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Abstract—We study the problem of distributed Kalman filtering
and smoothing, where a set of nodes is required to estimate the
state of a linear dynamic system from in a collaborative manner.
Our focus is on diffusion strategies, where nodes communicate with
their direct neighbors only, and the information is diffused across
the network through a sequence of Kalman iterations and data-ag-
gregation. We study the problems of Kalman filtering, fixed-lag
smoothing and fixed-point smoothing, and propose diffusion algo-
rithms to solve each one of these problems. We analyze the mean
and mean-square performance of the proposed algorithms, pro-
vide expressions for their steady-state mean-square performance,
and analyze the convergence of the diffusion Kalman filter recur-
sions. Finally, we apply the proposed algorithms to the problem of
estimating and tracking the position of a projectile. We compare
our simulation results with the theoretical expressions, and note
that the proposed approach outperforms existing techniques.

Index Terms—Adaptive networks, diffusion networks, dis-
tributed estimation, fixed-lag smoothing, fixed-point smoothing,
Kalman filtering.

I. INTRODUCTION

W E consider the problem of distributed Kalman filtering
and smoothing over a network of nodes. It is assumed

that some system of interest is evolving according to linear state-
space dynamics, and that every node in the network takes mea-
surements that are linearly related to the unobserved state. The
objective in the Kalman filtering case is for every node to es-
timate the state of the system at a particular time , based on
local observations and neighboring interactions up to that time.
In the fixed-point smoothing case, all nodes are interested in es-
timating the state at some fixed instant , given observations up
to time . In the fixed-lag smoothing case, the nodes esti-
mate the state at a time , given observations up to time ,
where is a fixed positive integer. Applications of distributed
Kalman filtering include wireless localization, target tracking
and precision agriculture.

The performance of the state estimation procedure will de-
pend heavily on the collaboration strategy employed. In a cen-
tralized solution, all nodes send their measurements to a fusion
center, which uses a conventional Kalman filtering or smoothing
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algorithm to obtain the optimal state estimate, and then sends
the resulting estimate back to every node. We refer to the esti-
mate obtained in this way as the global estimate, since it uses all
measurements from all nodes in the network. This strategy may
require a large amount of energy for communications [3] and
has the potential for a critical failure point at the central node.
Distributed strategies are an attractive alternative, since they are
in general more robust, may require fewer communications, and
allow parallel processing.

Decentralized Kalman filtering has been proposed previously
in [4] for a decentralized control problem, where it is assumed
that the network is fully connected. The same assumption is
used in [5] and [6], where the latter work considers the inter-
esting case of severely quantized communications. In [7], the
Kalman filtering iterations are parallelized over a set of sensors,
though a fusion center is required to combine the estimates. An-
other algorithm for distributed Kalman filtering was proposed
in [8], where global information about the state covariances is
required in order to compute the estimates. Average consensus
has also been used for distributed Kalman filtering [9]–[11]. The
distributed Kalman filtering work of [12] is also based on av-
erage consensus, but uses node hierarchy, and the nodes per-
form different types of processing and communications. We use
the results of [11] and [12] for comparison purposes here. Re-
cent work [13] proposes an efficient algorithm for large-scale
distributed Kalman filtering, where the transfer matrices are as-
sumed to be sparse and localized, while [14] considers optimiza-
tion of the consensus weights for a scalar state-space model.

Our focus is on diffusion Kalman filtering and smoothing,
where nodes communicate only with their neighbors, and no
fusion center is present. Furthermore, the strategies proposed
in this work give no hierarchy to the nodes in the network:
every node does the same type of processing and communica-
tion, therefore enabling a fully distributed solution. Non-hierar-
chical networks are robust to node and link failure, are flexible
for ad-hoc deployment and topology changes, and at the same
time do not require complex routing protocols. Moreover, we
do not impose strict restrictions on the topology of the network
or the sparsity of the model, neither do we require running con-
sensus iterations between measurements.

In this work we extend our previous results on diffusion
Kalman filtering [1] and smoothing [2]. The results are also in-
spired by our previous work on diffusion RLS [15], [16], and by
connections between Kalman and RLS filtering as established
in [17]–[20]. Our algorithms compute, for every measurement
and for every node, a local state estimate using the data from
the neighborhood. Subsequently, every node computes a local
convex combination of the estimates of the neighborhood.

Our arguments are based on diffusion strategies [15], [16],
[21]–[23] as opposed to consensus strategies [9]–[11]. In
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consensus-based solutions, several averaging iterations are
generally required for each new measurement in order to
obtain the estimate [24]–[26]. Although algorithms where
only one consensus iteration occurs between measurements
have been considered in [9]–[11], these algorithms differ from
our proposed approach in several ways. First and foremost,
the algorithms derived in [9]–[11] are motivated by consenus
arguments, where the fundamental objective is that all nodes
should obtain the same estimate in steady-state. In contrast,
our distributed schemes are motivated by diffusion arguments
that do not impose this restriction, and can therefore lead to
improved performance. Our work is motivated by our earlier
realization that while consensus solutions are useful for com-
puting averages, diffusion solutions are particularly suited for
problems involving the recursive minimization of cost functions
[16], [21]–[23], [27]–[29]. As such, diffusion solutions are well
suited for estimation problems where new measurements are
being taken in real time (see also [1], [2], [16]). The idea is
that in estimation problems, the objective is to minimize a cost
function, and consensus between nodes may not be required.
A second difference between our work and [10], [11] is that
the latter are motivated by consensus arguments in continuous
time and the filters are subsequently discretized. Our derivation
motivates the filters by working directly in discrete time and
by attempting to minimize mean-square-error cost functions.
Moreover, we also provide performance and convergence
analysis for the proposed algorithms.

A. Summary of Contributions and Organization of the Work

We start by providing background material on Kalman fil-
tering and smoothing in Section II. In Section III, we define the
problem of distributed Kalman filtering, and motivate and de-
rive algorithms for distributed filtering and smoothing. Our pro-
posed diffusion Kalman filtering algorithm allows every node in
the network to obtain a state estimate based on local communi-
cations with its neighbors only. We also propose algorithms for
distributed fixed-point and fixed-lag smoothing. In Section IV
we provide mean and mean-square performance analyses of
the algorithms, and also study the convergence of the diffusion
Kalman filter. We show that the algorithms will converge as
long as all neighborhoods are locally convergent. Finally, in Sec-
tion V we provide simulations for the case where the network is
tracking the position of a projectile. We compare with the the-
oretical expressions derived in Section IV as well as with other
existing algorithms, showing improvement in performance.

II. BACKGROUND

A. The Kalman Filter

Consider a state-space model of the form

(1)

where and denote the state and measure-
ment vectors of the system, respectively, at time , and ,
and are positive integers. The signals and denote state
and measurement noises, respectively, and are assumed to be

zero-mean, uncorrelated and white, with covariance matrices
denoted by

(2)

where the operator denotes complex conjugate transposition
and is the Kronecker delta. The initial state is assumed to
be zero-mean, with covariance matrix , and is uncorre-
lated with and , for all . We further assume that .
The case where can always be transformed into
an equivalent problem of the form (2) as explained in [18]. The
cases where or when we have a deterministic input in
the state (1) can be handled similarly as shown in Section III-F.

Let denote the linear minimum mean-square error esti-
mate of given observations up to and including time . The
Kalman filter in its time- and measurement-update forms can be
computed by starting from and and it-
erating the following equations [18]–[20]:

(3)

where denotes the covariance matrix of the estimation error,

. An alternative form for the measurement up-
date is

(4)

When is nonsingular, we also have

B. The Fixed-Point Smoother

We now consider a Kalman smoother, where we wish to esti-
mate the state at some fixed time , given all observations up to
time . In Appendix A we show that this estimate can be found
from the filtered and predicted estimates through

(5)

and its covariance matrix is given by

(6)

The matrix satisfies the recursion

(7)

Equations (5), (6) and (7), together with the Kalman filter re-
cursions (3), give a set of recursions that allow us to compute
the estimate of given observations up to time , the ini-
tial estimate , and the error covariance matrix .
The initial condition for is .
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Fig. 1. At every time �, node � collects a measurement � .

C. The Fixed-Lag Smoother

The fixed-lag smoother estimates given observations up
to time , where is some fixed positive integer constant. At
time , the Kalman filter algorithm (3) provides the estimates

and and the error covariances and , for
the time instants . Thus, starting from ,
we can use the fixed-point smoother equations to obtain, recur-
sively, the estimate as follows:

(8)
Note that is not required for the computation of .

III. DISTRIBUTED KALMAN FILTERING

Consider a set of nodes spatially distributed over some re-
gion. We say that two nodes are connected if they can commu-
nicate directly with each other. A node is always conected to
itself. The set of nodes connected to a certain node is called
the neighborhood of node and is denoted by (notice that

). The number of neighbors of node is called the de-
gree of node and is denoted by . We define an by
adjacency matrix as follows:

if
otherwise.

(9)

That is, the entry of is one if nodes and are connected,
and zero otherwise. It is assumed that at time , every node
collects a measurement according to model (1) as
follows:

(10)

The process is shown schematically in Fig. 1. Model (1) is re-
lated to (10) by stacking the measurements across all nodes
at time as follows:

...
...

... (11)

We further assume that the measurement noises are spatially
uncorrelated, i.e.

where for all , .

The objective in distributed Kalman filtering and smoothing
implementations is for every node in the network to com-
pute an estimate of the unknown state , while sharing data
only with its neighbors . The challenge is to obtain a
state estimate that is as accurate as the global state estimate that
would result if each node had access to all measurements across
all nodes in the network. We will denote the estimates of ob-
tained by node and based on local observations up to time as

; these estimates are based only on information collected
from the neighborhood of node .

A. Local Kalman Filter

Assume for the sake of argument that a node has access to
the measurements of its neighbors . A local estimate at node

can be computed from (3) by running multiple measurement-
updates, one for every neighbor of [18, p. 329]. The iterations
are shown in (12)

(12)

where “ ” denotes a sequential, or non-concurrent assignment.
An alternative form of (12) that will be useful in future sec-

tions is given below, where we assume for all
and (see Appendix B for a derivation)

(13)

We refer to the measurement update of (12) as the incremental
step [29] since the optimal local estimate is generated by in-
crementally incorporating data sequentially from the neighbor-
hood. The iterations (12) compute the optimal estimate for node

by incorporating only the measurements from its neigh-
bors . However, recursions (12) do not exploit the fact
that besides measurements , the neighbors of node also
have their own estimates for the same state vector , say .
According to our notation and initialization procedure in (12),
the symbol is used to denote the intermediate local estimate
that is available at a neighboring node before it incorporates in-
formation from its own neighbors. It would therefore be useful
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to take advantage of both in (12) or (13). This is what
the diffusion step will do, as we explain next.

B. Motivation for the Diffusion Step

The diffusion Kalman filtering algorithm that is motivated
here is based on extending our previous work on diffusion RLS
filtering [15], [16] to the stochastic domain. The diffusion step
in [16] was motivated by a least-squares deterministic argument.
We now resort to a stochastic argument to motivate the diffusion
step in the Kalman filtering context.

Starting from (12), we see that at the end of the incremental
update, each node ends up with an optimal local estimate
after incorporating all measurements from its neighborhood .
In (12), this estimate becomes the new updated state estimate

and its error covariance matrix is . The question now
is how to define the updated estimate not only in terms
of but also in terms of the local estimates in the
neighborhood . The motivation for doing so is to attempt to
have the resulting local estimate be closer to the global
estimate that is based on the data across the entire network.
To see how this can be done, let us examine the relation between
the in the neighborhood and the global estimate .

Thus, assume initially for the sake of argument that the adja-
cency matrix of the network satisfies

(14)

for some weights . For example, if is invertible, then the
vector of weights is given by and
condition (14) is always satisfied. In general, however, it may be
the case that (14) cannot be satisfied for a given . Fortunately,
there is a way around this problem which does not modify the
topology of the network. Every node, by definition, is connected
to itself, and therefore for all . However, we may
decide that a particular node does not need to communicate
with itself, and we can set . In this way, if is not
invertible, we can show (see Appendix C) that we can always
make invertible by appropriately setting some of its diagonal
elements to zero. Thus, condition (14) will be satisfied without
affecting the network topology.

Nonetheless, as the presentation will reveal, assumption
(14) is only used to motivate the diffusion update, but is not
needed for the diffusion algorithms. Since the measurement
noises at different nodes are assumed uncorrelated (and
zero-mean), it can be shown (see Appendix D) that the global
and local estimates are related through

(15)

where denotes the covariance matrix of the global estimate
error, , and denotes the covariance matrix of the indi-
vidual estimate error, . These matrices are related through

(16)

where is the covariance matrix of . Now, as suggested
by (13), since the covariance matrices of the individual errors,

are expected to get smaller with time, the first term on the
right hand side becomes dominant. The above relation can be
approximated by

and therefore

The above relation has the form of a weighted average of the
form

(17)

where the averaging matrices satisfy

(18)

Result (17) suggests one approximate way by which the esti-
mates at all nodes in the neighborhood of can be fused
locally. For example, for any two nodes and , we can assign
a non-negative weight , and we set if and are not
connected. We select the weights such that

and then, motivated by (17), we replace the assignment
in (12) by the following computation:

(19)

We call (19) the diffusion update. Convex combinations as
in (19) have been considered before in the context of adaptive
filtering [16], [22], [30]–[32]. A distributed Kalman filtering al-
gorithm based on this update is discussed next.

C. The Diffusion Kalman Filter Algorithm (diffKF)

The diffusion KF algorithm and its variants therefore require
the introduction of a matrix with the following
properties:

(20)

where is an column vector with unit entries, and is
the element of matrix . We call the diffusion matrix,
since it governs the diffusion process, and plays an important
role in the steady-state performance of the network. Note that

is a column-stochastic matrix. The entries in represent the
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weights used by the diffusion algorithm to combine neighbor-
hood estimates as in (19).

The diffusion Kalman filtering algorithm is derived by adding
the diffusion step (19) after the Kalman filter measurement up-
date of the local Kalman filter (12). The diffusion step is an at-
tempt to approximate the global KF performance via local node
interactions. The diffusion KF algorithm is described below.

Algorithm 1: Diffusion Kalman filter (time- and
measurement-update form)

Consider a state-space model as in (1) and a diffusion matrix
as in (20). Start with and for all

, and at every time instant , compute at every node :
Step 1: Incremental Update

for every neighboring node , repeat

end
Step 2: Diffusion Update

Algorithm 1 requires that at every instant , nodes communi-
cate to their neighbors their measurement matrices , the co-
variance matrices , and the measurements for the incre-
mental update, and the intermediate estimates for the dif-
fusion update. The total communication requirement for every
node and for every measurement is
complex scalars, and it requires one matrix inversion for
each neighbor in the incremental update.

This process is shown schematically in Fig. 2, where the
transmission of has been omitted to simplify the figure,
and due to the following argument. Note that communication of

may not be necessary if its Cholesky factor is computed,
, and and

are transmitted instead of and . In this case, the error
covariance is updated using , and the
remaining recursions replace and by and . In
this scenario, Algorithm 1 requires transmission of
complex scalars per node per measurement.

It is important to note that even though the notation
and has been retained for simplicity in Alg. 1, these
matrices do not represent the covariances of the state estimation
errors and any longer, since the diffusion update
is not taken into account in the recursions for these matrices.

Fig. 2. Diffusion Kalman filter update at node � (transmission of� has been
omitted to simplify the figure).

Exact expressions for the covariances of the state estimates will
be derived in Section IV.

An alternative formulation of Algorithm 1 may be obtained
by using the information form of the Kalman filter (13) instead
of (12) to compute the incremental update. We also assume that

for all and in this alternative form.1 We refer to
this form as Algorithm 2, and present it as follows.

Algorithm 2: Diffusion Kalman filter (information form)

Consider a state-space model as in (1) and a diffusion matrix
as in (20). Start with and for all

, and at every time instant , compute at every node :
Step 1: Incremental Update:

Step 2: Diffusion Update:

After every instant , node communicates the quantities
, and to its neighbors. The total

communication required per measurement per node, is
scalars, and it requires two matrix inversions per incre-

mental update of sizes and . Algorithms 1 and 2 are
mathematically equivalent under the assumption .

The incremental update of Algorithm 2 is similar to the up-
date used in [11]. An important difference in the algorithms is
in the diffusion step. In [11], the author uses a continuous-time

1A sufficient condition for this to hold is that � be invertible [18].
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consensus-based approach for averaging and arrives at the fol-
lowing relation (Algorithm 2 in [11]):

(21)

Observe that the weights are and . In contrast, we
use a convex combination of the estimates of the neighbors as in
(19) with more general weights , motivated by the optimal
fusion analysis of Appendix D. This is a key difference with
[11], which produces improvement in performance as shown
by the simulation results of Section V. Moreover, in [33] we
allow to change with time and show how to adapt the
time-varying weights as well.

D. Diffusion Fixed-Point Smoother

From (5) and (7) we know that the Kalman smoother update
can be computed by using knowledge of the Kalman filtering
variables and . Thus, a diffusion Kalman smoothing
algorithm can be motivated by adding recursions for and

as shown below.
Algorithm 3 uses the diffusion Kalman filter (Alg. 1 or 2)

to compute the estimates and , and uses these to
update the fixed-point estimate . Note that by using either
Alg. 1 or 2 in the first two steps of Alg. 3, we can formulate
two different versions of the algorithm: time-and measurement-
update form, and information form.

Algorithm 3: Diffusion fixed-point smoother

Consider a state-space model as in (1) and a diffusion
matrix as in (20). Start with , and

for all , and at every time instant , compute
at every node :

Steps 1 and 2: Run steps 1 and 2 of either Algorithm
1 or 2.
Step 3: Smoother update:

E. Diffusion Fixed-Lag Smoother

Likewise, from (8) we know that the fixed-lag estimate can
be computed by using knowledge of the Kalman filtering vari-
ables and . Thus, a diffusion fixed-lag smoother can
be motivated by adding the recursions for and
for as shown below.

Alg. 4 uses the diffusion Kalman filter (Alg. 1 or 2)
to compute the estimates and for instants

, and uses these to calculate the fixed-lag

estimate . Note again that by using either Alg. 1 or 2
in the first two steps of Alg. 4, we can formulate two different
versions of the algorithm: time-and measurement-update form,
and information form.

Algorithm 4: Diffusion fixed-lag smoother

Consider a state-space model as in (1) and a diffusion matrix
as in (20). Start with and for all

, and at every time instant , compute at every node :
Steps 1 and 2: Run steps 1 and 2 of either Algorithm
1 or 2.
Step 3: Smoother update:

F. Non-Zero Mean and Non-Zero Input Case

In some cases we may encounter state-space systems of the
form

(22)

where is a deterministic input, and . Note that we
use the notation instead of for the state variable at time ,
and we use instead of for the measurement obtained
by node at time . Now introduce the zero-mean variables

and . Then we have

(23)

Therefore, from and the model parameters, we can calcu-
late and for all and . Subtracting (23) from (22),
we obtain

(24)

which now has the same form as (1). Therefore, we can apply the
diffusion Kalman filtering algorithms proposed in this section
to model (24) to estimate given the observations up to a
certain time . In order to estimate from the observations of

up to time in model (22), we use

Note that the errors satisfy and therefore have the
same covariance matrices.
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IV. PERFORMANCE ANALYSIS

A. Summary of Main Results

In this section we analyze the mean, mean-square and con-
vergence performance of the diffusion Kalman filtering algo-
rithms. The main results of this section are summarized as fol-
lows. We start by expressing the estimation error at every node
and every time instant through the convenient expression (27).
Then, in Section IV-C we use this result to show that the diffu-
sion Kalman filter estimates are unbiased for all instants .
In Section IV-D we study the mean-square performance of the
filter, in terms of the mean-square deviation (MSD) for every
node, which is defined for node as

The MSD is indexed by time and node , since for diffusion
algorithms, different nodes produce different estimates in gen-
eral. We show that the state estimation covariance across the
entire network satisfies the Lyapunov-like recursion (32). Then
we introduce two assumptions: first, that the state-space model
is time invariant, and second, that if every node were to use a
conventional Kalman filter on the measurements from its neigh-
borhood, its estimate would converge (more precisely, the pair

needs to be detectable for all ). Under these assump-
tions, we prove in Section IV-F that (32) converges, and provide
a closed form expression for the steady-state MSD performance
in (41). We also extend our results to the proposed smoothing al-
gorithms in Section IV-E. We formalize our results in Theorem
2 at the end of the section.

B. Preliminaries

For our analysis, we use Algorithm 1 to derive the expres-
sions. The analysis holds also for Algorithm 2 when

, since in this case both algorithms are mathematically equiva-
lent. Let denote the estimation error at the end
of the incremental update. Let denote the degree of node ,
and let the set , denote indices of the neigh-
bors of node . Consider the incremental step of Algorithm 1,
and let and denote the values of and at itera-

tion , where , and .
Iterating the incremental step over the neighbors of node we
obtain

...

Noting that , the above
expression can be rewritten

(25)

where denotes the estimation error at
node at the end of the diffusion update, and was defined
in Algorithm 2. We also have

(26)

Combining (25) into the diffusion step of Algorithm 1, we ob-
tain

(27)

C. Mean Performance

Taking expectations of both sides of (26) and (27), we obtain
the following recursions for the expectations of the estimates by
the diffusion KF algorithm:

(28)

(29)

Since and , we have for all
and therefore

Thus, we conclude by iterating (28) and (29) that the diffusion
KF estimates are unbiased for all .

D. Mean-Square Performance of the Diffusion Kalman Filter

Consider the augmented state-error vector and the block-
diagonal matrices , and defined as follows:

The vector collects the state errors across all nodes in the
network. Consider also the extended matrices [from (20) and
(9)]:
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where denotes Kronecker product. We may now express (26)
and (27) in a global form that captures the evolution of the entire
network

(30)

where was defined in (11) and is a block-diag-
onal matrix. Equation (30) can be rewritten more compactly as

(31)

where

Let denote the covariance matrix of . From
(31) and the whiteness assumptions on the state and measure-
ment noises, we obtain the recursion:

(32)

where we have used the property of Kronecker products that
. In order to analyze the

mean-square steady-state performance, we assume that model
(1) is time-invariant.

Assumption 1: The matrices in model (1) are time-invariant,
i.e., the matrices , , , and do not depend on .

We also assume that the local Kalman filtering recursions
(12) converge for every neighborhood. By this we mean the fol-
lowing. Again, let denote the degree of node and let the
set , denote the indices of the neighbors of
node . We collect the observation matrices of the neighbors of
node as follows:

where and are used instead of and since
these matrices are now time-invariant under Assumption 1. The
measurement update in Algorithms 1 to 4 can be rewritten

(33)

where . Using (33) and
the time update of Algorithms 1 to 4, we obtain that the matrix

in these algorithms satisfies the following Riccati re-
cursion:

(34)

where . Now, let denote
the unique stabilizing solution of the discrete-time algebraic
Riccati equation (DARE)

(35)

where and
. Furthermore, we define

(36)
Assumption 2: The pair is detectable for every

, i.e., there exists a matrix such that is stable
(all of its eigenvalues lie inside the unit circle). Moreover,

is stabilizable, i.e., there exists a matrix such
that is stable as well.

Assumption 2 guarantees the existence of . Moreover, the
matrices will converge to for any initial condition

as [18].2 Assumption 2 also guarantees that
for all and . Moreover, will also converge,

for all , to the matrix in (36).
Under Assumptions 1 and 2, the matrices , , and

also converge in steady-state to

(37)

where and are used instead of and since these ma-
trices are now time-invariant.

Assumptions 1 and 2 are sufficient to guarantee the conver-
gence of the diffusion KF algorithm. Specifically, we show later
in Section IV-F that the matrix in (37) is stable, and that (32)
converges to the unique solution of the Lyapunov equation

(38)

Now we can solve for the steady-state covariance matrix of
the estimation errors of the diffusion KF algorithm, . The so-
lution may be expressed using the operator, which vector-
izes a matrix by stacking its columns, and by using the property
that . In this case, we obtain
from (38) that

(39)

and we can recover from . Note that since is
stable, the matrix is non-singular.

The steady-state MSD at node may now be expressed as

(40)

where is an block matrix with blocks of size
, with an identity matrix at block and zeros elsewhere.

Finally, the average steady-state MSD across the network is

(41)

2A weaker condition that does not require stabilizability can be found in [18]
under some restrictions on � .



CATTIVELLI AND SAYED: DIFFUSION STRATEGIES FOR DISTRIBUTED KALMAN FILTERING AND SMOOTHING 2077

E. Mean-Square Performance of the Diffusion Smoother

The diffusion smoother satisfies the following recursion for
:

(42)

Moreover, from (26) and (31), we have

(43)

where

Replacing (43) into (42), we obtain

(44)

Iterating (31) and defining with
, we obtain

(45)
Replacing (45) into (44), we obtain

(46)

where

(47)

(48)

In order to obtain (47) and (48), we used the fact that for any

Finally, from (46) we have

(49)

Equation (49) allows us to calculate the covariance of the esti-
mation error at time given observations up to time , where

. For the fixed-point smoother, we need to compute ,
and calculate (49) for a sufficiently large value of . The initial
covariance can be found by iterating (32), starting from

and

For the case of the fixed-lag smoother, we can also compute
the steady-state estimation error from (49), by setting .
In steady-state, is the steady-state error of the diffusion
Kalman filter, which is found from (39). Then we can compute

from (49).

F. Convergence Analysis

We start by showing that recursion (32) converges to the so-
lution of the Lyapunov equation (38).

Theorem 1: Consider a recursion of the form

(50)

where and converge uniformly to and , respectively,
as , and where is a stable matrix. Then, converges
to , the solution of the Lyapunov equation

(51)

Proof: See Appendix E.
We now proceed to show that the matrix in (37) is stable.

We begin by rewriting where

(52)

Lemma 1: The matrix in (52) is stable under Assumptions
1 and 2.

Proof: We show that all the blocks of are stable.
Consider block , given by . We know from
Assumption 2 that for every neighborhood, converges
to the unique stabilizing solution of the DARE (35). That
is, is such that the matrix is stable
for all . We have

Moreover, since and using (36),
we have

Thus, we have and .
Since is stable, we know that . More-
over, since , we conclude that

and therefore is also stable.
Lemma 2: The matrix in (37) is stable under Assumptions

1 and 2.
Proof: A known result in matrix theory [18, p.554] states

that for every square matrix , there exists a sub-multiplicative
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matrix norm3 such that , where
denotes the spectral radius of , i.e., the maximum absolute
eigenvalue

Since is a stable matrix (from Lemma 1), let .
Then we can choose such that and

. Taking norms of , we have

Now, since has non-negative entries with rows that add
up to one (i.e., ), is element-wise bounded by
unity. This implies that the Frobenius norm of is bounded,
and by the equivalence of norms, so is any norm, and in partic-
ular . Thus, we have

so converges to the zero matrix for large . Consider the
Jordan canonical decomposition of , namely .
Then, also converges to zero for large , which can only be
true if all the eigenvalues of lie inside the unit circle. Then
is stable.

We summarize our results with the following Theorem.
Theorem 2: Under Assumptions 1 and 2, the diffusion KF

algorithm (Algorithms 1 or 2) is unbiased and converges, and
the steady-state mean-square deviation for every node is given
by (40).

Proof: The unbiasedness follows from Section IV-C. The
convergence follows from Lemma 2 and the implication from
Theorem 1 that in recursion (32) converges to the solution
of (38). The steady-state mean-square deviation follows from
the derivation of (40).

V. SIMULATIONS

In order to illustrate the performance of the diffusion Kalman
filtering and smoothing algorithms, we present a simulation ex-
ample in Figs. 3–9. We compare our simulation results with
the theoretical values obtained in Section IV, and with the dis-
tributed solutions proposed in [11] and [12].

We consider the problem of estimating and tracking the posi-
tion of a projectile. We assume that the projectile is in proximity
of an adaptive network, where the sensors obtain noisy measure-
ments of the position of the projectile. In the Kalman filtering
problem, we are interested in estimating the exact position of
the projectile at every time instant. In the fixed-lag smoothing
problem, we use all the measurements up to the current time to
estimate the position a fixed number of time instants earlier, this
way obtaining a better estimate than the one produced by the
Kalman filter. In the fixed-point smoothing problem, we wish
to estimate the initial position of the motion of the projectile.

3A sub-multiplicative matrix norm satisfies ���� � ��� � ���.

Fig. 3. Network topology with � � �� nodes.

Fig. 4. Estimate of vertical position at node 1, for different algorithms.

Fig. 5. Transient MSD performance of different algorithms.

In our example, the acceleration, velocity and position of the
projectile, respectively, are

and where the subscripts 1, 2 and 3 correspond to the three spa-
tial dimensions, 3 being the vertical one. For projectile motion,
we have
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Fig. 6. Steady-state MSD performance of different algorithms.

Fig. 7. Transient fixed-point MSD performance for different algorithms.

Fig. 8. Steady-state fixed-point MSD performance of different algorithms.

where is the gravity constant (we use ). The state of
the system is a vector of dimension 6, formed by stacking the
velocity and position of the object, which evolves as follows:

Fig. 9. Transient MSD performance of different algorithms.

For a system of the form , where and are con-
stants, we have

Noting that for the matrix above

we conclude that the state satisfies the following recursion:

Given a time-step , we now define

We assume that every node measures the position of the
unknown object in either the two horizontal dimensions, or
a combination of one horizontal dimension and the vertical
dimension. Thus, individual nodes do not have direct measure-
ments of the position in the three dimensions. The assignment
of which pair is observable by every node is done at random,
but taking care that for every neighborhood, there is at least
one node of each type (to guarantee detectability of the pair

). Therefore, we have, for
the case where only the horizontal dimensions are observed,
or for the case where one horizontal
dimension and the vertical dimension are observed.

Denoting , and taking into account the effect of
noisy states and measurements, we arrive at the discrete state-
space model

where are the individual measurements obtained by node
at time , accounts for modeling errors, and is the mea-
surement noise at node . Note that this model has the same form
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as the biased model presented in (22), and can therefore be re-
duced to a model of the form (24) as shown in Section III-F.

In our experiment we use a network with nodes, with
topology shown in Fig. 3. The values of the parameters are

, , , and
with and being a permutation ma-
trix, chosen at random for every node. The factor of in
allows us to consider nodes with diverse noise conditions. The
expected value of the initial state is
and its covariance . The diffusion matrix was chosen
such that every neighbor is weighted according to the number
of neighbors it has, as follows:

if
otherwise

where is the degree of node , and is a normalization
parameter chosen such that . The results were aver-
aged over 1000 independent experiments over the same network
topology.

Fig. 4 depicts the state estimation performance when esti-
mating the vertical position, for different algorithms, at node 1.
The solid curve corresponds to the true vertical trajectory. The
dashed curve represents the noisy measurements of the vertical
position obtained by node 1. The remaining two curves rep-
resent the estimates obtained by the centralized Kalman filter
(black, circles) and those obtained by the diffusion Kalman filter
(blue, crosses) of either Algorithm 1 or 2. We observe that the
estimates produced by the diffusion Kalman filter algorithm are
close to the true trajectory.

We now consider a more quantitative evaluation of the perfor-
mance of the algorithms. We define the mean-square deviation
(MSD) at node and at time , given observations up to time ,
as follows:

Thus, when we refer to the MSD of a diffusion Kalman filter at
time , we are referring to . When we refer to the MSD
of a fixed-lag smoother with lag at time , we are referring to

. Finally, when we refer to the MSD of a fixed-point
smoother at time , we are referring to . The network
MSD is defined as the average MSD over all nodes, that is

Fig. 5 shows the transient network MSD for different algo-
rithms as a function of time. The algorithm denoted “Isolated”
corresponds to the case where the nodes do not cooperate with
each other. In this case the estimation error is high, since nodes
do not have access to measurements of the three coordinates of
the moving projectile and the pair is not detectable.
The algorithm denoted “Local” is computed assuming there is
no diffusion process, but every node has access to the data of
its neighbors as in (12). Therefore, every node would run a con-
ventional Kalman filter using the data from its neighborhood.
This algorithm is included for comparison, to evaluate the per-
formance improvement introduced by the diffusion exchange.
Also shown are Algorithms 2 and 3 from [11], which are con-
sensus-based. The algorithms use . The algorithm de-
noted “diffKF” corresponds to our proposed diffusion Kalman

filtering algorithm (Alg. 1 or Alg. 2), and the algorithm de-
noted “diffKS” corresponds to our proposed diffusion fixed-lag
smoothing algorithm (Alg. 4), using a lag of . Finally, the
algorithm denoted “Centralized” corresponds to a conventional
Kalman filter that has access to all the data in the network. It
can be observed from the plots that the diffusion KF algorithm
improves over the “Local” and consensus-based algorithms by
about 2–3 dB in this example. Moreover, the fixed-lag smoother
using a lag of 5 time instants outperforms all other solutions in
steady state (note that for the sake of clarity, we have omitted
the centralized version of the fixed-lag smoother, which would
outperform the diffusion version).

The steady-state expressions from Section IV are compared
to the simulation results in Fig. 6, where we show the individual
steady-state MSD for every node. The theoretical expression for
the diffusion KF algorithm was obtained using (40), and the
theoretical expression for the steady-state MSD of the fixed-lag
smoother was obtained by employing recursion (49). Since both
the local and centralized solutions are conventional Kalman fil-
ters (they differ in what data they can access), their MSDs can
be obtained as the trace of the error covariance matrix of every
node. In all cases, the expressions derived show good agreement
with the simulation results.

Fig. 7 shows the transient performance of different algorithms
for the fixed-point problem. We assume that , and show
results for as a function of time . We observe that
the diffusion Kalman smoother (Alg. 3) outperforms the local
and isolated solutions, and is close to the centralized solution.
Fig. 8 compares the steady-state performance with the theoret-
ical expressions of Section IV.

Finally, we compare the performance of our algorithm to the
consensus-based algorithm of [12]. In order to produce a fair
comparison, and since our algorithm uses one diffusion step be-
tween measurements, we set in [12], corresponding to
one consensus iteration between measurements. Then, the state

is estimated using (in the notation of [12]) .
For simplicity, we also consider a scalar state-space model as
in [12], where , , ,

and is drawn from a normal distribution. The net-
work topology is the same as in Fig. 3, and bridge nodes were
selected as outlined in [12]. Fig. 9 shows the transient network
MSD for different algorithms as a function of time, averaged
over 100 independent experiments. We observe that the diffu-
sion KF (Alg. 1) outperforms [12] when . We also show
for comparison the effect of increasing in [12]. We observe
that when , [12] outperforms diffusion KF (Alg. 1). We
should note that in this case, 3 times more information needs to
be communicated compared to the case .

VI. CONCLUSION

We presented diffusion Kalman filtering strategies for
distributed state estimation in linear systems. We proposed al-
gorithms for diffusion Kalman filtering, fixed-point smoothing
and fixed-lag smoothing. The algorithms require every node to
communicate only with its neighbors: first to share the data,
and second to share the estimates, and the diffusion procedure
ensures that information is propagated throughout the network.
We analyzed the convergence of the algorithms and provided
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steady-state mean and mean-square analysis, showing good
agreement with simulation results.

APPENDIX

A. Derivation of (5), (6) and (7)

Since , it holds that for

where is found from the Kalman filtering recursions de-
scribed in the previous section. We now proceed to study the
case . Consider the so-called innovations [18] at time ,
namely

and its covariance matrix

Then, from the orthogonality of the innovations we have [18,
p.371]

(53)
For , it holds that where

. Moreover

(54)

In [18, p.373] it is shown that for the standard state-space model
(1), and for we have

where

(55)

Applying the matrix inversion lemma, and assuming
for all , it is straightforward to show that

(56)

We now derive new useful recursive updates for the quantities
and appearing in (53) and (54). We start by defining

the matrix

(57)

From (53) and (3) we have for

The above two equations can be combined to obtain (5). More-
over, from (54) and (3) we have for :

The above two equations can be combined to obtain (6). We
now need to compute a recursion for the matrix . From
(55), (56), and (57) we have

so that (7) follows.

B. Derivation of (13) from (12)

We show that the measurement update (12) can be computed
using (13), provided is invertible. Let

denote the set of neighbors of node , and let and
denote the values of and after the th iteration of (12).
Then, the measurement update of (12) can be written

Now, using the matrix inversion lemma, we obtain

(58)

which is well defined for all since is invertible by as-
sumption. Iterating (58) we obtain the update for in (13),
namely

(59)
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We also have that when is invertible

Using the matrix inversion lemma, we obtain
and we

conclude

(60)
Iterating (60), we arrive at:

Using (59) and multiplying by we finally obtain the mea-
surement update for in (13), namely

C. Invertibility of Adjacency Matrix

In this section we show that given any adjacency
matrix as defined in (9), we can always make invertible by
appropriately flipping some of its diagonal elements, where by
flipping we mean that a zero becomes one and vice-versa. When

is invertible, no flipping is needed. When is singular, we
have . This determinant can be written as follows:

where is the matrix obtained by removing row and column
of . Now, if , it is clear that by flipping the

value of , we have and therefore would
be invertible. For the case , we need to flip a
diagonal element of that will make it non-singular. Thus,
we can repeat the above procedure until one of the leading prin-
cipal minors of is non-zero. Note that the first-order principal
minor is which can always be made non-zero through the
flipping operation.

D. Fusion of Local Kalman Estimates

Depending on how much data is available at each node, we
can consider three different Kalman filtering solutions, as fol-
lows. The individual estimate at node , denoted by , cor-
responds to the optimal linear estimate of given only the ob-

servations at node for . The local estimate at
node , denoted by , corresponds to the optimal linear es-
timate of given observations for across the
neighborhood of , i.e., . Finally, we denote the global
estimate by , which corresponds to the optimal linear esti-
mate of given observations for and across
all nodes . In this section we study how the local
estimates are related to the global solution. The covariance
matrices for the individual, local and global estimation errors are
denoted by , and , respectively.

Since the measurement noises at different nodes are assumed
uncorrelated (and zero-mean), it can be shown (see [19, p. 89])
that the global and individual estimates are related via

where is the covariance matrix of . The above expressions
relate the local estimates to the individual estimates as follows:

where is given by (9), and it is unity if nodes and
are neighbors and zero otherwise. Now consider a set of real
weights , , and the following combinations:

(61)

(62)

If we can find a set of weights such that
for all , and using the notation we have that (61)
reduces to (15), and that (62) implies (16).

E. Proof of Theorem 1

A result in linear algebra states that for every matrix , there
exists a sub-multiplicative matrix norm such that

, where is the maximum absolute eigenvalue of
[18, p.554]. Since is stable, let , and we can

always choose such that , and then
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. Also, from the equivalence of norms,
. This implies that , such

that , and , where
and .

Now, subtracting (51) from (50), we have for

(63)

From the triangle inequality, we obtain

We also have , and therefore

Iterating the previous recursion for , we obtain

Since , we can always choose such that .
In this case, we obtain

Since we can make arbitrarily small by reducing , we con-
clude that converges to as .
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