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Robust FxLMS Algorithms with
Improved Convergence Performance

Markus Rupp and Ali H. Sayed,Member, IEEE

Abstract—This paper proposes two modifications of the filtered-
x least mean squares (FxLMS) algorithm with improved con-
vergence behavior albeit at the same computational cost of2M
operations per time step as the original FxLMS update. The
paper further introduces a generalized FxLMS recursion and
establishes that the various algorithms are all of filtered-error
form. A choice of the stepsize parameter that guarantees faster
convergence and conditions for robustness are also derived. Sev-
eral simulation results are included to illustrate the discussions.

Index Terms—Active noise control, feedback analyses, LMF
algorithm, l2-stability, robustness.

I. INTRODUCTION

A widely used algorithm in active noise control is
the filtered-x least-mean-squares(FxLMS) algorithm

[1]–[4]. It can be motivated by referring to the simple
noise control system depicted in Fig. 1. The noise from an
engine, usually in an enclosure such as a duct, is measured
by a (detection) microphone and a filtered version of it is
generated by a loudspeaker (secondary source) with the intent
of diminishing the noise level at a certain location, say at the
location of the right-most (error) microphone.

Fig. 2 is a redrawing of the duct of Fig. 1, with emphasis
on the particular structure of the adaptive antinoise generator.
The figure shows the measured input noise signal and a
filtered version of it, denoted by which corresponds to
the signal traveling further down the enclosure until it
reaches the secondary source. An antinoise sequenceis
generated by a finite impulse response (FIR) filter of length

at the secondary source with the intent of canceling
The difference between both signals and cannot be
measured directly but only a filtered version of it, which is
denoted by The filter is often
assumed of FIR type and its presence is due to the fact
that both signals have to further travel a path
before reaching the right-most (error) microphone. This path
is usually unknown, and the objective is to update the filter
weights (denoted by in order to minimize the filtered error
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Fig. 1. Sketch of a simple active noise control system in a duct.

Fig. 2. Active noise control system using feedforward control.

in a certain sense. The filter has to emulate the path
that transforms into Depending on the situation, the
whole device can be relatively large (with many tap weights),
and people have often resorted to very small stepsizes for
stabilization purposes. This has the obvious disadvantage of
slow adaptation and convergence.

The FxLMS algorithm (to be described further ahead) is
a recursive procedure that has been suggested for the update
of the adaptive weight estimate (see, e.g., [1], [4], or
[15]). It requires operations per time step and has been
shown to exhibit poor convergence behavior. A modification
of it (referred to asmodified FxLMS) has been proposed in
the literature to ameliorate the convergence problem at the
cost of increased computations, which are of the order of
operations (additions and multiplications) per time step [5],
[6]. This figure is still prohibitive in several applications since
the value of can be significantly large.

Motivated by these facts, we invoke the feedback approach
of [7] and [8], and use it to study both the robustness and
convergence performance of these algorithms, and of new
variants, within a purely deterministic framework. The analysis
is carried out with two objectives in mind.

The first objective is to provide conditions on the stepsize
parameter in order to guarantee robust performance (along the
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TABLE I
COMPARISON OF DIFFERENT VARIANTS

lines of theory) of the FxLMS algorithm in the presence of
disturbances and modeling uncertainties (or errors). Intuitively,
a robust filter is one for which the estimation errors are
consistent with the disturbances in the sense that “small”
disturbances would lead to “small” estimation errors. This is
not generally true for any adaptive filter: the estimation errors
may still be relatively large even in the presence of “small”
disturbances. A robust design would guarantee that the ratio of
estimation error energy to disturbance energy will be bounded
by a positive constant, say the constant one

estimation error energy
disturbance energy

(1)

A relation of form (1) is desirable from a practical point of
view, since it guarantees that the resulting estimation error
energy will be at most equal to the disturbance energy, no
matter what the nature and the statistics of the disturbances
are. In this sense, the algorithm will not unnecessarily magnify
the disturbance energy and, consequently, small estimation
errors will result when small disturbances occur. Hence, robust
designs are useful in situations where prior statistical informa-
tion is missing, since it would guarantee a desired level of
robustness independent of the statistical nature of the noise
and signals.

Our second objective is to suggest choices for the stepsize
parameter in order to guarantee, in addition to robustness,
an improved convergence speed. While the modified version
of the FxLMS mentioned above—and discussed in [5] and
[6]—exhibits improved convergence performance over the
conventional FxLMS algorithm (to be described in the next
section), it nevertheless achieves this improved performance
at an increased computational cost of computations per
iteration. The modifications proposed in this work will lead to
improved convergence but still at the same computational cost
of computations per iteration.

In particular, as a result of our analysis, we shall propose
two modifications to the FxLMS algorithm. The results are
summarized in Table I where the last two lines refer to the two
variants proposed in this work, and denotes the length of
the error filter

Finally, we should stress that the analysis carried out
in this paper is significantly different, both in scope and
objectives, from earlier works in the literature on filtered error
algorithms (especially [9]). Reference [9], and many of the

references therein, are primarily interested in conditions under
which adaptive algorithms are guaranteed to be exponentially
asymptotically stable in the noise-free case. The derivations
in these references usually invoke results from averaging
(and ODE) analysis [10]–[12] and their conclusions only hold
under the assumptions ofverysmall stepsizes and persistently
exciting regressors. However, it is always desirable to be able
to quantify how “large” or how “small” the step size, and other
relevant quantities, can be, and such quantification is usually
difficult to pursue in these frameworks (as explicitly stated on
p. 397 of [9]).

In this paper, we are not explicitly interested in the ex-
ponential convergence of the FxLMS adaptive scheme and
its variants, but rather in how reasonably they perform in
the presence of both disturbances and modeling errors. For
this purpose, we pursue a feedback analysis that allows us to
quantify how large or how small the stepsize should be in order
to guarantee a certain level of performance in the face of ever
present disturbances. The analysis also allows us to suggest
choices for the step size, as well as algorithm modifications, in
order to improve the convergence and robustness performance
(see also the studies in [13] and the last section of [14]).

A. Notation

We use small boldface letters to denote vectors and capital
boldface letters to denote matrices. Also, the symbol “*” de-
notes Hermitian conjugation (complex conjugation for scalars).
The symbol denotes the identity matrix of appropriate dimen-
sions, and the boldface letterdenotes either a zero vector or a
zero matrix. The notation denotes the Euclidean norm of a
vector. All vectors are column vectors except for the input data
vector denoted by which is taken to be a row vector. We
further employ the shift operator notation
Hence, applying an operator to a
sequence means

B. The FxLMS Algorithm

The set-up for the FxLMS algorithm is depicted in Fig. 3.
Let be an unknown weight vector and assume are
noisy measurements that are related tovia

(2)

Here, the are known input row vectors and the
are noise terms that may also account for modeling errors.

The FIR filter is assumed known, of length and
coefficients The signal denotes the difference

(3)

where is an estimate for that is generated as follows.
Starting with an initial guess the FxLMS algorithm
provides recursive estimates forvia the update relation (see
[1], [15]):

(4)

where the are time-variant stepsizes.
The following error quantities are useful for our later

analysis: denotes the difference between the true weight
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Fig. 3. Set-up for FxLMS.

and its estimate and denotes thea
priori estimation error,

II. A GENERALIZED FxLMS ALGORITHM

For the sake of generality, and for reasons to become clear
later, we shall study a more general recursive update of the
form

(5)

where a time-variant filter has been included in the
update relation [compare with (4)]. We shall show in the sequel
how to choose in order to improve the convergence
performance of (4). But first we show that (5) can be rewritten
in a filtered-error form [see (11) and (12) further ahead].

For this purpose, we note from (5) that

(6)

which allows us to express in terms of for any
as follows:

or, in a form more suitable for our investigation

(7)

Now using the fact that

along with the assumed linearity of we can show (a proof
is provided in Appendix A) that

(8)

where the coefficients have been defined by

(9)

for and where the notation denotes
the following filter

(Note that the lower index starts at).

We therefore conclude that

(10)
which allows us to rewrite the weight-error update equation
(6) in the equivalent form

(11)

This equation is of the filtered-error type, as claimed earlier.
In other words, if we introduce the new signals

then expression (11) corresponds to the weight-error update
of the following algorithm:

(12)

where

Recursion (12) is a filtered-error algorithm. All we have done
so far is to show that the generalized form that we introduced
in (5) can be rewritten in the alternative form (12). This
alternative form involves only filtering of the error signal

by but not of the regressor Note that this
equivalence has been established without any approximations.

A. An Optimal Choice for G

Once this equivalent rewriting of recursion (5) has been
established, we now note that if were equal to one,
then (12) would have exactly the same structure as a standard
LMS update. In this case, the convergence performance of (12)
would be similar in nature to that of an LMS algorithm [and,
hence, superior to the original FxLMS update (4)].

The condition can be met exactly, or
approximately, in different ways, as we now explain.

B. The MFxLMS Algorithm

Different choices for would correspond to dif-
ferent choices for in (5) and, hence, to different
modifications of the original FxLMS update (4).

We now verify that a recent modification of the FxLMS
update (4), which we henceforth refer to it as the modified
FxLMS algorithm (MFxLMS) [5], [6], can be interpreted as
providing one such particular choice for

More specifically, the MFxLMS algorithm employs the
following update:

(13)
The extra terms that are added in (13) to the original up-
date recursion (4) have the precise effect of guaranteeing

in (12). This can be verified as follows. First
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note that since is a fixed vector [it is the true vector assumed
in the model (2)] we have

(14)

Moreover, by linearity of and since
we obtain

(15)

where we used (14) in the last equality. Using (15), we can
now express the sum that appears in the update relation (13)
as follows:

(16)
The additional terms in (13) correspond to filtering the input
data and the signal by , thus amounting to an
increase in computational complexity from (as in the
original FxLMS) to operations per time step.

An alternative interpretation for the MFxLMS algorithm
(13) is to note that it corresponds to employing a filter, say

in (5) such that or, equivalently

(17)

This means that the MFxLMS recursion (13) can be equiva-
lently rewritten in the form (5), viz.,

(18)

where the coefficients of are computed as in (9).

C. The MFxLMS-1 Algorithm

We now propose two new modifications with lower compu-
tational requirements than the MFxLMS algorithm. They are
based on approximating the optimal choice with the
intent of reducing the computational count to operations
per time step.

The first modification, referred to as MFxLMS-1, replaces
the time-variant coefficients (9) in (17) by constant
approximations. This is especially useful when statistical in-
formation is available.

In particular, assume that the input sequence is station-
ary with autocorrelation function If
the process is ergodic and the order of the input vector

(with shift structure) is sufficiently large, the inner product
terms can be approximated by

If we further assume that the time-variant step size in
(18) is chosen as

(19)

which is known as theprojection stepsize, then the term
in (19) can be approximated by

(20)

and the filter coefficients in (9) can also be approxi-
mated by where we have defined the averaged
coefficients

(21)

These coefficients depend only on the error-filterand on
the autocorrelation coefficients They can therefore be
computed in advance, assuming knowledge ofNote also
that since resembles noise, it can be assumed in many
cases that is a white random sequence with variance
For this case, the expression for can be further simplified,
since can be approximated by and,
correspondingly

(22)

Once has been determined, the
is updated via

(23)

where is given by (19) and (20). We summarize this first
variant in the following statement.

Algorithm 1 (MFxLMS-1): Consider a stationary input
sequence with autocorrelation coefficients Let

denote the coefficients of the error filter The
MFxLMS-1 algorithm proceeds as follows.

• Compute the coefficients for
using (21), and define the time-invariant filter

.
• Use in the update equation (23).

In the case of a white random noise process with
variance the expression for collapses to (22).

The above solution requires of the order of com-
putations per time step. It, however, requires exact (or ap-
proximate) knowledge of the autocorrelation function of the
input process. If this is not available, estimates forcan
be calculated (e.g., by sample covariances) and the optimal
coefficients can be computed at every time instant via (21).
However, the final computational load of the algorithm may
exceed depending on how the coefficients are estimated.
For this reason, we suggest here a second modification that
might be more appropriate in such cases.

D. The MFxLMS-2 Algorithm

We have shown above that the MFxLMS algorithm can be
written in two equivalent forms. The first one [recall (13) and
(16)] is

(24)



82 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 6, NO. 1, JANUARY 1998

Fig. 4. Construction ofF [~ea(i)] and its approximate inversion.

(25)

and the second one is (18).
The difference between both representations is that the

second one operates directly on the available signal
by filtering it through while the first one modifies
the update equation as in (13) and uses the additional filtering
operations and The net result, however,
is the same, since we already know that both representations
are equivalent and, in particular, that

(26)

If we knew , then it could be used in the update form (24),
without the explicit need for the additional filtering operations
of (13).

This suggests the following modification. We have in (26)
a relation between and The only known
quantity in (26) is and we can rewrite the expression
in the form The left part
of Fig. 4 depicts this relation. Since is unknown, we
need an estimate for it, say The above relation can then
be replaced by In order
to come up with an estimate we can use the inverse
structure of (which is ) as
depicted in the right part of Fig. 4. If is regarded
as a filtered (correlated) version of then can be
interpreted as the estimated unfiltered (uncorrelated) version of
it. The coefficients can be estimated by using a linear
prediction scheme.

An approximate solution would be to use a gradient-type al-
gorithm to estimate both and the coefficients of
as follows (for

(27)

(28)

Once the is evaluated, it is used in

(29)

Algorithm 2 (MFxLMS-2): Given and
evaluate the estimates as in (27) and (28) and
update the weight estimate using (29).

III. ROBUSTNESS AND -STABILITY

We now analyze the robustness performance of the gen-
eralized FxLMS recursion (11) [or, equivalently, (12)]. As
mentioned before, the recursion (12) is in filtered-error form
and, therefore, the small gain (feedback) analysis of [7] and
[8] is applicable. In particular, the result stated in the next
theorem is a special case of Theorem 2 in Section V-C of [7].

Define and introduce the diagonal
matrices

Let also be lower triangular matrices that describe
the action of the filters on sequences at their input.
These are generally band matrices. For example, the matrix

for takes the form (it is strictly lower triangular)

...
...

...
...

We further write to denote the 2-induced norm of
a matrix (i.e., its largest singular value). Now define

Theorem 1: Consider the recursion (12) over
and define If then the map
from to is -stable in the
following sense. It satisfies

(30)

We can regard the sum in the right-hand side of (30) as
the “weighted” energy of the disturbances in the problem,
viz., Likewise, we can regard the sum in
the left-hand side of (30) as the “weighted” energy of the
resulting estimation (filtered) errors Hence, according
to (30), the amplification (energy-wise) from
to is bounded from above by
which is reasonable especially when is sufficiently
far from one. This means that, regardless of the nature of
the “disturbances,” their energy will not be unnecessarily
amplified (but only if is guaranteed to be less than one).
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A. Stepsize Conditions for the FxLMS Algorithm

In the special case of the original FxLMS algorithm (4),
which corresponds to and for a constant step-size
parameter the condition can be
guaranteed by requiring

(31)

where we have defined to be any positive scalar satisfying
(assuming is uniformly bounded from above)

Expression (31) therefore provides a condition that guarantees
an -stable performance for theoriginal FxLMS algorithm.
The condition is in terms of the filter that we
showed how to construct in (21). Note also that condition
(31) explicitly incorporates the ratio of the stepsize parameter

to the input energy. This may be compared with results in
the literature (e.g., [9], [16]) regarding the exponential stability
of filtered-error algorithms. These results usually require the
error filter to be strictly positive-real and the analysis holds
as long as the stepsize parameter is small enough. Expression
(31), on the other hand, does not impose a small condition
assumption on the stepsize, nor does it require a positive real
condition on the filter . It instead blends the conditions on

the input signal energy, and into a single contractivity
condition. A related condition arises in [17] in the study of the
global uniform asymptotic stability of an output error adaptive
filter in the noiseless case; it incorporates both the stepsize
and the input signal energy.

A similar conclusion to (31) can be obtained when we
replace the time-variant matrix by a time-invariant ap-
proximation as described in (23) and apply In
other words, once a filter structure of the form (23) has been
devised, with a given we can now pursue a robustness
analysis of the resulting algorithm.

For this purpose, all we need to do is replace by
a lower triangular matrix that corresponds to which
now becomes Toeplitz due to the time invariance ofThe
sufficient condition for -stability then collapses to requiring

(32)

which is guaranteed if we require

(33)

Moreover, the energy arguments in [7] (see below for an
intuitive explanation) suggest that, in general, improved con-
vergence can be obtained by posing an optimization problem
for the selection of , (which determines the stepsize in the
FxLMS algorithm) as follows:

(34)

The resulting is the value that makes the magnitude
in (33) the lowest possible. That is, it forces the value of

Fig. 5. Learning curves for DLMS algorithm� = 0:1; 0:2; 0:4 in compar-
ison to LMS � = 1:0:

to be the furthest from one. Intuitively, this is the case
that results in the “smallest” estimation error energy over an
interval of length [in view of (30)] and would result in
faster convergence. The simulation results in the next section
demonstrate this remark. We shall also compare the above
choice(s) for with the one suggested in [1], viz.,

IV. SIMULATION RESULTS

In all experiments, we have chosen a Gaussian white random
sequence with variance one as the input signal and the
additive noise was set at 60 dB below the input power.
We provide plots of learning curves for the relative system
mismatch, defined as

The curves are averaged over 50 Monte Carlo runs in order to
approximate The results in the figures are also in-
dicated in dB. In all experiments, we employed the projection
normalization (19).

A. The Delayed LMS Algorithm

In our first example, a transversal filter of order is
to be identified in the case of a pure delay filter
(which is not positive real). The FxLMS algorithm in this
case corresponds to thedelayed LMS(DLMS) [18]–[20], as
follows:

The curve for the standard LMS algorithm with projection
stepsize is also given as a comparison, viz.,

As Fig. 5 shows, the delay causes a degradation in the con-
vergence behavior of the DLMS algorithm.
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Fig. 6. Learning curves for modified DLMS algorithm� = 1 and� = 1:5:

In a second experiment, the modified version of the DLMS
algorithm, using the optimal as suggested by (17),
has been used, viz.,

where

This is, of course, equivalent to a MFxLMS form

As Fig. 6 demonstrates, the modification restores the conver-
gence performance of the algorithm to a level comparable to
the standard LMS case; the learning curves of the modified
DLMS algorithm and the LMS algorithm almost coincide. A
second curve for is given, a stepsize for which the
conventional DLMS algorithm was already unstable.

B. The FxLMS Algorithm and Modifications

Another simulation was performed with the intent of iden-
tifying a 20th-order filter with the error filter
path being now given by
indicating a lowpass behavior as it is common in acoustic
ducts. Note that this filter is also not positive real. The
coefficients of the corresponding averaged filter were
given by i.e.,

If we use the above averaged coefficients as approximations,
we obtain an approximate stability range for the FxLMS al-
gorithm at [recall (33)]; the optimal convergence

Fig. 7. Learning curves for FxLMS algorithm with� = 0:5 (a) and
modifications: MFxLMS-2; (b)� = 1:15 and MFxLMS-1; (c)� = 1:2

in comparison to MFxLMS; (d)� = 1:2:

speed is attained at [recall (34)]. In the simulations
that were carried out, the results were very close to these values
with a stability bound at 0.57 and fastest convergence at 0.5.
In particular, the optimal stepsize from [1] for this case is
0.8333, which is already in the unstable region.

Fig. 7 shows learning curves that correspond to the FxLMS
algorithm with the above-mentioned optimal step-size [curve
(a)] and the proposed version MFxLMS-1 that leads to a
learning curve [indicated by “(c)”] which is close to the
optimal one [i.e., the one that corresponds to the MFxLMS
recursion and is indicated by “(d)” in the figure].

The figure also indicates the result of the second modi-
fication MFxLMS-2 [curve (b)], which is appropriate when
the statistics of the input sequence is not knowna priori.
While curve (b) is less appealing than the curves (c) and (d),
it nevertheless improves on the convergence of the original
FxLMS recursion, which is indicated by curve (a). The optimal
convergence speed for the MFxLMS-2 algorithm was found
for and stability bound at 1.3. A fifth learning curve
for the LMS algorithm, with and prefiltered by is
not explicitly shown in the figure since it essentially coincides
with the MFxLMS algorithm [curve (d)].

V. CONCLUDING REMARKS

We presented a time-domain analysis of a generalized
FxLMS recursion (5) and have shown that it can be reex-
pressed in the form of a filtered-error variant (11). In particular,
we have shown that the MFxLMS recursion (13) corresponds
to a special case of the generalized algorithm (5), viz., the
choice in (17). But other choices are also possible.

We then proceeded to provide two approximations for
the optimal This led us to two solutions: The
MFxLMS-1 and the MFxLMS-2. Both have the same com-
putational requirement as the original FxLMS algorithm, viz.,
of the order of computations per step and, hence, less
than the MFxLMS variant, which requires of the order of
computations. Both algorithms, MFxLMS-1 and MFxLMS-
2, also have improved convergence behavior when compared
with FxLMS but only MFxLMS-1 exhibits a good enough
behavior that is comparable with MFxLMS.
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APPENDIX A
PROOF OF (8)

The result (8) follows from the following sequence of easily
verifiable identities:

where we used (7) in order to obtain

Simple rearrangements lead to the expressions
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