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We propose a robust and low complexity scheme to estimate

and track carrier frequency from signals traveling under low

signal-to-noise ratio (SNR) conditions in highly nonstationary

channels. These scenarios arise in planetary exploration

missions subject to high dynamics, such as the Mars exploration

rover missions. The method comprises a bank of adaptive

linear predictors (ALP) supervised by a convex combiner

that dynamically aggregates the individual predictors. The

adaptive combination is able to outperform the best individual

estimator in the set, which leads to a universal scheme for

frequency estimation and tracking. A simple technique for bias

compensation considerably improves the ALP performance. It is

also shown that retrieval of frequency content by a fast Fourier

transform (FFT)-search method, instead of only inspecting the

angle of a particular root of the error predictor filter, enhances

performance, particularly at very low SNR levels. Simple

techniques that enforce frequency continuity improve further

the overall performance. In summary we illustrate by extensive

simulations that adaptive linear prediction methods render a

robust and competitive frequency tracking technique.
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I. INTRODUCTION

As part of the NASA exploration effort of the

red planet, the new Mars Science Laboratory (MSL)

rover is larger, heavier, and embedded with more

sophisticated instruments than its predecessors, the

Spirit and the Opportunity rovers. MSL assesses

whether Mars has ever had, or still has, environmental

conditions to support microbial life.

The most critical phase of the mission is the entry,

descent, and landing (EDL). The lander enters the

Mars atmosphere at hypersonic speed and undergoes a

myriad of events until it finally rests on Martian soil.

These events are registered by signaling flags that

are embedded into an M-ary frequency-shift keying

(MFSK)-modulated carrier and sent back to Earth

in real time via the direct-to-Earth (DTE) channel,

which is employed as a backup system in case of

failure of the main link [1, 2]. These signals reflect

the health and status of the mission and are crucial

to improve future designs in case of mission failure.

Due to the EDL events, such signals travel through

the DTE channel and experience a combination of

severe Doppler effect, time-varying gain, and noise.

These effects make the recovery of the data from the

received signal a challenging task.

In order to retrieve the mission data, the severe

Doppler shifts in the FSK carrier caused by the EDL

dynamics must be estimated, and this is the purpose of

our work. The original estimation procedure employed

in the Spirit and the Opportunity missions was based

on maximum likelihood (ML) techniques [1, 2]. We

follow a different approach, aiming at low complexity

and robustness. For this purpose we revisit adaptive

linear prediction (ALP) techniques, a topic that has

been available in the literature of frequency tracking

for quite some time [3—13].

Despite the limitations of ALP methods in typical

high signal-to-noise ratio (SNR) and (moderately)

stationary scenarios, the unusual conditions of the

EDL dynamics unveil that they can be competitive

if combined with recent developments in adaptive

filtering [14—18], together with some enhancement

techniques presented in the next sections [19, 20].

Specifically, we develop a robust and low complexity

carrier frequency tracking scheme that is able to

operate under low SNR and highly nonstationary

conditions during EDL. The method combines the

natural tracking abilities of adaptive filters with

universal prediction techniques, allied with lag error

compensation and efficient frequency retrieval,

order-adaptive smoothing, as well as robust frequency

lock control.

The paper is organized as follows. Section II

introduces the EDL particularities and the adopted

models for the channel and signals. Sections III and

IV revisit linear prediction (LP) and ALP techniques,

introducing the optimal frequency profile estimate
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Fig. 1. DTE communications.

for the time-varying case, and the normalized

least-mean squares (NLMS) predictor as a robust

tracker. Section V proposes convex combination

methods to mitigate the sensitivity of the ALPs to

predictor parameters. A simple lag-error compensation

procedure is presented in Section VI, followed by

efficient fast Fourier transform (FFT)-based frequency

retrieval presented in Section VII, altogether yielding

a favorable improvement margin. Section VIII

introduces an order-adaptive smoothing method

and a frequency derivative control routine, both

improving frequency tracking lock; the subsystems

are then grouped, and performance is compared with

the original ML-based solution [1, 2] and with the

reduced-rank least-squares (RR-LS) method [9].

II. ENTRY, DESCENT, AND LANDING
COMMUNICATIONS

At the spacecraft end, every 10 s signals that

register the lander status are sent back to Earth as the

EDL events take place. Due to the critical channel

conditions, phase-coherent communication is not

viable. A modified MFSK modulation technique

is adopted by JPL [1], with a nominal carrier

frequency of f0c = 8:4 GHz (X-band) and employing

a constellation of 256 symbols.

At the Earth end the received signal x(t) is

comprised of a distorted signal component r(t)

disturbed by noise v(t), as illustrated in Fig. 1. A

detailed description of the DTE channel and the signal

generation can be found in [2]. The spacecraft high

dynamics leads to time-varying Doppler shifts in the

nominal carrier frequency [1]:

fc(t) = f
0
c +f(t) +fd(t) (1)

where f0c = 8:4 GHz, f(t) denotes the Doppler shifts,

and fd(t) represents the data component. Therefore, in

order to recover the MFSK data, we need a reliable

estimate of the Doppler component. Due to the large

values of f(t), we may assume that f(t) +fd(t)¼ f(t)
so that the embedded data fd(t) may be disregarded

for f(t) estimation purposes.1 In other words after

1When the relative motion between source and receiver is slow, this

assumption is invalid.

Fig. 2. Typical Doppler frequency profile f(i) encountered

during EDL on Mars (reduced band) and its first derivative.

down-conversion, the only frequency content in the

received signal is the Doppler component, i.e.,

fc(t) = f(t): (2)

After sampling, the signal that we are dealing with at

the Earth end is of the form

x(i) = ejÁ(i) + v(i) (3)

where v(i) models the channel noise and where it is

assumed to arise from an ergodic white process with

variance ¾2v , and

Á(i) = 2¼

iX
k=0

f(k) (4)

with f(i) representing the discrete time-varying

Doppler component, depicted in Fig. 2.

Our objective is to estimate and track f(i) from the

measurements fx(i)g. After the Doppler component
has been estimated and removed, the EDL data can be

properly recovered. We consider signals with reduced

bandwidth so that the sampling frequency is chosen

as Fs = 100 Hz, which is representative of the EDL

dynamics. (See Fig. 2.)

III. LINEAR PREDICTION REVISITED: A NEW
PROBLEM FOR AN OLD SOLUTION

For signals comprised of a narrowband component

embedded in a wideband background noise, the

direct frequency estimation via ML is quite effective;

however it leads to a (nonlinear) least-squares problem

that requires a multidimensional search in general,

particularly for nonstationary processes [3, 4]. In

addition the frequency resolution of such methods

tends to be limited by the length of the observation

window [5].
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A. Linear Prediction

One alternative approach for estimation and

frequency tracking is to formulate an LP problem

[6—9]. The LP-based methods have been originally

proposed to overcome the frequency resolution

limitations of periodogram-based (which includes

ML) and autocorrelation methods [5]. As a byproduct,

these methods are, sometimes, orders of magnitude

simpler than direct ML approaches.

Linear prediction methods are usually avoided

in (quasi) stationary and high SNR applications

due to their bias and suboptimality. However in the

critical EDL scenario, with very low SNR and highly

nonstationary DTE channel conditions, the robustness

and learning ability of linear predictors driven by

adaptive algorithms are more relevant than their bias

and suboptimality, which is explored in the next

sections.

The principle of LP frequency estimation is

simple. When an M-order predictor with coefficients

c(k) is optimally designed in the mean-square error

(MSE) sense, for the signal model (3), the resulting

error predictor filter Q(z), defined by

Q(z) = 1¡
MX
k=1

c(k)z¡k (5)

presents a particular root configuration: the phase μ0
of the root that is closest to the unit circle yields an

estimate of the Doppler component f via

f̂ =
μo
2¼
¢Fs (Hz) (6)

where Fs is the sampling frequency.

B. Predictor Design in the Time-Varying Case

The time-varying optimum (forward) predictor

vector coi , corresponding to a dynamic Doppler

component f(i), can be determined by solving

coi = argminc
Ejx(i)¡ x̂(i)j2 (7)

with

x̂(i) = xi¡1c (8)

with

xi¡1 = [x(i¡ 1) x(i¡ 2) ¢ ¢ ¢x(i¡M)]
c= [c(1) c(2) ¢ ¢ ¢c(M ¡ 1) c(M)]T

(9)

where xi¡1 is the row observation vector and c
collects the predictor coefficients. The solution to (7)

is the solution to the time-varying normal equations

[21]:

Ru,ic
o
i = Rdu,i (10)

where Ru,i and Rdu,i are, respectively, the covariance

and cross-covariance matrices of the regressor u and

the desired signal d, with

dÃ x(i) and uÃ xi¡1: (11)

Since we have that

x(i) = r(i)+ v(i) (12)

with r(i) = ejÁ(i), then we may express the regressor

xi¡1 as
xi¡1 = ri¡1 + vi¡1 (13)

where

ri¡1 = [r(i¡ 1) r(i¡2) ¢ ¢ ¢r(i¡M)]
vi¡1 = [v(i¡ 1) v(i¡ 2) ¢ ¢ ¢v(i¡M)]:

We proceed by calculating the data covariance

matrices using the fact that v(i) is white noise and

that r(i) is deterministic. From model (3) and (13),

we have

Rdu,i = Ex(i)x
¤
i¡1 = E(r(i)+ v(i)) ¢ (r¤i¡1 + v¤i¡1)

= r(i)r¤i¡1 (14)

and

Ru,i = Ex
¤
i¡1xi¡1

= E(r¤i¡1 + v
¤
i¡1) ¢ (ri¡1 + vi¡1)

= r¤i¡1ri¡1 +¾
2
v IM: (15)

Applying the matrix inversion lemma [21] to (15)

leads to

R¡1u,i =
1

¾2v
IM ¡

1

¾2v
r¤i¡1

μ
1+

1

¾2v
ri¡1r

¤
i¡1

¶¡1
ri¡1

1

¾2v

=
1

¾2v

μ
IM ¡

1

¾2v +M
r¤i¡1ri¡1

¶
(16)

which, postmultiplied by (14), yields

coi =
r(i)

¾2v +M
r¤i¡1: (17)

The optimal sequence fcoi g results in the mean-square
optimal Doppler profile estimate f̂o(i). Fig. 3 depicts

the frequency profile obtained from fcoi g and (6),
with M = 60 and ¾2v = 1 (SNR= 0 dB). As expected,

note how the resulting curve is biased [7, 9, 10, 11].

Most of this effect, however, can be canceled via a

technique presented in Section VI.

IV. ADAPTIVE LINEAR PREDICTION (ALP)

The solution (17) obviously depends on

information that is not available, so that we

need to resort to adaptive solutions. Structurally,

infinite-duration impulse response (IIR) and

finite-duration impulse response (FIR) solutions are
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Fig. 3. Frequency estimate f̂o(i) obtained from (17) and (6).

available, as well as LP-equivalent designs, such as

the adaptive line enhancer (ALE) and the adaptive

notch filter (ANF), covering AR, MA, and ARMA

formulations [12, 13]. We rely on adaptive FIR

predictors due to their inherent robustness. Another

fundamental reason is the easiness with which FIR

predictors can be combined to improve tracking

performance, as shown later in Section V.

Adaptive FIR predictors can be obtained

recursively as follows:

ci = ci¡1 +¹R̂
¡1
u,i (R̂du,i¡ R̂u,ici¡1) (18)

where ¹ is a step-size parameter. Different

approximations for the data-dependent covariance

matrices R̂u and R̂du lead to different adaptive

predictors with different abilities [21]. Once an

adaptive predictor is chosen, a root-solver can be

employed to retrieve the Doppler component estimates

f̂(i) by using (5) and (6).

A set of adaptive algorithms that is quite

relevant for the frequency tracking problem is the

affine projection family. These algorithms use the

following approximations for the covariance and

cross-covariance matrices in (18) (refer to (14), (15)

and (11)):

R̂u,i =U
¤
i Ui+ ²I and R̂du,i =U

¤
i di (19)

where

Ui = colfxi¡1,xi¡2, : : : ,xi¡Kg
di = colfx(i),x(i¡ 1), : : : ,x(i¡K +1)g

where K is referred to as the order of the algorithm

and ² is a small positive number. The resulting

algorithm (18) is quite robust, allied with a good

tracking ability; besides, the computational complexity

can be balanced by properly choosing the algorithm

order K. For K = 1 we obtain the NLMS algorithm,

which is employed due to its low complexity and

good performance exhibited in the tests carried out.

The NLMS update equation takes the form

ci = ci¡1 +
¹x¤i¡1

kxi¡1k2 + ²
(x(i)¡ xi¡1ci¡1): (20)

Another related algorithm that has been be tested in

this context in [5] is the least-mean squares (LMS)

filter:

ci = ci¡1 +¹x
¤
i¡1(x(i)¡ xi¡1ci¡1): (21)

Due to its performance we also consider for

comparison the method proposed in [9], which

employs a finite sliding window to find an RR-LS

optimum predictor. The effect of reducing the rank is

to mitigate the sensitivity of least-squares solutions

to low SNR conditions (as happens in the EDL

scenario). We employ a forward only least-squares

predictor, obtained as follows:

Hi¡1ci = x
T
i (22)

where the matrix Hi¡1 collects the regressors:
2

Hi¡1 = colfxi¡1,xi¡2, : : : ,xi¡Ng (23)

and N is the RR-LS order. The vector ci is calculated

from

ci = [H
(m)
i¡1 ]

†xTi (24)

where H(m)
i¡1 is an m-rank, m·M, approximation

for Hi¡1 and
† denotes its pseudo-inverse. Forward-

backward formulations may present superior

performance [7, 9] but at a higher computational cost.

We extensively simulated the three main

algorithms mentioned above, namely the NLMS,

LMS, and RR-LS. Figs. 4—5 present two examples

that compare the three algorithms using two

representative sets of parameters. In Fig. 4 the

LMS-based solution confirms its robustness and

achieves roughly the same performance as the RR-LS

algorithm, albeit at a much lower computational cost.

Fig. 5 shows a great deal of improvement for the

RR-LS with the new set of parameters and a dramatic

performance decay for the LMS algorithm. In the two

examples the NLMS outperforms both algorithms.

Fig. 6 shows a comparison of the RR-LS, LMS,

and NLMS mean-square performance covering the

10 dB-Hz to 30 dB-Hz range.3 The same set of

parameters as Figs. 4 and 5 is employed. Note how

the NLMS predictor outperforms both the LMS

and the RR-LS algorithms. In summary, the LMS

algorithm is quite sensitive to parameter design

and to low SNR conditions and is not fast enough

to cope with the channel effects. When properly

tuned the RR-LS can be improved, but it may still

lose frequency lock, especially in periods of high

dynamics.

2The colf¢g operator stacks scalars or row vectors on top of each
other [21].
3Considering the noise over the full spectrum and since we employ

Fs = 100 Hz in this work, this is equivalent to the ¡10 dB to 10 dB
range. In addition, unless otherwise stated, in this work the root

mean-square frequency error (RMSE) plots are normalized by kfk2,
the norm of the nominal Doppler profile vector (refer to Fig. 2).
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Fig. 4. Example 1: Comparison of typical algorithms for ALP

frequency estimation with SNR=¡6 dB. For LMS: MLMS1 = 15,
and ¹LMS1 = 0:04=MLMS1. For RR-LS: MLS1 = 15, and NLS1 = 40.

For NLMS: MNLMS = 15, and ¹NLMS = 0:11.

Fig. 5. Example 2: Comparison of typical algorithms for ALP

frequency estimation with SNR=¡6 dB. For LMS: MLMS2 = 15,
and ¹LMS2 = 0:09=MLMS2. For RR-LS: MLS2 = 20, and NLS2 = 70.

The NLMS predictor is run with the parameters from example 1.

V. ADAPTIVE COMBINATION SCHEMES

In general, choosing good predictor parameters

(such as M and ¹) is a difficult task and may depend

on information not available, such as the frequency

profile itself, not to mention that in a nonstationary

environment, the optimal parameter set changes over

time. As seen in the previous section, the NLMS is

more robust than the RR-LS and the LMS, however it

Fig. 6. Comparison of typical algorithms for ALP frequency

estimation. Same set of parameters as in Figs. 4—5.

Fig. 7. Sensitivity of ALP solution (20).

is also sensitive to changes in filter parameters. The

impact of slightly different designs can be seen in

Fig. 7. Two different, but similar, NLMS predictors

are designed in an environment with SNR= 10 dB

(¾2v = 0:1). The first predictor employs M1 = 7 and

¹1 = 0:7, and the second predictor employs M2 = 10

and ¹2 = 0:5. Observe how a slight change in the

design parameters leads to dramatically different

performances. As indicated by the bottom plot of

Fig. 7, a good design enables the adaptive filter

to deliver a good prediction, thus leading to good

frequency estimates.

To get around the sensitivity issue, instead of

attempting to design the system parameters under

little or no information, we change the design

paradigm by adopting a combination approach
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Fig. 8. Adaptive combination scheme (25).

[14, 19, 20]. The goal is to employ a mixture of

multiple individual predictors that span a reasonable

range of the unknown parameters. The individual

predictors’ outputs are then efficiently combined by

a convex supervisor such that the global system is

able to perform at least as well as the best individual

predictor [22].

A. Convex Combiners

Before presenting the error prediction filter Qi(z)

to the root solver, the quality of prediction can

be improved by combining a span of L different

normalized LMS predictors, with different orders

and step-sizes [19, 20]. The individual predictors are

combined according to their individual performance as

[14]

ci¡1 =
LX
k=1

¸kck,i¡1 (25)

and

x̂(i) =

LX
k=1

¸kx̂k(i),

LX
k=1

¸k = 1 (26)

as depicted in Fig. 8, where the kth predictor has

order Mk and step-size ¹k:

x̂k(i) = xi¡1ck,i¡1: (27)

The regressor xi¡1 in (27) has the order ML of the
largest predictor and is employed by all individual

predictors ck (extended with zeros in (27) to match the

vector dimensions whenever necessary). The key step

is to select the combiners f¸kg. To ensure convexity
of the predictors’ aggregation, we use combination

coefficients of the form:

¸k =
ykPL
`=1 y`

, yk = f(ak) (28)

where yk is a real activation function of some complex

argument ak. This formulation is an extension of the

original work [14] to the arbitrary order and arbitrary

activation function case and to handle complex

signals. The function yk = f(ak) is at our choice and

the coefficient ak can be dynamically adapted as [14]

ak(i) = ak(i¡ 1)¡¹a[rak je(i)j2]¤ak=ak(i¡1) (29)

where

e(i) = x(i)¡ x̂(i) (30)

is the overall prediction error, with x̂(i) given by (26).

It can be seen that, for a generic function yk = f(ak),

we obtain

rak je(i)j2 =¡e¤(i)xi¡1(ck ¡ c)
@yk
@ak

¢ 1P
` y`

=¡e¤(i)(x̂k(i)¡ x̂(i))
@yk
@ak

¢ 1P
` y`
: (31)

A number of different combining functions can be

used to aggregate the L experts [19]:

yk = je¡ak=2j2 (32)

yk = e
¡jak j2 (33)

yk = jakj2: (34)

Alternative strategies may also be applied, for

instance, by combining different adaptive algorithms

[16, 17].

B. Hierarchical Convex Combiners

In [19] we employed a convex mixture of

individual predictors to overcome the design

sensitivity of the root configuration with respect to the

predictor parameters. NLMS predictors, with orders

Mk and step-sizes ¹k, are organized into a single

combination layer. The single layer configurations

are able to perform as well as the best individual

predictor [19]. However, when the number of filters

L is increased, the extra gradient noise introduced by

the convex combiners may compromise the overall

performance. Results in [19] indicate that the L= 2

convex combination performs similar to structures

containing more predictors; in part that is due to

the presence of one single combiner ¸ per pair of

predictors, as opposed to one combiner per predictor

for L > 2. This approach decreases the overall gradient

noise. However only two filters may not cover the

necessary range of parameters to capture the rich

dynamics of the EDL events. To overcome the

tradeoff we may explore a hierarchical arrangement

of L= 2 convex prediction cells [20], or L2 cells for

short (see Fig. 9). By doing so we still operate using

one combiner ¸ only per pair of predictors, while

embedding more predictors into the system. As a

design example we consider L= 4 predictors: one

low-order L2 cell to respond quickly during periods

of higher dynamics and a higher order L2 cell to

improve the system prediction capabilities in periods

of lower dynamics. The outputs of both input cells are

aggregated by an output L2 cell that automatically

balances the high and low order input cells. The

topology can be generalized to an arbitrary number

of predictors by organizing them into cells and layers.
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Fig. 9. Convex hierarchical scheme for L= 4 experts in the input

layer. The order of kth NLMS predictor is denoted by Mk .

The structure in Fig. 9 is designed as follows. We

first design the L2 cell at the output. For L= 2, only

one combiner ¸ is needed, and the overall predictor is

a convex combination of its input predictors:

ci¡1 = ¸(i)cu,i¡1 + (1¡¸(i))c`,i¡1 (35)

where cu,i¡1 and c`,i¡1 are the convex predictors for
the upper and lower L2 cells, respectively, and where

they are defined in terms of the individual predictors

ck in the input layer:

cu,i¡1 = ¸u(i)c1,i¡1 + (1¡¸u(i))c2,i¡1 (upper)

(36)

c`,i¡1 = ¸`(i)c3,i¡1 + (1¡¸`(i))c4,i¡1 (lower):

(37)

One adaptive rule to train the output L2 cell is

obtained from (29) considering one combiner only

[19, 20]:

a(i) = a(i¡1)¡¹a[raje(i)j2]¤a=a(i¡1): (38)

The gradient in (38) is given by

rajej2 =
@e¤e
@e

¢ @e
@a
= e¤(¡x) ¢ @c

@a

=¡e¤x
μ
cu
@¸

@a
¡ c`

@¸

@a

¶
=¡e¤(i)(x̂u(i)¡ x̂`(i)) ¢

@¸

@a
(39)

with

x̂u(i) = xu,i¡1cu,i¡1, x̂`(i) = x`,i¡1c`,i¡1 (40)

which leads to

a(i) = a(i¡ 1)+¹ae(i)(x̂¤u(i)¡ x̂¤` (i)) ¢
@¸

@a
: (41)

We are free to choose the activation function ¸(a), as

previously mentioned. A function that presents good

performance is [19, 20]:

¸(i) =
1

1+ je¡a(i¡1)=2j2 : (42)

The adaptive rule for the L2 output cell then becomes

a(i) = a(i¡ 1)+¹ae(i)(x̂u(i)¡ x̂`(i))¤¸(i)(1¡¸(i)):
(43)

The global error e(i) is given by (30), only now it

employs the hierarchical predictor (35). The regressors

of the upper and lower cells xu,i¡1 and x`,i¡1 have the
same order as the predictors c2 and c4, respectively.

The upper and lower L2 cells can be designed in

the same manner as the output layer. Therefore their

combiners are given by

¸u(i) =
1

1+ je¡au(i¡1)=2j2 and ¸`(i) =
1

1+ je¡a`(i¡1)=2j2

and the corresponding adaptive rules are

au(i) = au(i¡ 1)+¹ueu(i)(x̂1(i)¡ x̂2(i))¤¸u(i)(1¡¸u(i))
a`(i) = a`(i¡ 1)+¹`e`(i)(x̂3(i)¡ x̂4(i))¤¸`(i)(1¡¸`(i))
where now

eu(i) = x(i)¡ x̂u(i) and e`(i) = x(i)¡ x̂`(i):
(44)

The last step is to design the individual predictors,

which are trained using the NLMS algorithm:

ck,i = ck,i¡1 +¹k
x¤k,i¡1

kxk,i¡1k2 + ²
(x(i)¡ xk,i¡1ck,i¡1)

for k = 1, : : : ,L. (45)

In addition, the combiners ¸(i), ¸u(i), and ¸`(i)

are time-smoothed over their past Nham values via a

Hamming half-window wham, thus generating
¯̧ (i),

¯̧
u(i), and

¯̧
`(i). For instance for

¯̧ (i) we have

¯̧ (i) = ¸iwham (46)
where

¸i = [¸(i) ¸(i¡ 1) ¸(i¡ 2) ¢ ¢ ¢¸(i¡Nham +1)]
wham = [w(0) w(1) w(2) ¢ ¢ ¢w(Nham¡ 1)]T:

More recent samples are emphasized so that the

window peak is at w(0), which corresponds to the

current sample. The window coefficients fw(¢)g are
normalized to sum up to unity. This procedure helps

combat the extra gradient noise introduced by the

learning rules a(i), au(i), and a`(i).

Fig. 10 presents a time snapshot of the combiners

evolution for SNR= 14 dB-Hz and for ¹a = ¹u = ¹`
= 5. Note how the combiners are correctly assigned:

in periods of relative low activity, the higher order

predictors are selected since they lead to smaller

errors. For periods with high dynamics, the lower

order predictors are selected once they are able to

react faster to changes in the channel conditions.

We ran a simulation example covering the whole

SNR range of interest, namely 10 dB-Hz to 30 dB-Hz

(¡10 dB to 10 dB), with Mk = f9,13,17,21g and
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Fig. 10. Time snapshot of convex coefficients for

SNR = 14 dB-Hz (¡6 dB).

Fig. 11. Universality of combination scheme for L= 4.

¹k = 0:11. As Fig. 11 depicts the hierarchical scheme

achieves universality over the full SNR range.

VI. LAG-ERROR COMPENSATION

The estimation error in nonstationary scenarios
is comprised of two components: variance and bias.
For LMS-like algorithms the variance decreases
as the step-size decreases. However the lag error
(bias) decreases with larger step-sizes since the filter
becomes faster and since it is able to keep up with
the time-varying nature of the underlying process. As
a result there is a trade-off in terms of the step-size.
However, due to the low SNR levels of the received
signals at the Earth end, we cannot employ large
step-sizes. This is because the loss of frequency
lock, represented by the large spikes in the frequency
estimates, as well as the variance component, would
worsen considerably. One needs to compensate the lag

Fig. 12. Principle of lag-error compensation.

error in some other way. One way to achieve this goal
is by exploring the learning latency of the adaptive
filters [20].
For simplicity, consider a linear frequency

profile f(i) to illustrate the procedure (see Fig. 12).
An adaptive filter will constantly try to follow
the reference signal, but it falls behind due to the
latency of the learning process. As a consequence,
in the forward direction the resulting frequency
estimates will suffer from a casual bias error, i.e.,
the predicted frequency profile f̂(i), resulting from
point A to point B in Fig. 12, will lie underneath the
nominal frequency profile f(i). Now, if we perform
a backward prediction, i.e., from point B to point
A, a similar effect takes place: due to the latency of
the learning process, the frequency profile estimate

f̂b(i) also suffers from a bias, which is causal with
respect to the flipped time axis, since the prediction is
backwards, but anticausal with respect to the original
time axis, as one can see in Fig. 12. Therefore the

anticausal bias from the backward estimates f̂b(i) can
be employed to compensate the causal bias from the
forward prediction. A compensated frequency profile

f̂nl(i), where “nl” is a mnemonic for “no-lag,” can be
computed by a simple point-to-point average:

f̂nl =
1
2
(f̂+ f̂b): (47)

Fig. 13 shows the efficiency of the procedure for
the EDL frequency profile. Visibly the anticausal
estimate compensates the causal bias error. In Fig. 14
we observe the benefits of the lag compensation
scheme over the full SNR range. For low SNR the
error due to loss of lock (i.e., spikes) is predominant,
and therefore the gain is noticeable but not so
expressive. In the higher SNR range, when most of
the error arises from the bias, the compensation is
expressive.
Other mappings, possibly nonlinear, may be

applied in order to further enhance the estimates:

f̂nl(i) = g(f̂, f̂b): (48)

One such operator is the median filter, which
could be explored to remove the spikes that arise
by screening the forward and backward estimates
simultaneously inside a short observation window
since it is unlikely to encounter spikes in both forward
and backward estimates at the same time instant.
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Fig. 13. Example of lag error compensation for typical EDL

signals.

Fig. 14. Comparison: Hierarchical scheme with lag compensation

and plain hierarchical scheme.

In Mars mission applications, due to the off-line

nature of the estimation problem, this method can be

properly employed. It could also be applied to block

processing applications, where the partial frequency

estimates are obtained within each data block.

VII. EFFICIENT FFT-BASED ESTIMATION

We have thus far employed a simple root solver

to retrieve the frequency content from the coefficients

of Qi(z). However the roots of that polynomial, when

the digital filter is implemented in the direct form, are

quite sensitive to disturbances in the filter coefficients,

especially for high order filters, and this affects the

performance of the frequency tracker based on the

root solver, resulting in loss of lock.

It can be shown that, when the predictor c is

optimally designed (LMS sense), the maximum

entropy estimate of the input signal power spectrum

is related to the optimal predictor error filter (5) via

[5, 9, 10, 11]

Ŝx(!) =
B0

jQ(!)j2 (49)

where B0 is a constant. As a consequence, to retrieve

the narrow band Doppler component, we may

alternatively search for a peak in Ŝx(!), or a notch in

jQ(!)j, instead of seeking the closest root to the unit
circle in Q(z).

It turns out that, in the EDL channel, with very

low SNR, searching for the Doppler component

directly in the FFT-based instantaneous input power

spectrum estimate Ŝx,i(!) results in a noticeable

improvement in performance as compared with the

root-solver approach. Thus, at each time instant,

we look for a notch in the magnitude-squared FFT

of the instantaneous predictor error filter Qi(!).

Intuitively, the FFT tends to concentrate the narrow

band component (present in the predictor coefficients)

around the true frequency component and to evenly

distribute the noise component along the spectrum.

That is, besides the fact that the adaptive filter

captures the underlying power spectrum of the input

signal in its coefficients, the FFT further enhances the

peak location. In addition, as the filter order increases,

the FFT computational efficiency has advantages

over the operation of extracting roots of a high order

polynomial.

A time snapshot of both root solver and FFT

methods is presented in Fig. 15, where the robustness

of the FFT extractor is clear. Fig. 16 compares

the root solver and the FFT extractor for the

10 dB-Hz to 30 dB-Hz SNR range (¡10 dB to
10 dB). The improvement in frequency MSE at

the low SNR range is considerable (from 5 dB to

roughly 10 dB). At higher SNRs the effect is still

noticeable (with advantage to the FFT extractor),

but is not so expressive, which may explain why,

in the literature, the two methods seem to be tacitly

assumed as similar: the SNR in usual applications

is (much) higher than in the EDL context, and

the two methods are roughly similar in such a

range.

Fig. 17 presents the improvement achieved with

joint FFT extraction and lag compensation. Note the

substantial improvement in MSE over the full SNR

range, above 10 dB in most of the range, with a peak

of 15 dB.
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Fig. 15. Comparison: Time snapshots of root solver (top) and

FFT extractor (bottom).

Fig. 16. Comparison between root solver and FFT extractor.

Fig. 17. Improved ALP performance with joint FFT smoothing

and lag compensation.

VIII. ENHANCEMENT TECHNIQUES

The channel noise impact in the ALP sensitivity

can be increased by the stochastic gradient

disturbances introduced by the predictors (20) as

well as by the adaptive combiners (38). This may

cause spikes in the estimated frequency that are

not correlated with the underlying true frequency

f(i), as Fig. 7 shows. This phenomenon is usually

referred to as loss of tracking lock, or as a loss

of frequency continuity, and simple methods that

enforce frequency continuity can be incorporated to

improve the tracking ability of the overall scheme.

The underlying assumption is that the dynamics of

the lander is continuous in time, which implies a

continuous Doppler profile as well.

A. Order-Adaptive Q-Zeroing Smoothing

Due to the channel conditions, at every time

instant, the performance of filters with different orders

may vary considerably. If we perform an experiment

with multiple ALPs running independently in a low

SNR scenario, filters with different orders eventually

lose the tracking lock at different time instants (as

observed in simulations). In other words at any time

instant, it is usually possible to find a filter that has

not lost lock. In order to explore this fact, we devise

a simple strategy that, at every iteration, searches for

a filter that maintains frequency continuity relative

to the previous iteration. We do so by sampling the

p leading entries of the convex combination vector c

(refer to (35)), which emulates a vector cp in a lower

dimension subspace:

cp = [c]1:p, p 2 [pmin,M] (50)

where M is the order of the predictor c. The

corresponding “order-reduced” error predictor vector4

Qp (see (5)) is then presented to the FFT extractor,

and frequency continuity is checked. If discontinuity

is detected5 the order p is decreased, and the

continuity of the new Qp is rechecked. This process

is repeated until the continuity criterion is met, or

until the predefined lower bound pmin is achieved.

In case either condition is met and the spike persists,

the error is treated by the next control routine (refer

to Subsection VIIIB). This strategy is a simple way

to emulate a search for the filter order that preserves

frequency continuity without the requirement of

implementing several filters simultaneously.
Fig. 18 presents two instantaneous runs for

pmin = 5, M = 25 and ¹= 0:11 at SNR= 10 dB-Hz
(¡10 dB). The improvement in frequency tracking
lock is expressive. The scheme presented in this
section can combat the majority of the frequency
spikes, which implies an improvement in the
probability of frequency error. As a result it quite
reasonably improves the MSE (roughly 7 dB) in the

4This is implemented by zeroing the trailing M ¡p entries of Q.
5Loss of frequency lock is declared whenever the frequency

difference from previous iteration is beyond a predefined threshold

THR, usually chosen as a multiple of the maximum possible

frequency difference (an estimate). Another possibility is to set

THR as a fraction of the sampling frequency Fs.
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Fig. 18. Comparison: Time snapshots of fixed order versus Q-zeroing smoothing for SNR = 10 dB-Hz (¡10 dB), pmin = 5, M = 25,

and ¹= 0:11.

very low to low SNR range (10 dB-Hz to 20 dB-Hz,
or ¡10 dB to 0 dB), as depicted in Fig. 19. Fig. 19
depicts the frequency error by comparing both fixed
order (M = 25) and Q-zeroing smoothing (same
parameters as Fig. 18).

B. Derivative Control

If, after the Q-zeroing reprocessing routine,
frequency spikes are still found, we may resort to a
derivative control strategy [19], once more assuming
that the underlying lander dynamics (e.g., velocity) are
continuous in time. In other words, Doppler frequency
jumps result from a tracking failure since the lander
does not change its momentum instantaneously.
The control strategy works as follows. A derivative

buffer keeps track of the average ±f(i) of the last Nd
“good” derivative samples (defined ahead). Whenever
a spike cannot be addressed by the Q-zeroing routine,
the derivative control forces the time continuity of the
frequency estimates by updating the previous (good)

frequency estimate f̂(i¡1) with the average of the
last Nd “good” derivative samples, which captures the
tendency of the underlying physical process. Let

±f̂(i)
¢
= f̂(i)¡ f̂(i¡1) (51)

Fig. 19. Comparison: Fixed order versus Q-zeroing smoothing

for pmin = 5, M = 25, and ¹= 0:11.

and for a given THR, define a good derivative sample

Db as

Db =

(
±f̂(i), if j±f̂(i)j · THR
° ¢ sign(±f̂(i)), if j±f̂(i)j> THR

(52)
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Fig. 20. Convex combination scheme with order-adaptive

smoothing and derivative control.

Fig. 21. Comparison of all algorithms. L= 4, M1 = 9, M2 = 13,

M3 = 17, M4 = 21, ¹k = 0:11, and ¹a = 0:25. 100 experiments.

where °¿ THR. The derivative buffer is always fed

with Db. Whenever the derivative is bigger than the

THR, the sign information is kept, but the magnitude

is clamped, which improves the average of the

derivatives. The enhanced frequency estimate f̄(i) is

then given by

f̄(i) =

(
f̂(i), if j±f̂(i)j · THR
f̂(i¡ 1)+ ±f(i), if j±f̂(i)j> THR

:

(53)

IX. CONCLUSION

Fig. 20 shows the block diagram of the proposed

system and gathers all the subsystems developed

throughout the sections.

This work devises an adaptive hierarchical

combination of the NLMS adaptive prediction

structure that is assisted by frequency lock routines

and with built-in FFT-based frequency retrieval and

added lag-error compensation. Fig. 21 compares the

approximate ML-like approach of [1, 2], the forward

RR-LS implementation of [9], and the proposed

scheme. It is seen that the ALP solution shows

improved performance. The new system exhibits a

frequency root MSE improvement over a wide SNR

range.
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