �� ��, and ��� �
��� ������ ������ ���� �� ������.

Proof: The proof is given in Appendix B.
Specifically, we give the following theorem to construct the optimal

rank-one solutions for (21).
Theorem 2: Let �� be an optimal solution to the SDP relaxation

problem (21) with rank �. A rank-one solution to (21) can be obtained
from �� by performing the following steps.

i) Apply the matrix decomposition on �� with respect to �� to
obtain vectors ������ � � � ��� .

ii) For any � satisfying ��� ��� � �, � � � � �, let

��� �
��

��
�
���

�

We have �����
�

� as the optimal rank-one solution for (21).
Proof: Theorem 2 is proven by showing that the rank-one matrix

�����
�

� satisfies the Karush–Kuhn–Tucker (KKT) optimality conditions
[11] of (21). The detailed proof is given in Appendix C.

We shall note that the principles in Theorems 1 and 2 are perfectly
applicable to solving the SDP problem in (25) by replacing ��

with ��.

V. NUMERICAL RESULTS

We now evaluate the performance of the optimal linear detector.
In Fig. 1, we illustrate the receiver operating characteristic (ROC) of
the optimal linear detector (denoted by LIN) over various SNR levels,
where the LRT detector serves as a performance upper bound. We see
that the optimal linear detector approaches the LRT performance limit
as the number of sensors increases because the effective SNR at the fu-
sion center increases. This observation is due to the exponential fall-off
of the � function. In Fig. 2, we show how the difference between ����

and ���� affects the detection performance. It can be observed that the
optimal linear detector approximates the LRT detector well if the dif-
ference between ���� and ���� is small (e.g., � � �). In the special case
where � � �, the LRT detector degenerates into a linear detector, as
seen in (5). On the other hand, the linear detector might perform far
away from the optimum if the difference between the two covariance
matrices is large.

Fig. 2. The ROC curves with ��� � 	
�������� and ��� � ���� , where �
implies the difference between ��� and ��� .

VI. CONCLUSION

We have studied a linear fusion strategy for distributed detection,
which can be optimized through SDP reformulation. Compared with
the optimal LRT detector, the linear detector achieves comparable
performance with reduced complexity under conditions of reasonable
SNR levels or small difference between the covariance matrices ����

and ����. These conditions provides useful insights for practicing engi-
neers to trade performance with complexity in designing distributed
detection systems.

APPENDIX A
EQUIVALENCE OF (14) AND (15)

We find that (15) can be rewritten as �� � ��	 ���� ��� , where

��� � ��	
�

	
�


��� 	� 


� � 


��
�
� � �

�����������

�
������ � � (28)

and

��� � ��	
�

	
�


��� 	� 


� � 


��
�
� � �������������

�
������ � �� (29)

both under the condition 	 � �. Note that (28) is exactly the same as
(14). Furthermore, we have

��� � ��	
�

�
���� �������� 


� � 


��

�
�

�


��� �
������ � � (30a)

� ��	
�

�
���� ������� � 


� � 


��

�
�

�


��� �
������ � �

� ��� (30b)

where (30b) is obtained via a change of variables, i.e., � � ��. There-
fore, we conclude that (14) and (15) are equivalent.
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Fig. 3. The basic optimal feasible solution of the linear program (33) takes one
of the three vertices, where the constraints constructs a polyhedron. In particular,
the optimal extreme point is confined to the hyperplane � �� ��� � �.

APPENDIX B

Proof: Suppose that �� is a minimizer of (21) with rank � �
��������. From Lemma 1, �� can be decomposed with respect to ��

as

�� �

�

���

�����
�
� � (31)

Since 	� ��
�� � 
, we can infer from Lemma 1 that

	� �������
�
� � 
� � � �� ��    � �� (32)

Consider a linear program

���
�

�

���

����
�
� ����

��	�

�

���

����
�
� ���� � �

�� � 
� � � �� ��    � � (33)

where � � ���� ���    � ���
� . Note that �� � �� � � � � � �� � � is an

optimal solution for (33) since for any �� � 
, � � �� ��    � �,

� �

�

���

�������
�
� (34)

is a feasible solution for (21). Thus, the minimal objective value of (21)
is equal to that of (33), which corresponds to �� � �� � � � � � �� � �.

Since the linear program (33) is bounded, it must have a basic
optimal feasible solution (or an optimal extreme point), at which
we should have at least � active constraints (including the equality
constraint). The geometric illustration is given in Fig. 3. Hence, we
should have at most one inactive constraint since the total number of
constraints of (33) is � � �. Namely, one of the � variables ��������
is positive at the basic optimal solution. Suppose that the positive
variable is �� �� � � � ��. Thus, the rank-one matrix

�
� � �������

�
�

is also an optimal solution for (21).

APPENDIX C

Proof: Consider the Lagrangian of (21):

������ ���� � 	� ���� ���� � ���� ����� �� (35)

where � � 	 and ��� � ���� ���
� are the dual variables or multipliers.

The dual function is given by

	 ��� ���� � ���
�

������ ����

�
��� � � �� ���� � ���

�� otherwise.
(36)

Consequently, the dual problem of (21) can be shown to be

���
�����

��� ��	� � � �� ���� � ��� � � 	 (37)

where � and ��� and are the corresponding dual variables. When (21)
satisfies the Slater’s condition [11], strong duality holds for the pri-
mary-dual pair (21) and (37). Hence, � ��� ��� ����� are primary-dual op-
timal if, and only if, the KKT conditions [11] are satisfied:

�� �	� 	� ��
�� � 
� 	� � �� � � (38a)

�� �	 (38b)
�� ��� ����� � ���� (38c)

���� �	� (38d)

Suppose that we have obtained such a primary-dual optimal point
� ��� ��� ����� (say, numerically by using an interior-point method). Apply
the rank-one decomposition of �� with respect to ��:

�� �

�

���

�����
�
� (39)

where ���� ����� � 	����
��� � 
 for � � �� ��    � �. Then, we have

	� �������
�
� � 
 for all �’s. From (38b)–(38d), we can infer that

��� ����� � ����� �����
�
� � 	 (40)

for � � � � �. Moreover, using the fact that � � 	, we have

� � 	� ��� � 	� ������
�
� � ���� ������� (41)

From (38a), we know that there must exist an 
 such that ���� ���� � 
.
Let

��� �
���

���� ����
� (42)

We see that �������� � ��� ����� satisfies the KKT conditions in (38a).
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On the Optimal Performance in Asymmetric Gaussian
Wireless Sensor Networks With Fading

Hamid Behroozi, Fady Alajaji, and Tamás Linder

Abstract—We study the estimation of a Gaussian source by a Gaussian
wireless sensor network (WSN) where distributed sensors transmit
noisy observations of the source through a fading Gaussian multiple access
channel to a fusion center. In a recent work Gastpar, [“Uncoded trans-
mission is exactly optimal for a Simple Gaussian Sensor Network,” IEEE
Trans. Inf. Theory, vol. 54, no. 11, pp. 5247–5251, Nov. 2008] showed that
for a symmetric Gaussian WSN with no fading, uncoded (analog) trans-
mission achieves the optimal performance theoretically attainable (OPTA).
In this correspondence, we consider an asymmetric fading WSN in which
the sensors have differing noise and transmission powers. We first present
lower and upper bounds on the system’s OPTA under random fading. We
next focus on asymmetric networks with deterministic fading. By com-
paring the obtained lower and upper OPTA bounds under deterministic
fading, we provide a sufficient condition for the optimality of the uncoded
transmission scheme for a given power tuple � � � � � �.
Then, allowing the sensor powers to vary under a weighted sum constraint
(this includes the sum-power constraint as a special case), we obtain a
sufficient condition for the optimality of uncoded transmission and provide
the system’s corresponding OPTA.

Index Terms—Gaussian multiple access channel with fading, joint
source-channel coding, power-distortion tradeoff, remote source coding,
sensor networks, uncoded transmission.

I. INTRODUCTION

We consider the estimation of a memoryless Gaussian source by a
Gaussian wireless sensor network (WSN) where � sensors observe the
source signal � corrupted by additive independent noise. The overall
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Fig. 1. A Gaussian wireless sensor network (WSN) with fading.

system is depicted in Fig. 1. The sensors communicate information
about their observations through a fading Gaussian multiple access
channel (MAC) to a single fusion center (FC). The fading coefficients
are not known by the encoders but are available at the FC. The encoders
are distributed and cannot cooperate to exploit the correlation between
their inputs. Each encoder is subject to a transmission cost constraint.
The FC aims to reconstruct the main source � at the smallest cost in
the communication link. Our interest lies in determining the optimal
power-distortion region, with the fidelity of estimation at the FC mea-
sured by the mean squared-error (MSE) distortion. Specifically, for a
given �-tuple of sensor powers ��� � ���� ��� � � � � ���, we seek to de-
termine the system’s minimum achievable distortion which we refer to
as the optimal performance theoretically attainable (OPTA).

In [1] and [2], it is proved that uncoded transmission is exactly
optimal for symmetric Gaussian WSNs with a finite number of sensors
and no fading. Uncoded transmission in this case (and in the rest of
this correspondence) means scaling the encoder input subject to the
channel power constraint and transmitting without explicit channel
coding. Note that the separate source and channel coding theorem of
Shannon [3] does not hold for this problem [1], [2]. In the case of
deterministic fading, lower and upper bounds on the minimum distor-
tion are presented in [1], [2], and [4], and for random fading, bounds
are also presented in [4] and [5]. The minimum achievable distortion
under a sum-power constraint for the uncoded transmission scheme in
the WSN with deterministic fading is presented in [6]. The optimality
of uncoded transmission in some other multiuser communication
systems was recently shown in [7] and [8].

For the asymmetric fading Gaussian WSN, the following important
issues remain unknown: Under either random or deterministic fading,
what is the system’s OPTA? Also, What is the optimal coding strategy
that achieves OPTA? Our main contributions in this correspondence
are as follows: First, by applying the idea of maximum correlation co-
efficient, illustrated in [9]–[11], we generalize the OPTA lower bound
in [1] to an asymmetric Gaussian WSN with random fading. We show
that the new bound is a tighter lower bound on the OPTA than that of
[5] for a Gaussian WSN with random fading. We also analyze the un-
coded transmission scheme and provide an upper bound on the OPTA
for a given set of sensor powers. These two bounds constitute an ex-
tension of the bounds given for deterministic fading case in [1] and
[2]. We next specialize the results to the case of deterministic fading.
We establish a condition under which the lower and upper bounds on
the system’s OPTA coincide, hence making the uncoded transmission
scheme optimal. We next allow the sensor powers to vary under a linear
combination of powers (LCP) constraint. Aside from being a natural
generalization of the sum-power constraint, the LCP constraint explic-
itly allows to introduce weight coefficients that reflect the potentially
differing costs of supplying power to individual sensors. Our final con-
tribution is to provide sufficient conditions for the optimality of un-
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