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Abstract—T he study of matrices with a displacement structure is mainly
concerned with recursions for the so-called generator matrices. The Fig. 1. A transmission-line mappinfl into S.
recursion usually involves free parameters, which can be chosen in several
ways so as to simplify the resulting algorithm. In this correspondence we in a simplified so-called proper form, which is often desirable from a
present a choice for the parameters that is motivated by a maximum- - compytational point of view, e.g., in interpolation problems [3]-[5].
entropy formulatl(_)n.Thls chc_)lce furth_e_r motivates the |r_1tr0duct|on o_fthe Other choices for{7:,®;}, while leading to different forms for
so-called generalized reflection coefficients which are, in general, different . Ll M -
from the better known Schur coefficients. the first-order sections and for the generator recursion, further allow
to impose other desirable properties on the cas@d&he present
correspondence addresses one such issue. More specifically, it shows
how to construct a cascad® and in particular how to choose the
above-mentioned free parametedrs, ©;}, such that the resulting
I. INTRODUCTION cascadd’ will map the zero load K’ = 0) to the maximum-entropy

The maximum-entropy extension (or loading) problem has attractéglution, as in the classical result [1]. We shall see that, in general, the
considerable attention in the literature. The first solution by Bufgascade that corresponds to the proper choice far©;} does not
[1] treated Toeplitz matrices and emphasized their parametrization§iP the zero-load to the maximum-entropy solution. Moreover, we
terms of the so-called reflection coefficients, also known as schifpall be motivated to introduce a new set of contractive coefficients,
coefficients. In this correspondence, we exploit the fact that tige for each section of the cascade, and which will be shown, in
Toeplitz/Schur ideas can be extended to more general classeggperal, to be distinct from the Schur parameters encountered in the
matrices by invoking the concept of displacement structure [d}fOPer case (see, e.g., [4, Sec. 5] and [3]).
and show that a very general formulation of the maximum entro
problem is possible. In particular, we provide both global an
recursive solutions to the generalized problem. Similar issues of relating the maximum-entropy solution to the
The connection between maximum-entropy extensions aR@ntral solution (corresponding to the zero load) have been addressed
structured matrices will be established in terms of the cascade®rthe literature [6]{8].
transmission-line structures, that arise naturally when the CholeskyThe work [6] deals with time-dependent entropy problems and
factorizations of structured matrices are efficiently computed via8s0 considers contractive extension problems. The framework of the
generalized Schur algorithm [2]. For a given structured maftix lifting of commutants is employed in [7], while [8] employs tools of
the algorithm operates recursively on its so-called generator mate W -transform technique studied in [9]. In particular, the work [8]
G and provides, for each step, a first-order section (or transfePses a maximum-entropy problem in the context of linear fractional
function/operator). Each section is usually parametrized in terms fnsformations that arise in time-variant discrete-tithe control.
two free parameters: &-unitary rotation matrix9; and a complex The work shows how to choose a particular contractive load that
scalarr; that is restricted to lie on a circle of a given radius. Théhaximizes a time-variant entropy measure, and provides state-space
details of the algorithm in the time-variant scenario are providd@mulas and global expressions for the entropy operator.
in [3] and [4]. The current work departs from earlier work in the sense that
A sequence ofn + 1) steps of the generalized Schur algorithrﬂt focuses on a recursive (rather than a global) construction of
would lead to a cascade afsuch sections, known as a transmissiof’® maximum-entropy solution. This is useful in situations when
line and which we will denote by (see Fig. 1). Under certain the available data is updated and it is desired to re-evaluate the

positivity and finite-dimensionality conditions [3], the cascaBle Corresponding maximum-entropy solution by exploiting the available
is known to map, in a certain way, contractive operatdfsto cascade from the earlier calculations. A recursive procedure allows
contractive operators, written simply asS = T[K]. us to evaluate this new solution by simply appending a new section
Different choices fof{r;, ©;} lead to different expressions for thet0 the earlier cascade. Global expressions,_ on thg _other h_and', need
first-order sections and to different forms for the generator recursiéfh be evaluated afresh whenever the data is modified, which is not
itself. For example, one particular choice for,, ©,}, which will be ~ CONnvenient in recursive scenarios that arise, for example, in adaptive

discussed in Section V-A, allows the generator recursion to be writt&fhemes. _ _
We have chosen to present the results of this correspondence in
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G(t) € LU BV(t). R(t)) andF(t) € L(R(t—1),R(t)), and we Il. SOLUTION OF THE OPTIMIZATION PROBLEM
define the symmetry () = (L) & —Iv(r)) acting onid(t) & V(1), Define the direct sund = @z J(t) and consider a bounded

where I, denotes the identity operator on the spat¢). We pper-triangular operator
partition G(t) = [U(t) V(t)], whereU(t) € L({U(t),R(t)) and
V(t) € L(V(t),R(t)). We also use the symbdl to denote the Terc(a U ooV
adjoint operator and we writé&*(¢) = (F(¢))". tez tez
Definition 1: A family of operators{R(t) € L(R(t))}iez is
said to have a time-variant displacement structure with respect
{F(t), G(t) }rez if {R(t)}iez is uniformly bounded, viz., there exists
r >0 such that|R(¢)|| < r for all t € Z, and R(t) satisfies the
time-variant Lyapunov (or displacement) equation T; = {

R(t)— F(H)R(t — 1)F*(t) = G(t)J(t)G" (t). (1)

vygose matrix entried7;;} are partiotioned accordingly with (7)
and J(j), say

g 15
Tlll Tllz}
7l 7|
Ty, Ty

We further construct the upper-triangular operators

The cardinal number(¢) = dim#(¢) + dim V(t) is called the ) )
displacement rank oR(#) in (1). We say that (1) has a Pick solution Ty =[T1], T =[T3], T =I[T}3),
if R(t) is positive-semidefinite for everye Z. u Ty =[TY), for—oco<1, j< .

Throughout the correspondence we assume that the following con-
ditions hold (viz., [4, conditions (8a)—(8e)]): a) there exists a positive The operatofl” will be said to beJ-inner (see, e.g., [15, Theorem
integer n such thatR(t) = $7'R.(¢t), for all t; b) dimR;(¢) 2.3]) if i) it is J-unitary, i.e.,
are all equal and finite; a)im/(¢) anddim V(¢) are finite; and d)
{F(¢)} is a uniformly bounded family of lower triangular operators TIT =T*JT =J
with stable families of diagonal entrielsf; (¢)}"-;' (i.e., there exist
ci >0 such thaf|fi(f)|| < c; <1 for all #); e) {G(#)} is a uniformly and i) T5,' is a bounded upper-triangular operator. In this case,
bounded family. Under these assumptions, the infinite block matricesfollows that T;,' T, is an upper-triangular strictly-contractive

_ : | . T . operator||To, To1| < 1.

U@ =l FOFE-LUE-2) FOUE-1) U] It Wa! s.howr|1| in [4, Theorem 4.8] that, starting with

Vit)=[ FOFt-1V(E-2) FOV(-1) V()] {F(t),G(t), J(t)} of (1), there exists a bounded upper-triangular

are well-defined bounded linear operators, and the displacemgﬁ'tnner operatorT’ that can be determined as a function of the

equation (1) is guaranteed to have a unique uniformly bounddg " {I:“(t),G(f),J(t)}, and such that’ € S if and only if there
. Y exists ' such that
solution that is given by

R(t) =UMU*(t) - V(HV*(¢). S=T[K]=—(TuK +T12)(Ta K +Ts)"' (4)

We further assume the following so-called nondegeneracy conditiaghere K is an upper-triangular strictly-contractive operator,

f) the operatorU (1)U*(t) is uniformly bounded from below, viz., || K| < 1. We now have the following.

3y >0 such thatl/ (1H)U™(t) > p>0 for all t € Z. Lemma 1: Consider anS € S and letK be the associated oper-
Assumptions a)-f) allow us to state (see [4, Theorem 4.7]) that theor, S = T[K]. Then its spectral factoF s can be chosen according

time-variant displacement equation (1) has a Pick solul6f) such to the formula¥s = ¥y (T2 K + Taa) .

that R(t) > eI > 0 for a constant and for all¢ € Z if, and only if, Proof: It follows from the.J-innerness ofl" that

there exists an upper-triangular strict contracti| S|| < 1)

I—S8'S=(K"T5+T5,) ' (I - K"K)(Ta1 K+T22)"". (5
S € £(3 VI, & U() (BT 4 To) " (I = K E)@n K4To) ™ ()
te te

Let Ui € L(BiezV(t), BeezV'(t)) be the spectral factor ok,

such that and define¥ = Wy (To K + Ta)~'. We thus have that is
V(t) = U®t)Pu(t)S/ & V(j), for everyt € Z (2) an upper-triangular operator that obeys the condition that the space
i<t i U[®d;<.V(j)] is dense ind;<,V'(j) for all ¢ € Z. Moreover,

the inequality U7 ¥r < I — K*K allows us to conclude, in

conjunction with (5), thal*¥ < I — S*S. Now consider any other
pper-triangular contractiod € L(P¢ezV(t), BrezV(t)) such that
*Z < I-S"S. It follows from (5) that

where P, (¢) denotes the orthogonal projection ef.cz0/(¢t) onto
D<A (f).

Let S denote the set of all upper-triangular strictly-contractiv
operatorsS that satisfy (2). For every such € S it follows that
I — S™S is a positive operator. Le¥ s denote its spectral factor (as
defined in [10]-[{12]). In the following, we writ®(A) to denote the
d|aF9rzrk1)?;rgflriml_(l:tpp:li-trgaer;]%l:‘leartﬁs er:;,tg(r;trm factor of an upper_and using the properties of the spectral factors, we must certainly have
triangular strictly-contractive operatér € S. The maximum-entropy
problem is to solve the following optimization criterion:

(K*T3, +T3)Z" Z(To K +Tx) < 1= K*K

([X—*Tzl + TjZ)Z*Z(T21 K+T5)< ‘I’}}‘I’K.

max {D(¥5)*D(¥s)}. (3) Thisimplies thatZ™Z < ¥ ¥ and, consequentlyy = W (T2 K'+
ses T»»)~"' can be chosen as the spectral factoSof T[K]. [
[ ] We are now in a position to state the solution of problem (3) (see
Interpretations, motivations, and applications of problems of thédso [7] and [8] for alternative arguments). For this purpose, and
kind abound in the literature. For formulations close to the abover notational convenience, we denote the upper-triangular operators
one we refer to [6]-[8], [13]. T5,'T2 andTy,' by x andg, respectively.
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Lemma 2: Assume conditions a)—f) hold and [Etbe theJ-inner timet, L(t), via a recursive procedure on the generator magix)

upper-triangular operator described above. Then as described below:
Start with Fy () = F(t), Go(t) = G(t), and repeat fof > 0.
max {D(¥s)"D(¥s} ¢ Choose uniformly bounded sequences;(t),k:(t)}:cz that

[D(T25)D(T3)* — D(T1)D(T1)"]"" satisfy the following time-variant embedding relation:
= 422, 22) — AL 21, 21, 5

— [D(Ts)* 1T — DD T2 D (To)] . fit) g ][dt-1 0 [0 @B
[D(T2)"] I = DOOD()'] D (T2)] [, oo (t)} [ . J(t)} [m oo (t)}
Moreover, the maximum is attained if, and only B, = S, = di(t) 0
T[D(x)*]. In particular, if D(x) = 0 or, equivalently,D(T») = 0, = { 0 J(t):| ®)
then
whereg;(t) denotes the top block row a¥;(t).
2;§§<{D(\I/5r)*D(\P,9} = [D(T92)*]7'[D(T22)]™" o Apply the recursion
and the maximum is attained f&f = So = T[0] = —T12T5, . 1) 0 —[FE()L(t—1) Gi(t)]
Proof: The argument uses Lemma 1 and follows closely the ‘ G (t) ’
proof of the main result in [13] (which is in Russian). (The monograph N B
[14, especially, ch. 11] contains a number of examples of maximum . { fi (i) ,hi (/'t*)‘](t) . (7)
entropy problems that might be more accessible to an English T(t)gi (1) JOKI(6)T (1)
reader). ®  Moreover,
The unique

di(t) = fit)di(t = 1) f7(t) + gi(1)J (t)g; (t)
So =T[D(x)"] = T[D(T5,' T21)"]
and R, ;1 (t) satisfies the time-variant displacement equation
is called the maximum-entropy solution of (3). The unique
T[0] = =TT, is called the central solution since it corresponds Ri+1(t) = Fir1(t)Riy1(t = 1)F (8) = Giga ()T ()G (1)
to choosing’ = 0. ) . . . .

As mentioned earlier in Section I, the above statement providd4iere Fi+:(t) is the submatrix ob%%med after deleting the first row
a global characterization of the maximum entropy solution (and hg8d column of Fy(#). Let T = [T};"] denote the upper-triangular
also been studied in [6][8]). In particular, note that the expression fsnsfer operator with time-variant Markov parameters:
the required load is given in terms of the (block) entries of the entire T — TOKE(DT(D)
cascadel’. The contribution of this correspondence is to exhibit a 4 — “V/™
recursive construction of the maximum-entropy solutforthat does 1) ¢y =J(Dgl (DR (1 +1)J (1 + 1)
not require prior knowledge of the global expression %r The Tl(];i) =T g (NFA+D A +2)- £ = DA ()HIG),

details are presented in the remaining sections.
P g forj>1+4+1. (8)

IIl. A RECURSIVE SOLUTION After n recursive steps we obtain a cascade of sectibhs=
TT,---T,_1,which may be regarded as a generalized transmission

Th i d ill follow f Igorithm derived in. o . : .
o oy e procesre i ol o 2 00 o1t e Ti i hd ey operatr at prameizes 2 S in ()
’ 9 The choice of{ 2;(t), ki (t)} in (6) is nonunique and, therefore, the

dI?;aglzwfin:h?struc%zrs?aer block matriceB(t) = [r;(H]r " and generator matrixG; 11 () in (7) is also nonunique. Each choice for
' — VA UL j=0 {Rhi(t),k:(t)} would lead to a valid;+, (t). There are, for instance,
special choices fo 2;(t),k;(t)} that would lead to considerable

let R;(t) denote the Schur complement of the leading i block
submatrix ofF(#). If () andd; (#) stand for the first block column simplifications in the computational requirements, since they lead to

and the(0, 0) block entry of R;(¢t), respectively, then the successive .
(0,0 Y (t) P y . what are known agroper generators, as developed in [18] for the
Schur complements adk(#) are recursively related as follows: L . . . .
time-invariant case and in [3] for the time-variant case. But these

I 0 0 ; choices do not generally lead to a maximum-entropy solution.
Ri(t) = Li()d; (DL (t) = {0 Rin (f)} Ro(t) = R(t). We shall show, however, that it is always possible to find
' {hi(t),k;(t)}, usually distinct from the choice in the proper
We further note that the positive-definiteness B®ft) guarantees case, so as to result in a cascdfiewhose central value, viz.,
d;(t)> 0 for all i. Also, the notationi *(¢) stands ford(¢) . T[0] = —T-T5,", will correspond to the maximum-entropy solution.
After n consecutive Schur complement steps we obtain the blocke achieve this, all we need to do is to exhibit uniformly bounded
triangular factorization ofR(¢), viz., choices for{ h;(t), k;(¢)} that would result in a cascad@ for which

* D(x) = D(T5,' Ts1) = 0.
0 }dfl(t){ 0 } L (x) (T3, Ta)

li(t I (t
N . 1@ '® One way to guarantee this is to require that for each individual
=L(t)D™ (t)L7(1) operatorT; we have

R(t) = lo(t)ds (0)15(1) + [

whereD(t) = diag{do(t), -, dn—1(t)} is a block-diagonal matrix, D(T5 ;Ts,)=0

and the (nonzero parts of the) columns of the block lower-triangular '

matrix L(¢) are {lo(¢), --,l,—1(¢)}. It was shown in [4], [3] that where the indeX in T ; andTs ; refers to theith section.

for structured matrice€?(¢) as in (1), the triangular factor at time But first let us elaborate on the nonunique choice of
t — 1, viz., L(t — 1), can be time-updated to the triangular factor afh;(t),k:(t)}.cz so as to satisfy the embedding relation (6).
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For this purpose, we recall a result in [4, Theorem 4.1] where it wage then obtain
shown that the following choices fdr; (t) and k;(t) satisfy (6):

hi(t) =07 ()T (g7 (WA} (1) — m(H)d;>(t = D f7 ()]
[rt)yd; P 1) — a7 P fi()]

ki(t) =07 (O{T — J(t)g; (1)[d7> (1)
—m(Md (=10 AP () gi (1) 9)

B0 6 > 1+ 5" 08" o).

Therefore,EE%Q)(t) is invertible and||(f§22)(t))‘l|| < 1. We also
know that EEQZ)(t)H < M for a certainM > 0. We now define the
corresponding generalized reflection coefficient

7.(t) = kP O E (1) (1), Ut

for an arbitrary.J (#)-unitary operatoi©;(¢) and an arbitrary unitary Pt FTOETE)T € LOmUD) (10)

operator;(t), whenever the inverse otf/z(f) —n(t)clf/z(f— 1) which satisfies

- f7(t) exists. Hered.’*(t) denotes the operator defined iy(*) =

dX*(t)d*'*(t). (The finite-dimensionality conditions guarantee that

it is always possible to choose a unitary matrixt) so as to assure Hence

the invertibility of d;/%(t) — 7 (t)d;*(t — 1)1 (t).) ' ‘
A specific choice forr;(t), along with the choiced;(t) = I, (I-7,)p (1) < M-

was shown in [4] to guarantee the correspondfirg(?), k; (t) }+cz,

which we shall denote by, (¢), %, (t) }.ez, to be uniformly bounded.

But other choices fof; (), ©:(¢)} that would guarantee the uniform I —-p0p () =1+p,()(I -7, (1)p,(£) "7, (t)

boundedness of the correspondifig (t), k:(t) }+cz are also possible.

Examples to this effect, with specific values far(t), ©,(t)}, are We obtain that

given later (see, e.g., (13)). - 12
With each uniformly bounded choide; (), we associate a strict I=p.0pi(1) < 1+ M7

contractionp, (¢) that is defined below, and which will be referred towe further define the family of/(#)-unitary matrices®;(t) =

as a generalized reflection coefficient. H(p,(t)), and remark that it is uniformly bounded. Using this choice
Definition 2: Let {k:(t)}+ez be any uniformly bounded sequencefor ©.(t) in (9) we conclude that the choices

that satisfies the embedding relation (6), and partition it accordingly

I—ﬁﬁm&ﬂzﬁfmur?#”wr‘z@%.

Moreover, from the identity

with J(t) hi(t) = O7 (Ohi(t)  ki(t) = O7 ' (Dki(t)
Tilt) = A-,E-H)(t) Eglz?(t) satisfy the embedding relation (6), are uniformly bounded aver
TR e B and result inD(T;.;) = 0 since the choice foP;(t) forcesk;(t)

The corresponding generalized reflection coefficigrit) is defined to be block-lower-triangular or, equivalently,(t)k:(#)"J(?) to be

block-upper-triangular. [ ]
by o We should note, however, that the construction used in the previous
7.(t) = _Egu)(z«)@‘;”(t))” € LV(t),U(t)). m proof is only one, among several possibilities, that would guarantee
) ) the conditionD(T2;) = 0. This is because the above construction
We can now state the main result of this correspondence. achievesD(T2:) = 0 by assuring that each individual section, or

Theorem 1: Assume conditions a)-f) hold and Idi(t) be the gperator, satisfies a similar conditioB(T ;) = 0; thus resulting

unique Pick solution of (1), viz.R(#) >l >0 for a constant and j an overall cascade that satisfi@¢T-; ) = 0. But, as we shall show
forall € Z. Then we can always choose uniformly bounded families, g example in the next section, it is possible to h&@s) = 0

{hi(t), ki(t) }rez, such that the assgclziatddin_ner operatofl’ has the - ithout requiring all the individual sections to satisB(T; ;) = 0.
property thatS, = T[0] = —T1.T,, . That is, the central solution
Ioefr:]h(?’)cascade coincides with the maximum-entropy solution of ProR.- Strictly Lower-TriangularF'()
Proof: The proof is constructive. It follows from Lemma 2 that Let us first concentrate on the case of strictly lower-triangular

the central solutiof'[0] = —T'1>T3,' coincides with the maximum- matricesF'(#), viz,, fi(t) = 0 forall # € Z andi = 0,---,n — 1.
entropy solutionS, if, and only if, D(T2;) = 0. We now show  We begin with the additional assumption
how to choose uniformly boundgd famili¢d, (t), ki(t) }1cz SO as to dim Ri(f) = dimU(t) forallt €Z, i=0,1,---,n— 1.
guaranteeD(T», ;) = 0 for eachi = 0,1,---,n — 1. ‘

We have indicated above that it is always possible to find uniformly 1)

bounded families{h.(t)}:cz, {Ezﬂ()f)}fd such that the embedding 1o more general case can be similarly treated and we ommit the
relation (6) holds. Letl’; = [I;;'];; denote the transfer operatoryetails. Letz:(¢) = [ui(t) v,;(t)] denote the top block row af; (t),

associated with{ f;(t), g:(t). hi(t), ki(t)}, as in (8). We conclude and note that it follows from the displacement equationfeft) that
from the embedding relation (6) that .
gi()J(t)gi (t) = di(t) > 0.

Ti(t)di (t = D)k () + F: () J(Ok; (8) = J(t)
This implies that there exists a uniquely determined mafsix ),

and, consequently, (5]l < 1, such that

J(t) = Fi(0)J(OF; (t) = ha(t)di(t — 1)I; () > 0.

0i(t) = ui(t)vi(t) (12)
Since dim#(t) < oo and dim V() < oo, we also conclude that _ ) _
J(t) — ki (H)J(H)k:(t) > 0 for all t € Z. If we partition k;(¢) and we can define thé(#)-unitary rotationH (vi(t)). It reduces the

accordingly with.J(t) top row of Gi(¢) to the formgi () H (i (t)) = [6:(t) Oy(y], and we
(11 (12 say that&;(¢) is reduced tgroper form This will allow us to further
) '
ki(t) = | i ) simplify the generator recursion (7) as detailed ahead. We shall refer

(21) —(22) X . .
Rim () ki () to the~; (¢) as theSchur parameterassociated with the displacement
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equation (1), wherF'(t) is strictly lower-triangular. Consider further It is thus clear that
the following uniformly bounded choices (recall (9)):

> — gm0 0
Filt) = I = T(Hg (Dd (£)g:(8) J@M””J“”‘H““”ﬁO-J

— . 1 4y A Ak —1/2
hit) = J(0)g! (O (Ori(yd; (1 = 1) (13) = |0 WO — 5 ()]
_ 0 Tt
where 7;(t) is unitary andQ;(t) = I. We further partitionk;(t) i ) . "
accordingly with.J(t), and introduce the generalized reflection colS Plock upper-triangular, and the entire cascade will exhibit
efficients D(T21) = 0.
o) We can also obtain an expression for the value of (3).
p.(t) = —kS O ()™ (14) Theorem 3: Consider the setting of Theorem 2 afd= [A]+ez
) ] ) ) ) denote the optimal diagonal operator
Despite of the simple proof, the following result is quite unexpected.
Theorem 2: Consider the setting of Theorem 1 and i) be the A= max {D(¥s)"D(¥s}.

unique Pick solution of (1), viz.R(t) > eI > 0 for a constant and €
for all t € Z. Assume further thak'(¢) is strictly lower-triangular and Then
dimR;(t) = dimi/(¢) forall ¢t € Z andi = 0,1,---,n — 1. Then

¥ T ) 2 * ’ 1/2
the Schur parametersy;(#)}, defined via (12), and the generalized An =T =70 @O I =31 ()7 ()]

reflection coefficientdp;(¢)}, defined via (14), coincide. I =i ()Yt ()] [T = A,/T(t)ﬂ,q(t)]lﬂ
7t =~(t), fortezi=01,---,n—1. [T =5t (0]2.
Proof: Since dimR; (t) = dim#(t) for all t € Z, Proof: LetT; denote theth section associated with the proper
i=0,1,---,n — 1, andu; ()ul(t) > e 4+ v;(t)v;(t) for a certain generator recursion (15). We already know that the central solution
¢>0, we get thatu;(¢) are invertible matrices. Consequently, of the corresponding cascaffecoincides with the maximum-entropy

solution and, consequently,
7:(8) = ul ()d7 (v () (T + v (B)d7 (v (1)

= uy (1) (i () (I = 5 ()7 () () i ()i (t)
X (I 4~ (8wl () (us (1) But, for each sectiod’;, we have

A = (D(T2)")" " (D(T22))"".

(T = () ()l (8) ™ s () s ()™ [D(T2,)]ee = (I = 7 (t)7:(t) /2.
= (I — %ty (1) T+ (1)

(I =ity () " ()™ : , . —(1/2) . \—(1/2)
(L= (O () (O = 27 (D 3:(8) = (8. [DTz2)ler =T =20 (B)30(E) T = (3))

. . _ (I = (O (1)
This result also follows by noting that the generator recursion
(7) gets simplified once we incorporate into it the special choiand the required result now follows. ]
O;(t) = H(~:(t)) and use (9) to write The previous discussion can be extended even if we drop as-
o ’ - I . sumption (11), viz., thatim R;(¢) = dim{/(¢) for all t € Z and
ki(t) = H(vi() " kit)  hi(t) = H(vi(1))™ ha(t) i=0,1,---,n — 1. We omit the details here.

Therefore,

where {T:(+). % (1)} are as in (13). We readily conclude that We may add thgt the case of strictly Iower-triangul%(#) covers
the band completion problems studied in [16], as well as some
* 0 0 contractive extension problems considered in [6], [9], [19]—see [4],
J() kS (6)J(t) = H(v (¢t . ) ; : .
Ok I(E) () L) I} [3] for details. It is also connected with the so-called time-domain
RE(1)(t) :d,fl/z(t _ 1)Ti*(f)(l:1/2(f)[5i(t) 0. model validation problem (see, e.qg., [4]).

Because of the assumptieim R;(t) = dim{(¢) for all t € Z, B Lower-TriangularF ()

¢=0,1,---,n — 1, and the fact that The notion of proper generators can also be extended, under

5;(0)67 (1) = gi ()T () gi(t) = di(t) additional assumptions, to the case of lower-triangilér) (i.e., an
F(t) that is not necessarily strictly lower-triangular) [3]. However,
it follows from a simple Schur complement argument that as [3, formulas (24) and (26)] show, the associated proper recursion

does not lead to upper-triangular termiét)k; (¢)J(t) and, conse-
quently, the individual section®’; will not satisfy the requirement

These facts further allow us to choose the unitary matix) so as 2(T21.:) = 0. This means that the central solution of the cascBide

I— 65 (0)d; ()6:(t) = 0.

to satisfy the relation that is constructed via the proper recursion, and using the classical
Schur parameters, will not generally correspond to the maximum-
87t — 1)y (= V)7 () = 67 (1) () entropy solution. The best illustration of this case is the consideration

of the classical Nevanlinna recursion, which maps Schur functions

and the generator recursion (7) gets simplified to the following: . (. (j.e., functions that are analytic and bounded by unity in the

unit disc) to Schur functions;;1(z) as follows:
.0 ] =POGE-DEGE- D)) (] ) )
Giti(t) 00 1—f7z si(z) — v
0 0 sipi(2) = ——— 77—~
+ G (O H (v (1)) {0 I}. (15) z—fi visi(2) ,
Vi = si(fi), so(z) =s(z), i 20. (16)
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This relation can be linearized by expressingz) as the ratio of solution. To clarify this, we first elaborate on the connection of the
two power seriess;(z) = vi(z)/u;i(z). It follows from (16) that we Schur parameter§~;} and the generalized reflection coefficients

can also write {7.}. Indeed, we choos®; = I andr, = 1+ fi/1+ f in (9)
z—fi and write
(= = fluin(2) vina ()] = [wi(z) i) H (30) | 10 _ ey 1EF\
0 1 ki=1I-—Jg;d; <1_1+fffi) gi-
17) . : o
The generalized reflection coefficient is then related to the Schur
where H (v;) is the elementary hyperbolic rotation parametery; via

1 1 —; . vi(z) 1+ f7
H(vi) = —/———= . I :| ; = lim ——=. - = [
) V1=]il? L% 1 T ) S AT (18)
We see that each step of (17) gives rise to a first-ottidwssless Thijs leads to the choices
section with transfer function [5]

S fi hi=H(p) 'd7 ' g k= H(p,) 'k
— g~ 1—frz ) . .
Ti(z) = H(w) 1z : and to the first-order sections (see [5] for details)
0 1
T J9: gi _
The resulting cascad€(:) that can be associated with steps of pi(2) =1+ [Bi(2) —1] gid gt H(p;)
the above recursion is given by (see [5] for details, where these L ‘
cascades were discussed in the context of time-invariant displacement Bi(z) = 1= fr*lz' (29)
equations of the fornR — FRF* = GJG") ’
T(z) = To()T1(2) - Trer(2). These sections are related to the earfigfz) via
PR
Let us partitionT’(z) accordingly withJ = (13 —1) T,i(2) =Ti(z)H(vi) H(py)-
_[Ti(z) Th(z) The corresponding generator recursion is given by
T(z) = : .
Toi(z) Tao(z) 0 Ja*
— |la v Y. 9i -
and consider its central solution |:Gi+1:| = {G, + (@ = DG H ). (20)
Ti2(z '
T[] = _Ti(r;' A simple computation shows that
(Remark The notationT’[0] for the central solution should not be H(v) ‘H(p,) = |14 £l
confused withT'(0), the value ofT(z) at = = 0). A= filP ) )
The question of interest is whether this central solution, which cor- 1 i
responds to the classical Schur parameferg, has the maximum- | T+ filwl? 14 £ |vil?
entropy property. According to Lemma 2, the central solution coin- _ el 1
cides with the maximum-entropy solution if, and onlyTt,: (=) is a L+ filwl? 1+ £ nl?
strictly proper rational matrix function or, equivalentf,; (0) = 0. If we define
So let us verify if this condition is always met in the Nevanlinna
case. For this purpose, we focus only, and without loss of generality, = 1+ £ vl = fr
on the first two sections. That is, assume we have 2. This leads YT+ il T Jim
to a cascadd'(z) = To(2)T1(2) . -~ )
then the generator recursion (20) leads to a modified Nevanlinna
. Bo(z) 0 Bi(z) 0O i
T(z) = H(%){ Oé ) I}H(m){ ‘0(7) 1} recursion of the type
_ Gsipa(2)+e 1= flz si(2) =
whose (2, 1) entry is then equal to 1+ Coini(z) | z=fi 1=rsi(2)’
1 1 . . o = silfs —s i>0.
Tzl(f) = ’7/030(5)31(5) +m Bl(z)]' i 81(f1)7 5o s 120 (21)

- ‘ =
VI=Tol V1-InP . . o
The central solution of the cascade associated with this modified
Therefore, recursion now coincides with the maximum-entropy solution. We
\ 1 1 * ~ . should mention that a detailed analysis of this type of recursions
T (0)=— ~o Bo(0)B1(0 ~v1 Bi(0 . o -
21(0) \/1 — |ol? \/1 — |2 [0 Bo(0) B1(0) + 77 Bu(0)] appears in [17], where it is shown that (21) facilitates the study of

L ) o the Nevanlinna—Pick problem for an infinite number of data.
and it is clear that, in general, we ha¥e; (0) # 0; thus confirming

our earlier claim that the central solution of the Nevanlinna cascade

does not coincide, in general, with the maximum-entropy solution. IV. CONCLUDING REMARKS

It is also clear that iff; = 0 and, consequentlyBi(z) = z, We have shown that the displacement structure theory allows a

then T, (0) = 0 and the central solution will coincide with the general formulation of the maximum entropy problem and yields both

maximum-entropy solution. global and recursive solutions. A new set of contractive coefficients
We now show how to use our earlier results in order to modifijas also been shown to arise in this context, and which are different

the Nevanlinna recursion and obtain an algorithm that leads tofram those encountered in other applications of the displacement

cascade whose central solution coincides with the maximum-entrapgory, e.g., in factorization and interpolation problems.
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