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Stable Pole–Zero Modeling of Long FIR Filters
with Application to the MMSE–DFE
Naofal Al-Dhahir, Ali H. Sayed, and John M. Cioffi

Abstract—The problem of approximating a long FIR filter
by a reduced-parameter stable pole–zero filter is addressed in
this paper. We derive a computationally efficient order-recursive
algorithm that achieves this task with high accuracy. Our main
emphasis is on applying this algorithm to reduce the implemen-
tation complexity of the decision feedback equalizer’s long FIR
feedforward and feedback filters encountered in high-speed data
transmission on digital subscriber loops.

Index Terms—Decision-feedback equalizer, digital subscriber
lines, pole–zero models.

I. INTRODUCTION

I N A VARIETY of applications, the engineer is faced with
the task of implementing a long finite-impulse response

(FIR) filter on a digital signal processor. Although in some
situations the underlying true response is of infinite length
(IIR), assuming it to be FIR (e.g., by truncating up to the
most significant samples) has some advantages. Among
those advantages are ease of computation (e.g., through the
use of efficient time-domain algorithms such as the Levinson
algorithm or frequency-domain algorithms such as the FFT
algorithm) and a lower sensitivity to finite-precision effects.
However, to achieve satisfactory performance, a large number
of FIR filter taps is usually needed. This can lead to a
prohibitive implementation cost in terms of the increased
memory needed to store the filter taps and the large record
of previous input samples, in addition to the high processing
power required to compute the filter output samples through
sum-of-products calculations. This cost even multiplies for
high-speed applications and time-varying environments where
the filter taps are frequently updated.

In this paper, we study the generic problem of approximat-
ing a long FIR filter by a pole–zero filter with a much smaller
total (numerator and denominator) number of coefficients,
with a special focus on the decision feedback equalization
application. Although this problem was also studied in [4],
our approach differs significantly from that of [4] in several
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aspects. First, the tail of a long FIR filter was assumed
in [4] to be accurately modeled by two poles only. This
assumption is specific to the high-bit-rate digital subscriber
loop (HDSL) environment considered in [4]. Although we
shall also present simulation results from the HDSL environ-
ment, our algorithm is quite general and does not make any
such assumptions. Second, precursor ISI was assumed to be
negligible in [4], and hence the feedforward filter was taken
to be a short FIR filter. We do not make this assumption
either since, for higher data rates and less benign channel
characteristics, as in the asymmetric digital subscriber loop
(ADSL) environment, the feedforward filter must be very
long to achieve satisfactory performance. Therefore, we shall
attempt to approximate both the feedforward and feedback
filters by pole–zero models. Finally, the DFE coefficients were
computed in [4] using adaptive IIR algorithms. Again, the
environment-specific assumption of a two-pole model made
stability monitoring a simple task, which would not be the
case in situations where a two-pole model is not adequate
(e.g., in echo cancellation). Instead, we shall compute the
DFE coefficients directly from the available channel and noise
estimates using the efficient algorithms of [1]. In case of
environment changes, straightforward adaptation is performed
on the long FIR filter, which is then converted to a pole–zero
filter for a reduced-complexity implementation.

II. THE GENERALIZED ARMA–LEVINSON ALGORITHM

We shall start by deriving anew algorithm for approxi-
mating a long FIR filter by a pole–zerostable filter with
many fewer taps. This algorithm is a generalization of the
ARMA–Levinson algorithm derived in [9] using the “embed-
ding” technique of [7]. The novelty in our algorithm isits
ability to relax the restriction of equal numbers of poles and
zerosthat was imposed in [9], [7]. This flexibility will prove
to be useful in obtaining better fits, as will be demonstrated
by the simulation results of Section III.

The output samples of the long FIR filter are given by
We want to approximate this input–output rela-

tionship by that of an autoregressive moving-average (ARMA)
model with poles and zeros, denoted in this paper by

whose output samples are given by

(1)

For brevity, we shall assume that
Our objective is to estimate the ARMA pa-

rameters based on knowledge of the
second-order statistics of the input and output sequences
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If we denote these estimates at the recursion

by where
then we can relate the output samples of an

filter to those of the original FIR filter as follows:

(2)

where is the -order residual error sequence and
for In words, at the recursion, we determine an
estimate of an ARMA model in which the difference between
the number of poles and zeros is alsoi.e., equal to the
desired difference

Assuming to be white and that for
(i.e., that previous estimates have been accurate)

and defining the augmented vector then the

ARMA model of (2) can be converted to the two-channel
autoregressive (AR) model:

where we have defined the (matrix) prediction coefficients of
the linear predictor as follows:

(3)

Using theorthogonality principlewhich states that
where and denotes the

complex-conjugate transpose, we get

(4)

or, equivalently,

(5)

where we have defined

(6)

For we have

Therefore, we have

(7)

Alternatively, (5) and (7) can be written in matrix form as
follows:

...
...

...
...

(8)

or, more compactly

Equation (8) describes ath-order AR model whose vec-
tor parameters can be calculated by solving a block-
Toeplitz Hermitian system of linear equations. This can be
done efficiently using the following multichannel form of the
famed Levinson algorithm, sometimes known as the Levin-
son–Wiggins–Robinson (LWR) algorithm [5], [6].

Algorithm (Generalized ARMA–Levinson):Given

Initial Conditions:

Recursions:For , see (9) at the bottom of
the page, where the backward prediction vector

satisfies the following auxiliary block-Toeplitz system of equa-
tions:

Assuming the input sequence to bewhite (i.e.,
then the output autocorrelation and input–output cross-

correlation sequences needed to form (6) can be computed
using knowledge of the FIR filter taps as follows:

The parameters are read off
directly from

Remarks:

1) Provided that is white, we can show that the
’s generated by the recursions of (9), indeed follow

the form of (3), i.e., they have a second row of all
zeros, usinginduction as follows. First, we show that
the initial condition has the desired form. Then, we
assume it for and show that it holds for (where

Since it suffices to show that
the second row of consists of all zeros. This
follows directly from (6) since and

(since and is causal).
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Now, assume that has a second row of all zeros;
then, using the recursion

we need only show that has an all-zero second
row. This follows from the recursion

and the fact that has a second row of all zeros for
[cf. (6)]. Note that since it also

has this same special structure.
2) The diagonal nature of for can be shown

from (2) by using the assumed whiteness of and
causality of

3) The algorithm uses both forward and backward reflec-
tion coefficient matrices. By defining a suitablenormal-
ization, it is possible to perform the order update using
a single reflection coefficient matrix [5].

4) The generated pole–zero models areguaranteedto be
stable. Next, we shall outline a proof of this fact. Define
the -order predictor polynomial matrix shown in
the equation at the bottom of the page. It is a well-
known result (see [3, Theorem 5.1]) that, since
is generated by the multichannel Levinson algorithm, its
determinant, which is equal to is guaranteed to
be stable.

5) The algorithm does not restrict the generated pole–zero
approximations to be minimum phase (i.e., the zeros of
the numerator polynomial could lie inside the unit circle

in the domain). This result can be explained as
follows. The numerator coefficients are read off directly
from the matrix coefficients computed using the
LWR algorithm. The only constraint on is that

is stable. This determinant isindependent
of the numerator polynomial because of the upper
triangular nature of (see Remarks 1) and 4)
above).

6) The proposed algorithm is a two-channel Levinson al-
gorithm, which is known to have a computational com-
plexity of operations [6], [5]. Further-
more, the algorithm can be implemented in anormal-
ized form. This alternative form involvesorthogonal
rotations only, which have desirable numerical and
computational properties.

7) A multichannel least squares algorithm with a different
number of parameters in each channel was previously
derived in [8]. However, the algorithm of [8] is distinct
from ours in that it is of lattice type, time-recursive,
and has a computational complexity on
which is higher than the complexity of our algorithm
when Finally, the algorithm in [8]
was not derived using the “embedding” approach that
we follow here. In fact, the use of “embedding” to
approximate long FIR filters by ARMA filters with
unequal numbers of poles and zeros is new, to the best
of our knowledge.

8) In choosing and we assume a maximum allowable
implementation complexity, which in turn sets an up-
per bound on their values. Therefore, we seek to find
the best, in terms of low normalized norm tap error

pole–zero
approximation subject to this complexity constraint. It
is worth emphasizing that increasingand/or could
result in a worse approximation, depending on the FIR
filter response.

III. SIMULATION RESULTS

The FIR MMSE–DFE consists of two filters: a feedforward
filter that combats precursor ISI and noise, and a
strictly causal feedback filter that suppresses postcur-
sor ISI. The channel impulse response is assumed to be a
linear time-invariant FIR filter with memory For wide-
band transmission on twisted copper lines,is very large,
which entails the use of very long feedforward and feedback
filters to achieve satisfactory performance. We shall apply the
algorithm of Section II to convert these long FIR filters to
pole–zero filters with many fewer parameters, without losing
stability, and while still maintaining satisfactory performance.
Other applications of the algorithm are discussed in [2].

forward reflection coefficient matrix

backward reflection coefficient matrix

forward prediction residual error matrix

backward prediction residual error matrix

(9)
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Fig. 1. Pole–zero approximations of the feedback filter.

TABLE I
ARMA A PPROXIMATIONS FORb(D) AND THEIR ACHIEVABLE NNTE’S

TABLE II
ARMA A PPROXIMATIONS FORw1(D) AND THEIR ACHIEVABLE NNTE’S

We have found through extensive computer simulations that
a direct reduced-parameter pole–zero approximation of the
feedforward filter is very difficult to obtain. This is due to
the fact that the initial part of the impulse response (IR) prior
to the peak could be very long. Pole–zero models can more
easily model the decaying tail of the IR following the peak.
With this observation in mind, we proposed in [2] to “split”
the IR of the feedforward filter at its peak sample into two
components, and to approximate each component separately
by a pole–zero model.

For the HDSL environment, we shall assume the worst
case 9 kft 26 gauge DSL. The input power level is 17 dBm,
evenly distributed over the transmission bandwidth, and the
two-sided AWGN power spectral density (psd) is taken to be

dBm/Hz. The standard near-
end crosstalk (NEXT) model is adopted with
The target bit rate is set at 800 kbits/s, and the input signal
constellation is 16-QAM, which is near optimum in this case.
A fixed probability of error is assumed and a
4.2 coding gain is included. The finite-length MMSE–DFE is
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TABLE III
ARMA A PPROXIMATIONS FORw2(D) AND THEIR ACHIEVABLE NNTE’S

Fig. 2. Pole–zero approximations forw1(D) (component ofw(D) after the peak sample). Note that the first sample ofw1(D) is equal to 58th
sample of w(D):

Fig. 3. Pole–zero approximations forw2(D) (component ofw(D) before the peak sample and time reversed). Note that the first sample ofw2(D)
is equal to the 57th sample ofw(D):

assumed to have 96 feedforward taps and 64 feedback taps.
This choice results in an operational margin of around 4.9
dB.

In Tables I–III, we present some of the best pole–zero
approximations of the 64-tap feedback filter and the two
components of the 96-tap feedforward filter and their cor-
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responding NNTE’s. The impulse responses of those ap-
proximations together with that of the desired response are
given in Figs. 1–3. It is evident that the proposed algorithm
generates fairly accurate pole–zero approximations with the
added advantages of significant reductions in the number of
filter coefficients, fast computation, and guaranteed stability.

In concluding this section, it is worth mentioning that
we have investigated the effect of pole–zero modeling on
the performance of the MMSE–DFE, as measured by the
operational margin at For example, we found that
using the four-pole, four-zero model given in Table I for the
64-tap feedback filter, together with the five-pole, two-zero and
the two-pole, one-zero models given in Tables II and III for the
two components of the 96-tap feedforward filter results in a
negligible margin reduction of 0.05 dB. This further confirms
the accuracy of the pole–zero approximations to the original
FIR filters.

IV. CONCLUSION

In this paper, we derived a computationally efficient algo-
rithm that accurately approximates long FIR filters by stable
pole–zero filters with far fewer coefficients. The algorithm
was successfully applied to the problem of reducing the
implementation complexity of the MMSE–DFE’s long FIR
feedforward and feedback filters on digital subscriber lines.
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