
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 3, MARCH 2001 233

Stability and Performance Analysis of an Adaptive
Sigma–Delta Modulator
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Abstract—This work develops an adaptive sigma–delta modu-
lator that is based on adapting the quantizer step-size using es-
timates of the quantizer input rather than the modulator input.
The adaptive modulator with a first-order noise shaping filter is
shown to be bounded-input bounded-output stable. Moreover, an
analytical expression for the signal-to-noise ratio is derived, and it
is shown to be independent of the input signal strength. Simulation
results confirm the signal-to-noise ratio performance and indicate
considerable improvement in the dynamic range of the modulator
compared to earlier structures.

Index Terms—Adaptive step-size, dynamic range, quantization,
sigma–delta modulation, stability.

I. INTRODUCTION

A. Sigma–Delta Modulation

SIGMA–DELTA modulation (SDM) is used to perform
high-resolution analog-to-digital conversion (ADC)

using low-complexity components. A general structure for
sigma–delta modulation is shown in Fig. 1. An analog signal

is sampled at a rate higher than the Nyquist rate. The
sampler is usually preceded by an antialiasing (AA) filter.
Since the sampling rate is higher than the Nyquist rate, the
design of the AA filter is less constrained. At the modulator,
each sample is converted into a digital value with a
certain number of bits.

In general, the modulator shapes the noise power spectrum by
moving it as much as possible outside of the signal bandwidth
in order to decrease the in-band noise power. The frequency
spectrum of the signal will then contain the input signal in
its low-band portion. The function of the demodulator is to ex-
tract the input signal from , usually by means of low-pass
filtering. The demodulated signal is still at high rate and thus
needs to be decimated to the Nyquist rate. Fig. 2 shows the
modulation/demodulation stages of a single-loop (single-stage)
SDM. In this example, the modulator consists of a noise shaping
filter and a single-bit quantizer while the demodulator is
a low-pass filter. This basic structure has been extended to more
efficient structures including multiloop, multistage, and multibit
modulators (see, e.g., [1]).
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Fig. 1. General structure for sigma–delta modulation.

B. Adaptive Sigma–Delta Modulation

Adaptive sigma–delta modulation (ASDM) attempts to
increase the dynamic range of sigma–delta modulators while
keeping the quantization noise as low as possible. ASDM
achieves this objective by scaling either the input signal or the
step-size of the quantizer through an estimation of the input
signal strength. This estimation can be done from the input
signal itself or from the modulator output, as shown in Fig. 3.
Input scaling is shown in Fig. 3(a), while step-size scaling
is shown in Fig. 3(b). Using the input signal to perform the
estimation is known as forward estimation, while using the
output signal is known as backward estimation. Adaptation
could be done continuously or sporadically in time. Moreover,
the value of the adaptation signal could be continuous in
amplitude or restricted to a specific range of values.

Several adaptation techniques have been investigated in the
literature. Chakravarthy [2] proposed an adaptive scheme that
is based on averaging the number of transitions at the modu-
lator output. Jaggi and Chakravarthy [3] used a digital-to-analog
converter to instantaneously control the feedback pulse ampli-
tude. Yuet al. [4] developed a technique based on estimating
the maximum input amplitude over a certain interval and using
it to adapt the quantization step-size. This work has been ex-
tended by Dunn and Sandler [5] to a multibit quantizer. Ramesh
and Chao [6] implemented a backward adaptation. In their work,
the feedback signal of the modulator is scaled by power-of-two
gains based on the estimate of the input amplitude.

In this paper, we develop a new scheme for adapting the
quantization step-size. The proposed technique is based on esti-
mating the amplitude of the quantizer input instead of the input
signal itself. We perform both stability and performance anal-
ysis of the new structure. Based on simulation and analytical
results, the new modulator shows considerable improvement in
dynamic range and signal-to-noise ratio (SNR) performance.
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Fig. 2. Modulation/demodulation stages of a single-loop SDM.

(a)

(b)

Fig. 3. Adaptation schemes used in conventional ASDMs. (a) Input scaling.
(b) Quantizer step-size scaling.

II. A N EW ASDM STRUCTURE

A. Motivation

For the sake of motivation, consider the plot shown in Fig. 4
and assume that we want to construct a signal that tracks a
signal (e.g., a step signal). This can be achieved according
to the following construction. At each instant of time, we start
with the value 1 and update it to so that this new
value is closer to than its old value. The update is based on
the difference between and 1 , defined by

(1)

The signal 1 is increased or decreased by a positive
amount depending on the size and sign of this error. Intu-
itively, if the error is “large,” we employ a large value for the
correction term ; and if the error is “small,” we employ a
smaller correction term. More specifically, in our construction,
the value of is made to change by a constant factoror
1 , where 1. The law by which varies is chosen as
follows:

if

otherwise.
(2)

The sign of the error decides whether 1 increases
or decreases at each time instant. Thus, the signalis varied
according to the adaptation rule

sign (3)

Observe that the correction term , also called step-size, can
be expressed in the equivalent form

(4)

where

(5)

and

sign (6)

This alternative representation allows us to describe the scheme
for updating in block diagram form, as shown in Fig. 5.
The top and bottom parts of the figure implement (4) and (3),
respectively.

The diagram shown in Fig. 5 has the structure of an adap-
tive delta modulator, with the upper part being the adaptation
scheme for the quantizer step-size. The adaptation signalis
tracking the absolute value of the error signal . Although
this system belongs to the class of adaptive delta modulators
(e.g., [7]–[11]), the adaptation technique used here is different
(see [12] for more details).

B. Proposed ASDM Structure

Delta modulators do not apply noise shaping and, for this
reason, their performance is generally limited. Now since
sigma–delta modulators are essentially delta modulators ap-
plied to the integral of the input signal [13], [14], the ADM
design shown in Fig. 5 suggests an ASDM by moving back the
integrator of the main loop to become the first block after the
adder.

Fig. 6 shows the basic structure of the resulting adaptive
sigma–delta modulator, with a 1-bit quantizer. The modulation
and demodulation blocks are shown in Fig. 6(a) and (b), respec-
tively. The integrator is replaced by a general noise-shaping
filter .

The error signal is still given by

(7)
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Fig. 4. Response of an output signalv(n) tracking a step inputx(n).

Fig. 5. Adaptive delta modulator.

which is passed through the noise-shaping filter . As a spe-
cial case, if is a simple integrator, then

with (8)

The filter output is quantized using a 1-bit quantizer to
produce the signal . In other words

(9)

The 1-bit digital-to-analog converter (DAC) is assumed to be
ideal and thus has a unity transfer function. The adapter gen-
erates a scaling signal , which is an approximation of the

amplitude of the quantizer input signal . The encoded signal
is then given by

(10)

Notice that if , then we would have

(11)

The adaptation block for is shown in Fig. 7, which is sim-
ilar in structure to a delta modulator with an additional exponent
term . The purpose of this additional term is to increase the
tracking capability of the adapter.



236 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 3, MARCH 2001

(a)

(b)

Fig. 6. Block diagram of the proposed structure. (a) Modulator. (b)
Demodulator.

The adaptation signal is therefore constructed as fol-
lows:

(12)

where the binary sequence is generated from

if
otherwise.

(13)

In other words

sign (14)

The two binary sequences and are carried out to the
demodulation part, as shown in Fig. 6(b). There, the signal
is reconstructed using (12) and (10). Finally, the reconstructed
signal is filtered using a low-pass filter, as usually done in con-
ventional sigma–delta modulators.

C. Design Considerations

One way to implement the additional circuitry used in this
modulator is by using analog switches. First, the adaptive
scheme shown in Fig. 7 can be implemented as illustrated in
Fig. 8(a). The signal is generated from (12) depending on
the state of . In other words

if

if .
(15)

In a similar fashion, the absolute value block in Fig. 6 is re-
placed by a switching device that chooses between a gain of
either 1 or 1 depending on the sign of , or equivalently
the state of . In other words, the switching system imple-
ments the following equation:

if
if .

(16)

This process is depicted in Fig. 8(b).
Finally, the multiplier in Fig. 6 multiplies a real signal

with a binary signal . Thus, it can be replaced by a switch

controlled by to keep or invert the sign of as shown
in Fig. 8(c) i.e.,

if
if .

(17)

III. A NALYSIS OF THE PROPOSEDMODULATOR

In the discussions that follow, we shall study the performance
of the adaptive sigma–delta modulator of Figs. 6 and 7. The
study will involve a stability proof, a mean and variance anal-
ysis, and a derivation of an analytic expression for the resulting
SNR. The analysis is restricted to the case where is an in-
tegrator as in (8).

A. Equivalent Structure of the Modulator

We first show how the modulator can be redrawn in a more
convenient equivalent form via a suitable transformation of vari-
ables.

Consider the modulator shown in Fig. 6 with the adapter
shown in Fig. 7. Taking the logarithm of both sides of (12) we
get

(18)

Using the fact that the logarithm is an increasing function, we
can write

Now let

(19)

and

(20)

Then from (18)–(20), we get

(21)

This dynamic equation characterizes a delta modulator, as illus-
trated in Fig. 9(a). Its linearized version is shown in Fig. 9(b).
Therefore, we can redraw the adapter of Figs. 6 and 7 in an
equivalent form utilizing (19)–(21), as shown in Fig. 10. The
adaptation block together with the quantizer of the modulator
now looks like a log-PCM [15], except that the PCM block is
replaced by a delta modulator.

There are three advantages for using the log-DM over the
log-PCM in our case. The first advantage is that log-PCM usu-
ally requires a multibit DAC after the PCM block, to recon-
struct its analog input, introducing a source of nonlinearity in
the overall modulator. Clearly, log-DM does not suffer from this
problem since the quantizer used inside the DM is single-bit and
thus has a linear behavior.

Furthermore, it is found through simulation that the use of
log-PCM introduces large tones at the modulator output, espe-
cially when the number of PCM levels is small. These tones are
usually undesirable when dealing with speech signals. On the
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Fig. 7. Adaptation scheme of the proposed modulator.

(a)

(b)

(c)

Fig. 8. Implementation of some modulator parts: (a) adaptive scheme, (b) absolute value term, and (c) multiplier.

other hand, the log-DM does not introduce large tones to the
modulator since the output of the DM is inherently analog.

Finally, log-PCM offers an SNR performance that is ideally
independent of the input signal strength. However, this feature
is not practical since it requires a PCM with infinite dynamic
range [15]. The log-DM offers practically unlimited dynamic
range provided that it is given enough tracking time.

Continuing with our analysis, the delta modulator can be lin-
earized by replacing its quantizer by an additive quantization
noise , as was shown in Fig. 9(b). The noise is as-
sumed to be uniformly distributed in an interval (usu-

ally for single bit DM). The transfer function of the
linearized DM can now be written as

(22)

which simplifies to

(23)
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(a)

(b)

Fig. 9. A Delta modulator. (a) Typical and (b) linearized.

Fig. 10. Equivalent form of the ASDM.

In the time domain, we can write

(24)

Moreover, from (20), we have

(25)

so that

(26)

Substituting the expression for from (19), we get

(27)

Substituting back into (3), we have

(28)

Finally, if we denote

(29)

Fig. 11. The ASDM as a linear time-variant (LTV) system.

then we arrive at the expression

(30)

This result shows that we can approximate the adapter and quan-
tizer in the main loop of Fig. 6(a) by a time-varying gain .
Fig. 11 shows the resulting equivalent structure of our ASDM
with first-order noise-shaping filter. Since the distribution of the
random error signal is known, the distribution of the vari-
able gain can be defined. Our further analysis is based on
the following assumptions.

1) All random processes are assumed stationary.
2) The variable is assumed independent of all other

variables.

B. Bounded-Input Bounded-Output (BIBO) Stability of the
Modulator

Consider the modulator structure shown in Fig. 11. The signal
is given by

(31)

Now from (30), we have

(32)
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Thus, the dynamic equation for the signal can be expressed
as

(33)

Since , the forced response of is

(34)

When the input signal is bounded, i.e.,

(35)

for some , then we get

(36)

Lemma 1—BIBO Stability :The signal will be bounded
if

(37)

for some and for all . In this case, the modulator output will
be bounded by

(38)

Proof: If (37) is satisfied, i.e., if the quantity 1 is
uniformly bounded by 1, then from (36) we conclude that

(39)

so that

(40)

Also, from (30), we conclude that

(41)

Referring to (29), the maximum of is given by

(42)

Substituting back into (41), we get

(43)

To complete the argument, we need to show when condition
(37) is satisfied. In other words, we need to determine the range
of values for the exponent term such that the quantity

is uniformly bounded by one.
1) Corollary—(Choice of ): Assume that is a uni-

formly distributed random variable between . If is
chosen such that

(44)

then a bound can be found that satisfies condition (37).

Proof: Let , where is a sufficiently small pos-
itive number. Then we can write

(45)

Therefore

(46)

Since and is a uniform random variable
between , then we can write

(47)

In other words, the closed interval lies entirely inside
the interval . Solving for , we get

(48)

Since this inequality is true for any small , then

(49)

C. Mean Analysis

In this section, we show that the input signal and the
output signal have the same mean. As a result, the error
signal has zero mean. To show this, let us take the ex-
pected value of both sides of (33)

(50)

Based on the independence and stationarity assumptions, we can
write

(51)

Here we are writing to denote ; likewise for and
. Solving for , we get

(52)

We also know from (30) that

(53)

Therefore

(54)

Substituting (52) for , we get

(55)

and consequently

(56)

Thus, we conclude that for arbitrary stationary inputs, the ex-
pected value of the error signal is zero.
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D. Variance Analysis

We now derive an expression for the variance of the error
signal , which will be used in the next section to derive
an expression for the SNR of the modulator.

Consider again (33). If we square both sides, we get

Based on the independence and stationarity assumptions, the
second moment of is

Therefore

(57)

Lemmma 2—Cross Correlation:The term is given by

(58)

Proof: Start from (33) and multiply both sides by

(59)

Taking the expected value of both sides yields

For high oversampling ratios (OSRs), , and
thus we can approximate

(60)

Therefore

(61)

Solving for , we get

(62)

Substituting (58) into (57) and collecting terms, we get

(63)

i.e.,

(64)

with

(65)

Also, from the relation between and in (30), we get

(66)

Lemma 3—Error Variance:The error variance can be
expressed as

(67)

Proof: By definition

Equivalently

(68)

However

Substituting into (68), we get

Therefore

(69)

Since the means of and are equal, we get

(70)

Using (66), we get

(71)

If the input is zero mean, then

(72)

E. SNR Computation

At the receiver side, the signal is filtered using a
low-pass filter with cutoff frequency equal to the input
signal bandwidth . The modulation error is computed by
comparing the filtered signal to the input signal , as shown
in Fig. 12(a).

Since , we can introduce an identical filter at the
summer end connected to the input in Fig. 12(a) assuming
ideal filtering. Using linearity, the two filters are moved after the
summer, resulting in the equivalent form shown in Fig. 12(b).
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(a)

(b)

Fig. 12. Modulation error. Two equivalent forms.

Fig. 13. Comparison between the theoretical and simulated SNR for a
first-order noise-shaping filter.

This form is useful in computing the SNR performance of the
modulator as follows.

The SNR is defined as the ratio between the input signal vari-
ance and the filtered error variance shown in Fig. 12, i.e.,

SNR (73)

The variance of the filtered error is computed by in-
tegrating the spectrum of the error over the input signal
bandwidth. For this purpose, we first evaluate the autocorrela-
tion sequence of as follows. Since

and , then the dynamics of the error
is given by

(74)

Using (8), we can write

(75)

Fig. 14. Theoretical SNR as a function of the oversampling ratio.

Substituting into (74), we get

(76)

Multiplying both sides by , , yields

(77)

The expected value of the term is

Since the input is independent of the previous errors
, then

(78)

Therefore

(79)

Since the process is assumed stationary, its autocorrela-
tion sequence, denoted by , satisfies

(80)

In matrix form, we can write, say, for coefficients

(81)
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Fig. 15. The signalsw(n) andv(n) in time domain for input amplitude of�50 dB.

where

(82)

(83)

and is the vector containing the autocorrelation sequence

(84)

Solving for , we get

(85)

By definition, the spectrum of the error signal is

(86)

But since the sequence is real and symmetric, it follows that

(87)

In addition, recall that the variance of the filtered error
is obtained by integrating the spectrum of over the input
frequency bandwidth , i.e.,

(88)

We thus arrive at the following result.

Lemma 4—Variance of Filtered Error:Based on the assump-
tion that

for

it holds that

(89)

where

Proof: Substituting (87) into (88) gives

Further simplifications result in

(90)

Consequently

(91)

where

Since and , then

(92)
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Fig. 16. Spectrum of the modulator outputv(n).

Fig. 17. SNR performance versus input level for the single stage ASDM with
second-order noise-shaping filter.

If we now substitute (72) into (89), we get

(93)

which leads to the SNR expression

SNR (94)

where is the OSR.
The above theoretical SNR is clearly independent of the input

variance. Fig. 13 shows a comparison between the theoretical
and simulated SNR. The figure shows a close relation between
them for sinewave input amplitudes as far down as90 dB.

The SNR is a nonlinear function of the oversampling ratio.
Fig. 14 shows the SNR as a function of the oversampling ration

. The SNR changes in the order of or 30 dB per octave
change in the oversampling ratio.

IV. SIMULATIONS

The new adaptive sigma–delta modulator is tested via simu-
lation using Matlab and Simulink. The input signal used in the
simulation is a sinewave with a frequency of 20 KHz. An OSR
of 128 is used and the initial condition for the adaptation signal

is picked arbitrarily small at 1E-3. The noise-shaping filter
used is the second-order filter

The time-domain responses for the signals and are
shown in Fig. 15 when the amplitude of the input signal is50
dB. Fig. 16 shows the spectrum of the modulator output for
input amplitude of 5 dB. The amplitude of the input signal is
varied and the in-band SNR is measured. The results are plotted
in Fig. 17 together with the results obtained in [6] for the sake of
comparison. The proposed adaptation scheme shows a superior
dynamic range performance.

V. CONCLUSION

A new adaptive sigma–delta modulator is proposed and an-
alyzed. The adaptation scheme is based on approximating the
amplitude of the quantizer input rather than the input to the
modulator. The modulator with first-order noise-shaping filter is
shown to be BIBO stable, and an expression for the SNR is de-
rived. Simulations have confirmed that the new modulator leads
to a high dynamic range performance.
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