
956 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 5, OCTOBER 2006

A Robust Finger Tracking Method for Multimodal
Wearable Computer Interfacing

Sylvia M. Dominguez, Trish Keaton, Member, IEEE, and Ali H. Sayed, Fellow, IEEE

Abstract—Mobile wearable computers are intended to provide
users with real-time access to information in a natural and unob-
trusive manner. Computing and sensing in these devices must be
reliable, easy to interact with, transparent, and configured to sup-
port different needs and complexities. This paper presents a vision-
based robust finger tracking algorithm combined with audio-based
control commands that is integrated into a multimodal unobtru-
sive user interface, wherein the interface may be used to segment
out objects of interest in the environment by encircling them with
the user’s pointing fingertip. In order to quickly extract the objects
encircled by the user from a complex scene, this unobtrusive inter-
face uses a single head-mounted camera to capture color images,
which are then processed using algorithms to perform: color seg-
mentation, fingertip shape analysis, perturbation model learning,
and robust fingertip tracking. This interface is designed to be ro-
bust to changes in the environment and user’s movements by in-
corporating a state-space estimation with uncertain models algo-
rithm, which attempts to control the influence of uncertain envi-
ronment conditions on the system’s fingertip tracking performance
by adapting the tracking model to compensate for the uncertain-
ties inherent in the data collected with a wearable computer.

Index Terms—Finger tracking, genetic algorithm, human–ma-
chine interface, Kalman filter, robust filtering, state-space model,
wearable computing.

I. INTRODUCTION

ARECENT computing technology trend is mobile wearable
computing whereby intelligent assistants provide users

with location-aware information in order to help them accom-
plish their tasks more efficiently. Wearable computers can
provide multiple public safety and service applications such
as virtual medical assistance, fire-fighting assistance, tourist
assistance [1], virtual mouse abilities [2], and a virtual three-di-
mensional (3–D) blackboard [3]. For instance, a paramedic
using a wearable system will be able to receive assistance
from a virtual medical aid by encircling and extracting images
of specific injuries on a victim, and getting feedback on the
most suitable treatment to apply in those particular situations.

Manuscript received March 19, 2004; revised September 27, 2005. The
work of A. H. Sayed was supported in part by the National Science Foundation
under Grants ECS-9820765, CCR-0208573, and ECS-0401188. The work of
S. M. Dominguez and T. Keaton was supported by HRL Laboratories, LLC.
Snap&Tell™ is a trademark of HRL Laboratories, LLC. The associate editor
coordinating the review of this manuscript and aproving it for publication was
Prof. Tsuhan Chen.

S. M. Dominguez and A. H. Sayed are with the Electrical Engineering De-
partment, University of California Los Angeles, Los Angeles, CA 90095 USA
(e-mail: sylvia@summavision.com; sayed@ee.ucla.edu).

T. Keaton is with the Information Science Laboratory, HRL Laboratories,
LLC, Malibu, CA 90265 USA (e-mail: trish.keaton@gmail.com).

Color versions of Figs. 1, 2, 4, 5, 7–10, and 15–18 are available online at
http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2006.879872

Fig. 1. Examples of applications of a wearable computer assistant with a
pointing interface.

Wearable computers are also useful in military scenarios. For
example, a soldier using a wearable computer during a mis-
sion may be able to point at his/her surroundings and extract
landmark images such as buildings, mountains, warning signs,
billboards, etc. The wearable assistant could convey recom-
mendations about where enemy troops are located; it could also
convey information about which direction to proceed to and
about the surrounding terrain such as a mountain’s elevation
or a river’s depth. The wearable computer could also provide
language translation of foreign signs. Furthermore, a wearable
system could be equipped with face recognition capabilities,
in which case it could provide users with the ability to identity
personnel of interest. Fig. 1 depicts additional examples of
applications of wearable computers.

Computing and sensing in a wearable computer environment
must be reliable, persistent (always remains on), easy to interact
with, and configured to support different needs and complex-
ities. Therefore, a critical factor for the success of such sys-
tems is their user interface. Visual tracking and recognition of
pointing and hand gestures are a natural way of interacting with
a wearable system. For this reason, we have opted to rely on a
real-time gesture tracking interface for segmenting objects in a
scene. The interface enables the user to extract an object of in-
terest by simply encircling the object with his or her pointing
finger. In addition, the interface contains a small set of audio
commands that allows the user to unobtrusively control the start
and end of the object segmentation.

1520-9210/$20.00 © 2006 IEEE

DOMINGUEZ et al.: ROBUST FINGER TRACKING METHOD 957

The multimodal interface uses several computer vision
algorithms to extract color-based segmentation and shape infor-
mation from the machine’s camera view in order to identify the
user’s hand and fingertip position. These algorithms, in their
generic forms, are complex and computationally intensive, and
they tend to slow down the response of the machine. In order
to perform real-time acquisition and tracking, we have opted
to use a robust state-space estimation algorithm that predicts
the future position of the user’s pointing fingertip in a robust
manner. Then, the system uses the predicted coordinates to
center a smaller search window during the next video frame.
This scheme reduces the search space from the full camera
view to a smaller area in a dynamic fashion. The need for a
robust prediction algorithm arises from the desire to control the
influence of uncertain environmental conditions on the inter-
face’s performance, wherein the interface’s performance refers
to the fingertip tracking accuracy and the faster computation
of the vision algorithms using the reduced search window. For
a wearable computer system, these uncertainties arise from
the camera moving along with the user’s head motion, the
background and object moving independently of each other,
the user standing still then randomly walking, and the user’s
pointing finger abruptly changing directions at variable speeds.
All these factors give rise to uncertainties that can influence the
accuracy performance of the finger trackers.

II. MULTIMODAL WEARABLE COMPUTER INTERFACE

In order to allow a user to communicate with a wearable
system in a natural and efficient manner that is easy to interact
with, we have designed a multimodal robust wearable computer
interface comprised of a vision-based robust finger tracking al-
gorithm combined with simple audio-based control commands.
Then, in order to test the performance of our multimodal robust
interface in a wearable environment, we integrated our inter-
face with the Snap&Tell1 wearable computer system described
in [11], [12], and in Fig. 2. In this section, we review the basic
features of the multimodal interface described in [12] and pro-
vide additional details as needed.

The audio commands are input into the system through the
use of IBM’s ViaVoice speech recognition and text-to-speech
software, where in order to make the wearable interface trans-
parent to the user, as well as easy to interact with, the user must
wear a headset consisting of head phones and a microphone
to verbally communicate with the system in a natural and ef-
ficient manner. Furthermore, in order to avoid speech recogni-
tion errors generated by continuous word spotting in an open-air
acoustic environment, our multimodal interface allows the user
to selectively activate the speech recognition software on and
off. Therefore, the IBM ViaVoice software is not continuously
attempting to recognize (i.e., spot) the verbal control commands
from a constant input audio stream. In addition, the user ut-
ters a single command at a time, and then the software gives
audio feedback to the user on the recognized command before
the system is allowed to continue the command protocol. Thus,
the user is given the opportunity to utter the verbal control com-
mand repeatedly until the system recognizes the word properly.

1 Snap&Tell is a registered trademark of HRL Laboratories, LLC, Malibu,
CA.

Fig. 2. Block diagram of the multimodal robust gesture-tracking interface in-
tegrated with the Snap&Tell™ wearable system.

The multimodal interface waits for the user to be ready to
point to an object of interest before being activated. Once the
user is ready to start selecting the desired object, he gives the
verbal command “start”, which enables the system to begin
tracking the user’s pointing fingertip, as indicated in Fig. 2.
While tracking the user’s fingertip, the interface color segments
the input video frames and then applies a skin/nonskin discrim-
ination algorithm to the color segmented images in order to
detect all the likely skin toned regions. Once all the skin tone
regions are found, the interface performs shape and curvature
analysis to find the user’s hand and to determine the user’s fin-
gertip coordinate position. The trajectory that the user’s fin-
gertip is following while encircling the object of interest is de-
termined by the sequence of successively detected fingertip po-
sitions. At any given time during the pointing gesture, the user
may delete any partial tracking points computed by using the
verbal command “clear”, which allows the user to erase de-
fective tracking paths such as the ones created when the user
moves his head abruptly causing the field of view of the camera
to move away from the object of interest. Once the user is done
encircling the object, the user gives the verbal command “stop”,
which signals the end of the pointing gesture and terminates the
robust tracking algorithm. Then, the previously identified trajec-
tory is used to extract the object of interest. Then, the coarsely
segmented object encircled by the user is sent to the wearable
system for further processing, where the system displays the
segmented object for the user to visually inspect the extracted
object. Then, the user is given the choice to either accept this
coarsely segmented object by using the audio command “snap”,
or to “reset” the system in cases when the final encircled region
does not coarsely segment the object properly, and “start” a new
snapshot of the object.

Once the object has been properly segmented, the extracted
object maybe sent to a wearable computer to be further ana-
lyzed, recognized, and classified. In the case of the Snap&Tell

958 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 5, OCTOBER 2006

system, the multimodal interface uses the audio command “tell”
to recognize the coarsely segmented object and to send audio
feedback to the user through the head phones, providing him
with audio information pertaining to the recognized object. Ul-
timately, the user clears all the recognition results and sets the
system into the “wait for start command” mode by uttering the
audio command “reset”.

Tracking the user’s fingertip is a particularly difficult problem
because we need to recognize the user’s hands and objects from
images taken from head-mounted cameras in real time. While
the user is in motion, either walking or moving his head, the
head-mounted camera also moves, thus introducing image
jitters, and dramatic changes to the unrestricted background,
and the lighting conditions. Therefore, in order to track the
user’s fingertip position in the presence of ego-motion, we
integrated a state-space estimation with uncertain models algo-
rithm [15] to the wearable interface, which attempts to control
the influence of the wearable environment uncertain conditions
on the system’s performance, by making the tracking model
less sensitive to the random motion produced by head/camera
motion. In addition, in order to perform real-time acquisition
and tracking, the robust interface uses the coordinates of the
robust predicted fingertip position to center a smaller image
search window on the next video frame for locating the user’s
hand. Then, from this point onwards, only the input image
inside the smaller search window is analyzed by the vision
algorithms, thus speeding up the response time of the system,
and making the routine memory and computationally efficient.

For the unobtrusive video interface, we first need to locate
the user’s hand within the field of view of the head-mounted
camera by finding all the image areas which are colored with
a skin-tone. This is accomplished by using a “color segmen-
tation” algorithm and a “skin-like regions segmentation” algo-
rithm. Then, we need to determine which of the skin-tone areas
in the image, if any, corresponds to the user’s hand and pointing
finger. Next, if a user’s pointing finger has been found, we need
to determine its fingertip coordinates, and then we need to pre-
dict the fingertip position during the next video frame by using
our robust tracker. Finally, we need to reduce the input camera
view for the next video frame by centering a smaller search
window at the predicted fingertip coordinates provided by the
robust tracker, thus relieving the computational burden of the
color segmentation algorithms used to extract the user’s fin-
gertip from the rest of the scene in the subsequent video frame.

A. Color Segmentation

There are different ways in which to represent color. One of
the most widely used color representations is the RGB color
space, which creates a linear color representation suitable for
representing an individual color, as illustrated in Fig. 3. How-
ever, to locate all the image areas which are colored in a skin-
tone, we need to consider that a human hand, even for the case
of a single computer user, has different shades of skin color due
to the lighting, the shadows casted by objects around the user,
and the three dimensionality of the hand. Therefore, in order
to extract the user’s hand from the camera view we need to lo-
cate all the skin colored regions within a range of colors cen-
tered around the skin tone of a user. This task is accomplished

Fig. 3. Skin tone color representations.

Fig. 4. Finding the mode of pixel points within a local region in an image by
systematically applying a Kernel(i, j) window function, wherein the local mode
represents the dominant color of the local region.

better by encoding the pixel’s color in each image frame using
the HSV (Hue, Saturation, Value) nonlinear color space repre-
sentation, which is suitable for representing a range of colors,
as shown in Fig. 3.

The hue (H) indicates the color type, the value (V) speci-
fies the total amount of light, and the saturation (S) tells how
much white light is mixed with the pure color. Since the lu-
minant and chromatic components of a color are separated in
this space, it is possible to derive an effective model of color
that can handle nonuniform illumination. For example, the color
“Skin” corresponds to the following range [Hue (in degrees):

– , Value: 0.4–0.9, Saturation: 0.05–1.0], wherein these
broad ranges help to account for different tones of skin color. In
a similar manner, the range for the value parameter of the skin
color is also broad, thus accounting for variations on the skin
color of the user’s hands due to multiple illumination effects.

For this multimodal interface, once the current frame’s
color image has been transformed to the HSV color space,
we perform color segmentation based on the “fast mean shift
algorithm” [13]. Generally, color segmentation in a two-
dimensional (2-D) image is performed by iteratively
shifting and convolving a 2-D fixed sized window or kernel
function with radius , with the color image,
to average the image data points, (pixel’s color values) within
the window, as seen in Fig. 4. In the case of a color image, each
pixel is fully represented by a five element vector containing
its location within the image “ coordinates”, and its three

DOMINGUEZ et al.: ROBUST FINGER TRACKING METHOD 959

Fig. 5. Finding the probability density function (pdf) of a windowed region.
In this example, the pdf (histogram) corresponding to the value coefficient of a
windowed region was found. Three such pdfs are needed to fully represent the
HSV color windowed region.

HSV color values (hue, sat, val). Therefore, during the first
iteration, the is applied to the raw color image in
order to determine a five element mean-vector characterizing
the windowed region centered at , where is a vector
contains the center pixel’s coordinates and center pixel’s color
information. The resulting mean-vector contains the region’s
center pixel coordinates, the mode of the hue , the mode
of the saturation , and the mode of the value of all the
pixels within the windowed color region , where ,
and represent the dominant color of the local region.
The kernel window is shifted systematically through
out the image, as seen in Fig. 4, creating multiple overlapping
regions and extracting the dominant color information of each
particular region.

In order to determine the dominant color on a local region
centered at , the HSV color representations of all the pixels

within the windowed region are histogrammed together forming
three distinct histograms corresponding to the Hue histogram,
the Saturation histogram, and the Value histogram for the local
region centered at . These histograms correspond to the proba-
bility density functions that characterize the windowed re-
gion, as illustrated in Fig. 5. Then, the mean-vector for the re-
gion is formed by choosing the dominant mode of each of the
histograms as , and . For the example illustrated
in Fig. 5 where the Kernel(i, j) has a radius corresponding
to 7 pixels, the dominant mode for the value histogram
corresponds to , since there are more white pixels (16
total) within the windowed region than any other color pixels.

Next, during the second iteration, the fast mean shift algo-
rithm [13] associates with each pixel in the image the closest
local mode in the density distribution which characterizes
the windowed region of the joint domain. The mean shift
vector is defined as the difference between the mean of the prob-
ability function on a local area and the center of this region,
and it is also proportional to the gradient of the probability den-
sity , and reciprocal to the probability density [13].
Therefore, the mean shift vector associated with a region
centered on can be written mathematically as

(1)

where is a constant and is the probability density function
obtained by computing the histogram of the HSV color repre-
sentations of all the pixels within the windowed region
in the combined spatial-range domain, as illustrated in Fig. 5.
Then, since the mean shift vector always points towards
the direction of the maximum increase in the probability den-
sity, it can be used to define a path for the search window to
follow, which leads to a local probability density maximum (i.e.,
a mode of the density or true dominant color). Therefore, instead
of shifting the window kernel in a fixed systematic path across
the entire image, the mean shift algorithm moves the kernel by
following the path of maximum density indicated by the mean
shift vector found on (1). As a result the most dominant colors
on the entire image are found first, and they are used as the first
set of cluster centers instead of using a predetermined number
of color clusters chosen ahead of time by a user, as it is the case
with other clustering algorithms. Therefore, the mean shift algo-
rithm converges faster than other color segmentation algorithms
while generating a more natural looking color segmented image.

B. Skin-Like Regions Segmentation

After segmenting the current frame into homogeneous color
regions, we determine whether each region is skin-like by com-
paring the mode hue and mode saturation values characterizing
each dominant color region, with the broad hue and saturation
ranges corresponding to skin-like colors. Before a user may ex-
tract objects with the robust fingertip tracking interface, the user
must initially train the skin segmentation algorithm to properly
set the skin-tone color range to a narrower skin-tone range cen-
tered around the user’s skin color under the current lighting con-
ditions. Therefore, during a skin-tone setting session, the user
must capture multiple images of the user’s hand (finger pointing
gestures) within the current environment. Then the skin-tone
setting routine uses these images to determine the proper narrow
skin-tone range for the Hue, Saturation, and Value ranges to be
used with the current user.

Thus, the skin segmentation algorithm erases any dominant
color region which has mode-hue and mode-value outside the
preset skin-tone color range, while keeping any dominant color
region with hue and value ranges that fall within the preset
skin-tone color range. The broad ranges selected to characterize
the “Skin” color, account for the skin tones of users of numerous
nationalities, as well as for various illumination effects. An ex-
ample of the results obtained by the color segmentation algo-
rithm (a) and the skin segmentation algorithm (b) are shown in
Fig. 6. As it can be seen in Fig. 6, the room lighting and the ge-
ometry of the user’s hand have created a shadow on the user’s
hand, which resulted in two different dominant color regions
within the user’s hand in the color segmented image. However,
this lighting effect is corrected by the broad range used by the
skin segmentation algorithm, which correctly extracts the entire
hand of the user, as it can be seen in the final skin segmented
image in Fig. 6.

Therefore, this region-based skin detection procedure is
more robust to varying illumination conditions than pixel-based
approaches, since we cluster together several pixels of varying
skin-toned colors during the color segmentation procedure,
which results in several uniformed colored regions. Thus, if

960 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 5, OCTOBER 2006

Fig. 6. (a) Example of a color segmented image generated with the fast mean
shift algorithm. (b) Example of a user’s hand extracted with the skin segmenta-
tion algorithm.

only a few pixels in the user’s hand have color properties
outside the skin tone, they are smoothed out by the mean shift
color segmentation algorithm, and their pixelized effect is
minimized. Furthermore, if several dominant skin regions are
found within the user’s hand (as shown in Fig. 6), the skin
segmentation algorithm groups them together by using a broad
skin color range. However, it should be noted that when the
user’s hand is placed in front of a background colored with a
skin-tone color, the user’s hand can not be segmented out by
our current wearable interface.

III. EXTRACTION OF FINGERTIP COORDINATES

After segmenting all the skin-like regions, we eliminate all
the skin-colored objects that are outside a reasonable range of
the user’s hand size. This cleans up the skin segmented image by
removing any small skin colored specs or white noise. Further-
more, in the case when the user hand blends with the tan colored
background, the shape analysis will reject the large skin-toned
blob, and it will force the system to extract new information
from future video frames, until a reasonably hand-sized blob is
extracted by the skin segmentation algorithm. Once a potential
hand-sized blob is detected, geometric properties (e.g., elongat-
edness, boundary curvature) of the skin-like region are used to
determine if the hand-sized blob is indeed the user’s hand. Then
the user’s hand and finger orientation with respect to the -axis
(i.e., pointing direction) is derived using normalized 2nd order
moments, and finally the fingertip position is determined as the
point of maximum curvature along the contour of the finger.

The moments of order of a region represented by the
binary image , where stands for the -coordinates of the
image and stands for the -coordinates of the image, are

(2)

where and are the spatial dimensions of the skin/nonskin
binary image.

Generally, the zero order moment of a binary image
coincides with the area of the binary image. Also, the first order
moments and are related to the center of gravity or
centroid of the skin-toned blob:

and (3)

Fig. 7. Principal component analysis features derived from normalized second-
order moments.

In order to make the geometric features independent of posi-
tion, moments can be calculated with respect to the centroid.
The results are the so-called central moments, computed as fol-
lows [14]:

The second order central moments can be used to compute the
principal axes of a region by computing the principal moments
or corresponding eigenvalues as follows [14]:

Then, the orientation of the skin-toned blob, , which generally
corresponds to the user’s finger orientation with respect to the

-axis (i.e., pointing direction), is computed from the second
order central moments and the principal moments as follows:

(4)

Fig. 7 illustrates the principal component analysis features
that can be derived from the normalized second order moments.
Furthermore, Fig. 8 illustrates some of the steps used by the
shape analysis process to determine the user’s fingertip position
to be tracked by the robust estimation algorithm: Fig. 8(a) shows
a reasonably hand-sized blob (determined by its) which has
been previously cleared of white noise specs; Fig. 8(b) shows the
resulting output image obtained after applying the central
order moments analysis to the image blob in Fig. 8(a), in order
to determine the user’s finger orientation ; Fig. 8(c) shows
the output image obtained after finding the point of maximum
curvature on a local region along the previously found user’s
finger length and orientation ; Fig. 8(d) shows
the final shape analysis output image, which has the point of
maximum curvature marked by , the finger orientation marked
by the direction from to , and the fingertip position marked
by ; and Fig. 8(e) and (f) show other final shape analysis output
images with different orientations.

DOMINGUEZ et al.: ROBUST FINGER TRACKING METHOD 961

Fig. 8. (a) Reasonably hand-sized blob previously cleared of white noise specs.
(b) Output image obtained after applying central 2nd order moment analysis to
image blob (a), wherein the whitest regions indicate the orientation of the user’s
finger. (c) Output image obtained after finding the point of maximum curvature
on a local region along the previously found user’s finger orientation. (d)–(f)
Multiple result images at different orientations obtained from the shape analysis
process, wherein the user’s fingertip position found is marked with a ?.

IV. ROBUST FINGER TRACKING METHOD

To achieve computational efficiency, memory savings and
real-time tracking, a robust state-space estimation algorithm
is used to reduce the search area to a smaller search window
centered around the predicted position of the fingertip.

A. Camera View Search Size

In the past, the applicability of computer vision algorithms
aimed at real-time pattern recognition and object tracking
has been hindered by excessive memory requirements and
slow computational speeds. Some recent computer vision
approaches for tracking applications speed up the computation
time by reducing the image search area into a smaller window
whereby the window is centered around the last known position
of the moving object [1], [2]. The main drawback of these
methods is that when the object moves faster than the frame
capture rate of the algorithm, the object will move out of the
window range forcing the system to reset the image search
area to the full view of the camera in order to recover the
position of the object. Some tracking solutions have attempted
an improvement by gradually varying the search window’s size
according to the moving object speed [2]. However, the faster
the object moves, the larger the search window becomes in
order to center the window around the last know position of
the object, thus increasing the computation time for the vision
algorithm and slowing down the system’s response time. More
advanced systems [4] use state-space estimation techniques to
center the smaller search window around the future predicted
position of the user’s fingertip, rather than around its current
position. In this way, as the moving object speed increases, the
predicted window position will accompany the speeding object
thereby keeping it inside the window’s view. The window size
thus remains small and centered around the object of interest
regardless of its speed. However, such systems break down if
the camera view of the object abruptly changes introducing
modeling uncertainties, as in the case of a head-mounted
camera in a wearable system, and the tracking of the user’s
hand is lost. Therefore, a robust estimation algorithm, such as

the one proposed in [8], [9], [15], which models the uncer-
tainties created by the user’s random ego motion (i.e., by the
head-mounted camera motion), is more effective in keeping the
user’s hand inside the small search window and in reducing the
number of times the image search area has to be expanded to
full view, thus increasing the system’s response time.

B. State-Space Modeling for Fingertip Tracking

The presented robust finger tracker [8], [9], [12] is based on
the regularized robust filtering method developed in [15]. This
robust finger tracker attempts to control the influence of uncer-
tain environment conditions on the system performance, such as
the effect of random variations in the user’s motion characteris-
tics. In this section we describe the underlying equations [12],
provide motivation and justification, and elaborate on methods
for selecting the perturbation models.

Let denote the coordinates of the fingertip position in
the current frame. Let also denote the accelerations
along the and directions (measured in pixels per second),
and let denote the speeds along these same direc-
tions during the th frame (measured in pixels/second). More-
over, denotes the frame capture rate while tracking the user’s
hand (for the Snap&Tell wearable system, this rate is currently
1/20 s/frame). Then

(5)

(6)

(7)

(8)

The robust tracker attempts to predict the fingertip coordinate
positions in the next video frame in the presence
of both noise and uncertainties.

The above equations motivate the following state-space
model with state vector and measurement vector :

(9)

(10)

where
(11)

(12)

and the model parameters are given by

(13)

(14)

(15)

The measurement vector consists of the pixel coordinates
that are provided by the vision algorithm locating the fingertip

962 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 5, OCTOBER 2006

position. These coordinates can be regarded as noisy measure-
ments of the actual pixel coordinates . The variables

denote uncorrelated zero-mean white Gaussian process
and measurement noises, with corresponding covariance ma-
trices and that satisfy

(16)

It should be mentioned that we are using a full image frame
size of , which has an -pixel mean of 130 and a

-pixel mean of 90. Therefore, these mean values are subtracted
from the actual coordinate positions before forming the above
state-space model. In other words, the variables in the
above model are zero-mean variables that have been centered by
removing their means. This is needed prior to the application of
the state-space estimation algorithms.

In addition, the measurement vector consists of the
centered pixel coordinates that are provided by the vision
algorithm locating the fingertip position. These coordinates
can therefore be regarded as noisy measurements of the actual
pixel coordinates . By using the assumed state-space
model (11)–(15), we can then proceed to employ a variety of
estimation techniques to “clean” from measurement noise
and to predict future movements of .

For a Kalman filter to perform satisfactorily it is required to
have knowledge of the process noise covariance matrix and
the measurement noise covariance matrix . These two covari-
ances are usually estimated empirically. For the wearable com-
puter system, the particular values for the covariance matrices

and were determined by following the method of [16]. A
more detailed description of how we determined values for
and is given in [12], along with the specific values chosen for

and used in the Snap&Tell system.

C. Fingertip Tracker in the Presence of Uncertainties

Let us first describe a Kalman-filter based fingertip tracker.
Introduce the following predicted and filtered estimates of the
state vector:

and the corresponding error variances:

In the above, the shorthand notation “l.l.m.s.” stands for “linear
least-mean squares”.

As explained in [15], each step of the prediction form of the
Kalman filter admits a deterministic interpretation as the solu-
tion to a regularized least-squares problem. Specifically, the pre-
diction form equations of the Kalman filter can be obtained by

estimating along with by minimizing the following esti-
mation error cost function:

(17)

However, the central premise in the Kalman filtering formu-
lation is that the underlying model parameters
are accurately known. When this assumption is violated, the per-
formance of the filter can deteriorate and one is therefore mo-
tivated to consider robust variants; robust in the sense that they
attempt to limit, in certain ways, the effect of model uncertain-
ties on the overall filter performance. For a wearable computer
system, there are several sources of uncertainties that may in-
terfere with the accuracy of the assumed state-space model. The
uncertainties can be due to the “head-mounted” camera moving
along with the user’s head motion, to changes in lighting condi-
tions, to the background and object moving independently from
each other, to the user standing still or randomly walking, or to
the user’s pointing finger abruptly changing directions at vari-
able speeds and accelerations. All these factors changing con-
stantly in time create different conditions of uncertainties.

One way to model uncertainties in a wearable computer
system is to treat the given parameters as nominal
values, and to assume that the actual values lie within a certain
set around them. Thus consider an uncertain model of the form:

(18)

where the perturbations in are modeled as

(19)

for some matrices and for an arbitrary contraction
. The model (19) allows the designer to restrict

the sources of uncertainties to a certain column space (defined
by the matrix), and to assign different levels of distortion by
selecting the entries of appropriately [15]. The case
of uncertainties in only can be handled by setting .
Likewise, the case of uncertainties in only can be handled by
setting . Finally, the case of accurate models is obtained
by setting , and .

Using the uncertainty model (18)–(19), we may estimate
along with by minimizing the estimation error of the tracker
over the worst-case uncertainties and by solving

(20)

where are given weighting matrices.
In this way, the robust tracker attempts to minimize at iteration

the estimation error at the worst possible case created by the
bounded uncertainties and . This minimization–maxi-
mization procedure results in the following robust estimation

DOMINGUEZ et al.: ROBUST FINGER TRACKING METHOD 963

algorithm, which has a similar form to the prediction form equa-
tions of the Kalman filter [15]:

Initial conditions: , and , where
for our wearable interface.

Step 1a: Using compute :

Step 1b: If , then set (non robust filter).
Otherwise, select (typically) and set

where denotes the maximum singular value of its
argument.

Step 2: Replace by

If , then simply set
, and .

Step 3: Now update to as follows:

The estimates , and thus the predicted fin-
gertip coordinates for the next frame , can be ob-
tained by recursively iterating between steps 2 and 3. For the
case when , steps 2 and 3 get reduced to the standard
prediction form equations of the Kalman filter.

D. Selection of Perturbation Models

Experimental and empirical evidence in [8], [12] has sug-
gested that possible choices for the robust tracker’s perturbation
matrices , in the context of fingertip tracking with
constant speed model (i.e., user standing still), are

(21)

(22)

(23)

Using these values, the robust fingertip tracker interface has
shown an average improvement in mean square error (MSE) of
10% over the prediction performance of a plain Kalman filter for
tracking the fingertip trajectory of a user encircling an object of
interest while standing still. In order to find the average MSE
improvement of the robust filter results over the Kalman filter
results, the average MSE for each filter was computed by first
finding the individual MSE of the estimates for the
and pixel coordinates and the and pixel displacements,
over the number of video frames captured from the moment the
fingertip “starts” being tracked to the moment the user halts the
tracking using the “stop” audio command. Then the individual
MSE of the estimates for a particular filter are averaged together
to obtain the average MSE for the filter, as follows

where is a variable index denoting the frame numbers, de-
notes the total number of frames in the tracking sequence, and
the and pixel displacements are defined as follows:

E. A Genetic Algorithm Procedure

Following the initial investigations in [8], [12], a more sys-
tematic method to generate the perturbation models was pur-
sued. Specifically, a genetic algorithm was integrated into the
robust wearable interface in order to automatically generate the
perturbation models for the various wearable interface uncer-
tainty scenarios.

Genetic algorithms are search algorithms based on the
mechanics of natural selection and natural genetics [19]. They
combine survival of the fittest among string structures, or
vectors such as the perturbation models , with
a structured yet randomized information exchange to form a
search algorithm. In every generation, a new offspring (set of
artificial strings, vectors, or children) is created using bits and
pieces of the fittest parents, and occasionally a new part is
added to the mix (random mutation). Only the new offspring
or children (new vectors) which generate an
improved performance (smaller prediction MSE) will be
allowed to survive.

The first step towards using a genetic algorithm to search for
the fittest perturbation model is to create a random population

964 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 5, OCTOBER 2006

of parent vectors (chromosomes) or sets of
for , with each set of three vectors varying some-
what from the other sets. The population perturbation models

for the wearable interface were chosen to be
row vectors, that are bounded to individual element values be-

tween 0 and 5, which vary by increments of 0.1. These particular
uncertainty boundaries were previously determined through ex-
perimentation.

Next, the fitness or accuracy of each set of three vectors
within the random population must be deter-

mined. The fitness function can be thought of as a measure of
profit or goodness that we want to maximize. Selecting vectors
according to their fitness values means that strings with a higher
fitness value have a higher probability of contributing one or
more children in the next generation. The measurement of
fitness (or cost function) used to judge the set of three model
vectors was chosen to be a comparison between
the average MSE results for and (fingertip coordinates) of
the Kalman filter and the robust tracker using the perturbation
models .

Then, all the sets of three vectors are ranked according to their
score. The vectors with the highest score are the vectors that pro-
duced the smallest MSE. Then the vectors with the best scores
are kept and some of the lowest scoring vectors are discarded,
i.e., survival of the fittest.

Once the strongest vector candidates have been selected, they
are altered stochastically to produce a next generation of vectors
or children. Some of the child vector sets will have higher scores
than their parent vectors in the previous generation, some will
have lower scores. The overall process is then repeated for sub-
sequent generations. During each generation or iteration, only
the perturbation models with the best scores are
retained, and randomly altered to give yet another generation,
and so on. The process is halted when the single best set of per-
turbation models in a generation has a score that
exceeds a desired MSE criterion value or when the MSE stops
improving and the fitness measure saturates.

There are three primary genetic operators that govern repro-
duction, and that are used to stochastically alter the parent vec-
tors in a genetic algorithm. These primary genetic operators are
replication, crossover, and mutation. A graphical representation
of the three primary genetic operators used for reproduction
is shown in Fig. 9, where the number of elements in a parent
vector corresponds to six for the case of the perturbation models

, and the fitness “fit” corresponds to the average
MSE improvement over the Kalman filter results.

During replication the most fit parent vector set of perturba-
tion models is merely reproduced unchanged
(survival of the fittest), as it can be seen in Fig. 9.

During crossover two parent vectors are mixed together to
yield two new child vectors, as illustrated in Fig. 9. A split point
is chosen randomly along the length of either parent, and the
first part of vector “parent-1” is spliced to the last part of vector
“parent-2”, and vice versa, thereby yielding two new child vec-
tors. The probability that a given pair of parent vectors will un-
dergo crossover is given by . It should be noted that only
parent vectors of the same kind (i.e., or or

) are allowed to crossover with each other.

Fig. 9. Three primary genetic operators used to stochastically alter the most fit
parent vectors in a genetic algorithm.

Fig. 10. Outline of the genetic algorithm used to find a suitable perturbation
model fM ;E ;E g for the robust wearable computer interface.

During mutation, each individual element inside a parent per-
turbation vector is given a small chance, , of being changed
from its current value to a new value within its boundary range

.
An outline showing the steps performed by the genetic algo-

rithm used to find the perturbation models for
the robust wearable computer interface is given in Fig. 10.

The genetic algorithm generated the following choices for
the robust tracker’s perturbation matrices , in the
context of fingertip tracking with constant speed model (user
standing still):

(24)

(25)

(26)

The fitness measure generated by these perturbation matrices
was 24% improvement over the averaged MSE of the
Kalman filter.

DOMINGUEZ et al.: ROBUST FINGER TRACKING METHOD 965

Fig. 11. Sample frames from a real-time fingertip tracking sequence generated with our robust tracker. This tracking sequence coarsely segmented a stuffed toy
(blue bug) from a complex background (top of a crowded office desk).

V. INTEGRATION RESULTS

The robust multimodal wearable computer interface using
state-space estimation with uncertainty models was integrated
into the Snap&Tell system in order to test the robustness of the
finger tracking algorithm within a wearable environment. The
fingertip tracking results obtained using the robust interface and
the 1.2 GHz laptop computer of the Snap&Tell system over a
sequence of frames are illustrated in Fig. 11 (see also [9] and
[12]). The last frame shown in Fig. 11 illustrates the final output
display of the Snap&Tell system after successfully tracking the
user’s fingertip, extracting the object of interest at the end of the
pointing gesture, and finally recognizing the desired object.

In the proposed interface, the user is constantly provided
with a visual-overlay displayed on the user’s head-mounted
display, wherein the visual-overlay consist of the continuous
video frames captured by the head-mounted camera. The user,
utilizes the feedback from these overlays to visually align the
object of interest and the user’s hand within the field of view
of the head-mounted camera, in order to solve the calibration
and synchronization problems generated by the user’s eye,
the user’s hand, the head-mounted camera, and the object of
interest, having different coordinate systems from one another.
Therefore, this interface treats the 3-D world image captured
by the head-mounted camera as a 2-D “flat” image containing
the user’s hand-fingertip, the object of interest, and a complex
background. Then, the interface performs 2-D tracking of the
user’s pointing fingertip in order to separate (coarsely segment
out) the object of interest from the complex background.

A. Overall Performance of Multimodal Wearable Interface

As seen in Fig. 11, the robust tracker reduces the search area
into a small search window centered at the predicted 2-D fin-
gertip coordinates found by the robust tracker, and thus the ro-
bust tracker speeds up the processing time of the vision algo-
rithms. Note that once the robust tracker locks onto the user’s
fingertip position (from frame 23 until the end of the sequence in
Fig. 11), the center of the reduced search window, which is cen-
tered at the previously predicted fingertip position, very closely
overlaps with the actual user’s fingertip position. In this simu-
lation, the response time of our overall system was found to be
68% faster than the response obtained by a system that uses a
full camera view to track the user’s fingertip, and 23% faster
when compared with a system that uses a small search window
centered around the previous fingertip position (rather than the
predicted future position).

A small database of ten common objects found on or near an
office desk including a stapler, mouse, keyboard, phone, trash
can, poster, picture, pen, and two stuffed toys (a Furby and a blue
bug), were coarsely segmented by a user wearing the Snap&Tell
system containing the robust finger tracking multimodal inter-
face. Fig. 12 shows a small sample of tracking sequences cap-
tured by the wearable user with corresponding example frames
illustrating each sequence’s color/skin segmentation results and
fingertip location. Fig. 12 also illustrates the user’s fingertip tra-
jectory extracted by the interface (marked in red color), and the
final coarsely segmented object of interest ready to be sent to a
wearable computer system to be recognized.

966 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 5, OCTOBER 2006

Fig. 12. Sample of four typical tracking sequences captured in “real-time” with the Snap&Tell system containing the robust finger tracking interface.

Fig. 13. Example frames illustrating a typical (a) color segmentation error,
(b) skin segmentation error, and (c) prediction error, generated with the finger
tracking multimodal interface.

In the third sample sequence in Fig. 12 where the user encir-
cles a beige telephone, the color segmentation routine assigns
the same color to the user’s hand and to parts of the telephone. In
this situation, the fingertip shape analysis routine correctly ex-
tracts the users fingertip coordinates. However, when the user’s
hand is in contact with, or overlaps, skin-toned objects, the color
segmentation routine blends (links) the skin-tone object with
the user’s hand, causing the fingertip tracking interface to fail.
Blending of skin-tone objects with the user’s hand may also

Fig. 14. Summary of results from multiple experiments performed in real-
time under three different lighting conditions obtained with the robust fingertip
tracking multimodal interface.

occur under poor lighting conditions, such as when the current
lighting changes to a dark environment or a bright environment,
as shown in Fig. 13(a). Fig. 13(a) illustrates the case when the
current lighting conditions on an office were changed using a
second source of bright light shined on the user. Here, the color
segmentation algorithm assigned the same color to the pale col-
ored hand, the light gray desk, and the white toy, making it im-
possible for the skin segmentation algorithm to find the user’s
hand.

Extreme changes from the initial light settings also may lead
to skin segmentation errors by modifying the current skin-tone
of the user significantly enough, to make the user’s skin-tone

DOMINGUEZ et al.: ROBUST FINGER TRACKING METHOD 967

fall outside the preset skin-tone range initially set by the user,
or by making nonskin-tone objects fall within the user’s preset
skin-tone range. Another example of a skin segmentation error
occurs when the preset skin-tone range of the user is too broad,
as illustrated in Fig. 13(b), wherein two distinctly color seg-
mented objects (gray computer monitor and pink user’s hand)
fell within the broad preset skin-tone range initially set by the
user.

In the case of color segmentation or skin segmentation er-
rors, the interface attempts to recover automatically and find
the user’s fingertip on the following frames without loosing
the previously found fingertip track. However, in the case of
poor lighting conditions or skin-tone backgrounds, the inter-
face may not be able to locate the user’s hands, forcing the
user to find a better view of the object of interest away from the
skin-tone background or/and poor lighting conditions. If this is
not possible, the user may retrain the skin segmentation algo-
rithm on the fly, to set the skin segmentation routine to a nar-
rower skin-tone color range centered around the user’s skin tone
under the current lighting conditions by using the skin-tone set-
ting routine.

A typical prediction tracking error generated by the Kalman
filter is illustrated Fig. 13(c), where the Kalman filter predicted
that the position of the user’s fingertip would be to the bottom
left of the object (Furby), i.e., center of the reduced search
window. In this particular sequence, the user moved abruptly
introducing uncertainties into the model, which caused the
Kalman filter to fail, while the robust tracker, through the use of
its perturbation models, tolerated the user’s movement and was
able to predict the user’s fingertip position within the reduced
search window.

In the case when the user’s head or body move in small move-
ments and his/her sight do not leave the object of interest, the ro-
bust fingertip tracker easily tolerates the uncertainties, and con-
tinues to track the user’s fingertip. On the other hand, if the user
moves with large or erratic movements causing the robust tracker
to loose the position of the user’s fingertip, then the robust in-
terface automatically attempts to recuperate from the tracking
error (lost of fingertip location) by expanding the search area to
a full camera view and searching for the user’s fingertip on the
following frames without loosing the fingertip track information
previously found. In most cases, the robust interface automati-
cally recuperates from the majority of the tracking errors (pre-
diction errors, color/skin segmentation errors) without the user’s
intervention, unless the user has moved away from the object
of interest, in which case the user “clears” the track (fingertip
path) previously found using audio commands, and re-issues the
“start” command (once the object is back within the camera’s
field of view) in order to enable the system to once again begin
tracking the user’s pointing fingertip.

Once the user finishes encircling the object of interest, an
overlay of the extracted fingertip track is superimposed on top
of the current camera view of the object. At this point, the user
has the choice to accept the fingertip track and object as they
appear on the head-mounted display by using the audio com-
mand “snap”; or before snapping the encircled object, the user
may first reposition and steady his/her head in order to ensure
that the final image captured (snapped) of the object is stable,

clear (not blurry), and fully encircled within the limits of the ex-
tracted fingertip track overlay; or the user may choose to reject
the entire fingertip track and the coarsely segmented object by
using the “clear” or “reset” audio commands.

Fig. 14 contains three image frames exemplifying three dif-
ferent lighting conditions (normal, dimmed, and bright) and a
table of results summarizing the overall average performance
of the fingertip tracking interface. This table contains the re-
sults from multiple experiments performed in real-time under
three different lighting conditions using the presented fingertip
tracking multimodal interface with respect to color segmenta-
tion, skin segmentation, and fingertip prediction performed by
the robust tracker and by a Kalman filter tracker.

For each of the lighting conditions, ten user finger pointing
sequences were captured for each of the ten objects in our
data base, with an average of 60 frames/sequence. Thus, each
lighting condition has: 10 sequences 10 objects 60 frames

frames per lighting condition. The normal lighting con-
ditions corresponded to an office environment with the lights
turned on and with the preset skin-tone range initially trained
by the user. The dimmed lighting conditions were achieved
by using a dimmer on the office’s light switch, wherein the
lights were dimmed to approximately 70% of the intensity
of the normal lighting conditions. Bright lighting conditions
were achieved by adding to the normal lighting conditions a
second light source shined from above directly at the user and
the object of interest. Note that during the dimmed and bright
lighting conditions the preset skin-tone range was kept the same
as during the normal lighting conditions in order to simulate a
change on lighting conditions surrounding a user in a wearable
environment.

The majority of the errors in the fingertip tracking interface,
under any lighting conditions, were generated by the color seg-
mentation algorithm when the complex scene contained skin-
tone objects. The number of color segmentation errors signif-
icantly increased during bright lighting conditions, as seen in
Fig. 14, since the majority of the users hands became very pale
and they blended with the light colored backgrounds. In addi-
tion, an error in prediction performance in Fig. 14 corresponds
to the case when a prediction algorithm (i.e., Kalman or robust)
failed to center the reduced search window in the vicinity of
the user’s hand, and the reduced search window did not con-
tain the user’s fingertip. The fingertip prediction performance
of both, robust tracker and Kalman filter, exceeded 99.80% cor-
rect under all lighting conditions. Fig. 14 shows that the pre-
diction algorithms were not affected by the change in lighting
conditions, they were only affected by the user’s head and body
movements. Overall, the fingertip tracking interface using the
robust tracking algorithm achieved a fingertip tracking perfor-
mance of over 97% correct under all the lighting conditions, as
seen in Fig. 14.

Of the 300 sequences tested (100 sequences per lighting con-
dition), 73% of the tracking sequences (220 out of the 300 tested
sequences) were tracked without any errors. Fifteen percent of
the sequences with errors (44 out of 300) automatically recuper-
ated from the various errors (color/skin segment and tracking)
without the user’s intervention, by resetting the interface to the
full camera view or by the user looking back at the object of

968 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 5, OCTOBER 2006

interest after momentarily loosing sight of the object. Five per-
cent of the sequences with errors (14 out of 300) required the
user’s intervention to clear the track and re-start the tracking se-
quence, since the users moved their head or body excessively
during the captured sequence. Seven percent of the sequences
with errors (22 out of 300) required the user’s intervention to
clear the track and retrain the skin segmentation algorithm to
set a narrower skin-tone color range centered around the user’s
skin tone under the new current lighting conditions. Therefore,
the robust interface was able to coarsely segment out the objects
of interest on 88% of the sequences (264 out of 300) without the
user having to clear or reset the interface.

Once the scene object or landmark of interest is isolated
(coarsely segmented) using the robust finger tracking multi-
modal interface (as seen in Fig. 12), the coarsely segmented
object may be sent to a wearable computer system to be rec-
ognized. At this point, any object recognition method may be
used to classify the object and provide the user with relevant
information pertaining the recognized object.

In order to test the recognizability of the coarsely segmented
objects extracted with the robust finger tracking method, the ro-
bust multimodal wearable computer interface sent the coarsely
segmented objects to the Snap&Tell system, which attempted to
recognize the segmented object by matching local appearance
descriptors extracted at salient points [12]. The Snap&Tell
object recognition approach assumes that there are only a
small number of significant objects at each location where the
wearable system is being used. Therefore, the Snap&Tell object
recognition approach was tested on our small database of ten
common objects found on or near an office desk. Each of these
objects were coarsely segmented during a training session by a
user wearing the Snap&Tell system containing the robust finger
tracking multimodal interface, where the user built the database
by capturing ten snapshots of an object at varying viewpoints,
and at two different scales. The object shots also exhibited
slight variations in intensity due to the lighting present during
the capture of each perspective view. The snapshot database of
objects was then used to train a plurality of MFA classification
models. The Snap&Tell object recognition approach achieved
96% correct object recognition on a test set of five views per
object captured at arbitrary viewpoints and scales, wherein the
test set objects corresponded to some of the objects contained
in the training session but with the test set objects indepen-
dently captured (coarsely segmented) at different scales and
viewpoints from the objects in the training session. Comparing
the object’s test image to its best matching image in the training
set, we find the approach to be robust to small changes in
illumination present due to the perspective, pose differences of
less than 40 along any of the coordinate axes of the viewing
perspective, and scale differences of less than 60% deviation
between the size of the object’s test image and the size of its
best training matching image. In practical applications, the
user must capture enough training views to model the expected
variation in appearance, which may be more or less than the
ten views utilized in our test experiments. When the number of
objects is quite large, the categories or classes of objects (e.g.,
faces, stuffed toys) are modeled as an “object class” rather than
modeling each individual object separately, as demonstrated

in Keaton et al. [24]. Therefore, as the number of objects
increases, a two-stage recognition process may be employed to
first recognize the object class associated with the input image
followed by the recognition of the specific object within the
class of objects. A detailed description of the object recognition
algorithms and the object recognition results obtained with the
Snap&Tell system can be found in [11] and [12].

B. Robust Finger Tracking Results

The presented robust tracking algorithm has been previously
compared in extensive detail with many other robust filters in
publication [15], which contains extensive simulations and com-
parisons of the robust tracking algorithm with other filters and
trackers such as Kalman filters, H-infinity filters, set-value es-
timation methods, and guaranteed-cost designs, in addition to
the theoretical motivation and derivation of the presented ro-
bust filter. In particular, this robust tracking filter does not re-
quire existence conditions, is applicable to time-variant as well
as time-invariant models, and has been shown to yield a smaller
error variance when compared with other robust filters. Further-
more, the proposed robust finger tracking algorithm is compu-
tationally simple to implement, it performs in “real-time” while
at the same time, it limits the effect of model uncertainties cre-
ated by the wearable computer user standing still or randomly
walking while wearing a head mounted camera during various
lighting conditions.

One critical constraint for a wearable computer interface is
its ability to perform in “real-time,” in a seemingly transparent
manner. This particular requirement imposes limitations on the
complexity of the computer algorithms, i.e., fingertip tracker,
that can be pursued to create the gesture tracking interface. Sta-
tistical modeling filters, such as particle filtering, require an
enormous amount of data to model the probability density func-
tion (pdf) of the object of interest, and to train the filters in order
to be able to perform tracking properly. For a wearable computer
system, where the user requests information on the fly by encir-
cling objects with his fingertip, there are very few parameters or
sample data available to the tracking algorithm. On the average,
a user takes about 2 to 3 s to encircle an object, which corre-
sponds to approximately 60 frames of data (usually between 50
to 75 frames per sequence). This corresponds to a system with
a reduced model with limited or no training data.

The proposed robust finger tracking algorithm does not
attempt to find the pdf of the data, it only models the effect of
the uncertainties present on the wearable environment through
the perturbation models, which contain only 18 perturbation
coefficients. In addition, the use of genetic algorithms provide
one convenient method to learn the perturbation models since
this is a fundamentally nonlinear problem. In most instances,
the learning is performed offline under different conditions,
and visual cues, such as frame differencing, are used to deter-
mine the transition between models. That is, when the system
detects abrupt background changes through frame differencing,
the system switches the perturbation models from the “user
standing still” to “the user walking” model.

Tracking Results Using Empirical Perturbation Models: The
square root of the various mean-square-error (MSE) results
(given in pixels) and the maximum estimation error

DOMINGUEZ et al.: ROBUST FINGER TRACKING METHOD 969

Fig. 15. Comparison of the fingertip coordinate estimation errors between the
Kalman filter and the robust tracker using the empirical perturbation models
defined by (21), (22), and (23) with � = 0:5.

results (given in pixels) for tracking a typical fingertip trajec-
tory of a user encircling an object of interest while standing
still by using a plain Kalman filter and the robust interface
with the perturbation models (21)–(23) found empirically are
shown in Fig. 15 for the estimation error of the and pixel
coordinates, and in Fig. 16 for the estimation error in the
and displacements. The square root of the various MSEs
(given in pixels) of the Kalman filter were found to be

where is a variable index denoting the frame number, and
where there were 75 frames in this particular training tracking
sequence (illustrated in Figs. 15 and 16) from the moment the
“start” audio command is given until the moment the “stop”
audio command is uttered by the user. Likewise, the square root
of the various MSEs (given in pixels) of the robust filter using
the empiric perturbation models were found to be

Fig. 16. Comparison of the fingertip displacement estimation errors between
the Kalman filter and the robust tracker using the empirical perturbation models
defined by (21), (22), and (23) with � = 0:5.

The average number of predicted pixels off from the user’s
fingertip position are approximated by the square root of the
average obtained from the performances
of the Kalman filter and the robust tracker as follows:

Therefore, the average number of pixels off predicted by the
Kalman filter was found to be

and the average number of pixels off from the user’s fingertip
position predicted by the robust filter using the empirical per-
turbation models was found to be

Then, the performance improvement of average number of
pixels off from the user’s fingertip position predicted by the ro-

970 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 5, OCTOBER 2006

Fig. 17. Comparison of the fingertip coordinate estimation errors (pixels off)
between the Kalman filter and the robust tracker using the genetic perturbation
model defined by (24)–(26) with � = 0:5.

bust fingertip tracker compared with the Kalman filter was found
to be

% %

while the performance improvement of the robust fingertip
tracker over the averaged MSE of the Kalman filter
was found to be

% %

Therefore, the performance of the robust fingertip tracker in-
terface using the empirical perturbation models (21)–(23) has
shown an improvement of 10% on the average number of pre-
dicted pixels off from the actual user’s fingertip position, and an
improvement in average mean square error (MSE) of 19%, over
the prediction performance of a plain Kalman filter tracking a
typical fingertip trajectory of a user encircling an object of in-
terest while standing still. The maximum estimation errors for
the Kalman filter and the robust fingertip tracker can be found
in Figs. 15 and 16. The maximum estimation errors (given in
pixels) for the Kalman filter are

and the maximum estimation errors (given in pixels) for the ro-
bust filter using the empiric perturbation models are

Tracking Results Using Genetic Perturbation Models: The
square root of the various MSE results (given in pixels) and
the maximum estimation error results (given in pixels) for the

Fig. 18. Comparison of the fingertip displacement estimation errors (pixels off)
between the Kalman filter and the robust tracker using the genetic perturbation
model defined by (24)–(26) with � = 0:5.

Kalman filter and the robust finger tracker with the perturbation
model defined by (24)–(26) found using a genetic algorithm,
are shown in Fig. 17 for the estimation error of the and pixel
coordinates, and in Fig. 18 for the estimation error in the and

pixel displacements. The square root of the various MSE
results (given in pixels) for the Kalman filter were found to be

where there were 75 frames in this typical training tracking se-
quence. Likewise, the square root of the various MSEs of the
robust filter using the genetically generated perturbation models
were found to be

where the average number of pixels off predicted by the Kalman
filter was found to be

and the average number of pixels off from the user’s fingertip
position predicted by the robust filter using the genetic pertur-
bation models was found to be

Then, the performance improvement of average number of
pixels off from the user’s fingertip position predicted by the ro-

DOMINGUEZ et al.: ROBUST FINGER TRACKING METHOD 971

bust fingertip tracker using genetic perturbation models com-
pared with the Kalman filter was found to be

% %

while the performance improvement of the robust fingertip
tracker over the averaged MSE of the Kalman filter
was found to be

% %

Therefore, the performance of the robust fingertip tracker
interface using the genetic perturbation models (24)–(26) has
shown an improvement of 13% on the average number of
predicted pixels off from the actual user’s fingertip position,
and an improvement in average MSE of 24%, over the predic-
tion performance of a plain Kalman filter tracking a typical
fingertip trajectory of a user encircling an object of interest
while standing still. The maximum estimation errors (given in
pixels) for the Kalman filter and the robust fingertip tracker can
be found in Figs. 17 and 18. The maximum estimation errors
for the Kalman filter are

and the maximum estimation errors for the robust filter with
genetic perturbation models were found to be

The size of the reduced search window was chosen to be at
least twice the size of the maximum estimation errors of the ro-
bust tracker in the and directions

), where the performance of this tracker was estimated
using a training sequence of a typical pointing finger trajec-
tory. Therefore, the more accurate the tracker is in estimating
the fingertip position, the smaller the size of the search window
needed, and thus the faster the overall system response time will
be. For these simulations, where the maximum estimation errors
for the and coordinates for both filters were very close in
magnitude to each other, there was not a clear advantage on the
reduced search window size between one filter to the other filter.
However, the maximum estimation error for the and
displacements (i.e., for the speeds in the x and y directions, re-
spectively) are significantly larger for the Kalman filter in com-
parison to the robust filter when the user speeds up his hand
movements. Therefore, the robust finger tracker leads to a more
stable response than the Kalman filter under the condition when
the user points at an object with fast gestures, as illustrated in
Figs. 16 and Fig. 18.

REFERENCES

[1] J. Yang, W. Yang, M. Denecke, and A. Waibel, “Smart sight: A tourist
assistant system,” Proc. Int. Symposium on Wearable Computers, vol.
1, pp. 73–78, Oct. 1999.

[2] T. Brown and R. C. Thomas, “Finger tracking for the digital desk,”
in Proc. Australasian User Interface Conf., Canberra, Australia, 2000,
vol. 1, pp. 11–16.

[3] A. Wu, M. Shah, and N. Da Vitoria Lobo, “A virtual 3D blackboard:
3D finger tracking using a single camera,” in Proc. IEEE Int. Conf.
Automatic Face and Gesture Recognition, 2000, pp. 536–543.

[4] C. Jennings, “Robust finger tracking with multiple cameras,” in Proc.
Conf. on Recognition, Analysis, and Tracking of Faces and Gestures in
Real-Time Systems, Corfu, Greece, 1999, pp. 152–160.

[5] K. Imagawa, L. Shan, and S. Igi, “Color-based hands tracking system
for sign language recognition,” in Proc. Conf. Automatic Face and Ges-
ture Recognition, Nara, Japan, 1998, pp. 462–467.

[6] F. K. H. Quek, T. Mysliwiec, and M. Zhao, “Finger mouse: A freehand
pointing interface,” in Proc. Int. Workshop on Automatic Face and Ges-
ture Recognition, Zürich, Switzerland, June 1995, pp. 372–377.

[7] X. Zhu, J. Yang, and A. Waibel, “Segmenting hands of arbitrary color,”
in Proc. Conf. Automatic Face and Gesture Recognition, Grenoble,
France, 2000, pp. 446–453.

[8] S. M. Dominguez, T. Keaton, and A. H. Sayed, “Comparison of ro-
bust estimation and Kalman filtering applied to fingertip tracking in
human-machine interfaces,” in Proc. Asilomar Conf. Signal, Systems
& Computers, Pacific Grove, CA, Nov. 2001, pp. 342–346.

[9] S. M. Dominguez, T. Keaton, and A. H. Sayed, “Robust finger
tracking for wearable computer interfacing,” in Proc. Perceptive
User Interfaces, Orlando, FL, Nov. 2001 [Online]. Available:
http://www.cs.ucsb.edu/conferences/PUI/PUIWorkshop/

[10] T. Keaton, S. M. Dominguez, and A. H. Sayed, “Snap&Tell™: A Vi-
sion-Based Wearable System to Support Web-On-The-World Applica-
tions,” in Proc. Digital Image Computing - Techniques and Applica-
tions (DICTA) Conference, Melbourne, Australia, Jan. 2002, pp. 92–97.

[11] T. Keaton, S. M. Dominguez, and A. H. Sayed, “Snap&Tell™: A mul-
timodal wearable computer interface for browsing the environment,”
in Proc. Int. Symp. Wearable Computers, Seatle, WA, Oct. 2002, pp.
75–82.

[12] T. Keaton, S. M. Dominguez, and A. H. Sayed, “Browsing the environ-
ment with the Snap&Tell™ wearable computer system,” Pers. Ubiqui-
tous Comput. J., vol. 9, no. 6, pp. 343–355, Dec 2005.

[13] D. Comaniciu and P. Meer, “Robust analysis of feature space: Color
image segmentation,” in Proc. Conf. Computer Vision and Pattern
Recognition, San Juan, PR, 1997, pp. 750–755.

[14] F. Van der Heijden, Image Based Measurement Systems. New York:
Wiley, 1994.

[15] A. H. Sayed, “A framework for state-space estimation with uncertain
models,” IEEE Trans. Automat. Contr., vol. 46, no. 7, pp. 998–1013,
Jul. 2001.

[16] R. K. Mehra, “On the identification of variances and adaptive Kalman
filtering,” IEEE Trans. Automat. Contr., vol. AC-15, pp. 175–183,
1970.

[17] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation. Upper
Saddle River, NJ: Prentice-Hall, 2000.

[18] A. H. Sayed, Fundamentals of Adaptive Filtering. Hoboken, NJ:
Wiley, 2003.

[19] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. New
York: Wiley-Interscience, 2001.

[20] V. Colin de Verdiere and J. L. Crowley, “Visual recognition using local
appearance,” in Proc. Eur. Conf. Computer Vision, Frieburg, Germany,
1998.

[21] H. Schneiderman and T. Kanade, “Probabilistic modeling of local
appearance and spatial relationships for object recognition,” in Proc.
Conf. Computer Vision and Pattern Recognition, Santa Barbara, CA,
1998, pp. 45–51.

[22] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Proc. Roy. Statist. Soc.,
vol. B39, pp. 1–38, 1977.

[23] Z. Ghahramani and G. E. Hinton, The EM algorithm for mixtures
of factor analyzers Univ. Toronto, Toronto, ON, Canada, Tech. Rep.
CRG-TR-96-1, 1996.

972 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 5, OCTOBER 2006

[24] T. Keaton and R. Goodman, “A compression framework for content
analysis,” in Proc. Workshop on Content-based Access of Image and
Video Libraries, Fort Collins, CO, June 1999, pp. 68–73.

[25] C. Tomasi and T. Kanade, Detection and tracking of point features
Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-CS-91-132,
Apr. 1991.

Sylvia M. Dominguez received the B.S. degree in electrical engineering (magna
cum laude) from the University of Texas at El Paso, the M.S. degree in elec-
trical engineering (with highest honors) from New Mexico State University, Las
Cruces, and the Engineering degree (with high honors) from the University of
California, Los Angeles (UCLA), where she is currently pursuing the Ph.D. de-
gree in electrical engineering.

Her research experience include computer vision, signal processing, robust
tracking systems, adaptive filtering, human computer interfacing, graphical
modeling, integrated VLSI design, bio- controls, and hearing aid design. She
has two patents, two scientific journals, and six conference publications based
on her research work. She has been working for the past four years as a Senior
Patent Engineer for the Intellectual Property Law Firm of Tope-McKay &
Associates. Previously, she worked for two years as a Research Intern at HRL
Laboratories in Malibu CA. In addition, she was a Lecturer for the UCLA
Center for Excellence in Engineering and Diversity for seven years.

Trish Keaton (M’04) is currently pursuing the Ph.D. degree in electrical engi-
neering at the California Institute of Technology.

She is a Program Manager for Northrop Grumman Corporation. Prior to
joining Northrop Grumman, she was a Senior Scientist at Rockwell Scientific
Company, and a Research Scientist at HRL Laboratories (formerly Hughes
Research Laboratories), where she was the Principal Investigator of projects
focused on 3-D human tracking and activity recognition with applications
involving surveillance, ubiquitous and wearable computing. She has two
patents awarded, five patents pending, and multiple journal and conference
publications based on her research. Her research interests include computer
vision, robust tracking systems, human computer interfacing, software product
lines, graphical modeling, level set methods, and multimedia indexing and
retrieval.

Ali H. Sayed (F’01) is Professor and Chairman of electrical engineering at the
University of California, Los Angeles (UCLA). He is also the Principal Inves-
tigator of the UCLA Adaptive Systems Laboratory (www.ee.ucla.edu/asl). He
has over 250 journal and conference publications, is the author of the textbook
Fundamentals of Adaptive Filtering (Wiley, 2003), and is coauthor of the re-
search monograph Indefinite Quadratic Estimation and Control (SIAM, 1999)
and of the graduate-level textbook Linear Estimation (Prentice-Hall, 2000). He
is also co-editor of the volume Fast Reliable Algorithms for Matrices with Struc-
ture (SIAM, 1999). He has contributed several articles to engineering and math-
ematical encyclopedias and handbooks and has served on the program com-
mittees of several international meetings. His research interests span several
areas, including adaptive and statistical signal processing, filtering and estima-
tion theories, signal processing for communications, interplays between signal
processing and control methodologies, system theory, and fast algorithms for
large-scale problems.

Dr. Sayed received the 1996 IEEE D. G. Fink Prize, a 2002 Best Paper
Award from the IEEE Signal Processing Society, the 2003 Kuwait Prize, the
2005 Terman Award, a 2005 Young Author Best Paper Award from the IEEE
Signal Processing Society, and two Best Student Paper Awards at international
meetings (1999, 2001). He served as a Distinguished Lecturer of the IEEE
Signal Processing Society during 2005. He was also a member of the Publica-
tions (2003–2005) and Award (2005) Boards of the IEEE Signal Processing
Society. He is a member of the technical committees on Signal Processing
Theory and Methods and Signal Processing for Communications, both of the
IEEE Signal Processing Society. He currently serves as General Chairman of
ICASSP 2008. He has served as Editor-in-Chief of the IEEE TRANSACTIONS

ON SIGNAL PROCESSING (2003-2005) and is now serving as Editor-in-Chief of
the EURASIP Journal on Applied Signal Processing.

