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tangent at the point can be studied by a transformation of variable

z = 1/¢.

V. CONCLUSIONS

The convexity of generalized frequency response curve and inner
frequency response set of D-stable polynomial has been proved
through a curvature based method. It is felt that this approach may
be more easily generalized to investigate the rational function case.
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Generalized Chandrasekhar Recursions
from the Generalized Schur Algorithm

Ali H. Sayed, Thomas Kailath, and Hanoch Lev-Ari

Abstract—We present a new approach to the Chandrasekhar recursions
and some generalizations thereof. The derivation uses the generalized
Schur recursions, which are O(N?) recursions for the triangular fac-
torization of N XN matrices having a certain Toeplitz-like displacement
structure. It is shown that when the extra structure provided by an un-
derlying state-space model is properly incorporated inte the generalized
Schur algorithm, it reduces to the Chandrasekhar recursions, which are
O(Nn?) recursions for estimating the n-dimensional state of a time-
invariant (or c par y from N measured outputs.
It is further noted that the generallzed Schur algorithm factors more
general structured matrices, and this fact is readily used to extend the
Chandrasekhar recursions to a class of time-variant state-space models,
special cases of which often arise in adaptive filtering.
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1. INTRODUCTION

Certain fast algorithms for linear least-squares estimation in
constant-parameter discrete-time systems were first presented nearly
two decades ago for both stationary and nonstationary processes
[1]-[4]. Unlike the well-known discrete-Riccati-equation-based
Kalman filtering algorithm [5], the new algorithms are the discrete
time counterparts of certain so-called generalized Chandrasekhar
recursions [6], which extended certain equations introduced by
Chandrasekhar to solve finite-time Wiener-Hopf integral equations
[7]. Soon after their introduction, the new algorithms were recognized
to be closely related to the well-known Levinson algorithm (8]
for solving the discrete-time analog of the finite-time Wiener-Hopf
equation, viz., a linear equation with a Toeplitz coefficient matrix and
more precisely to certain generalizations of the Levinson algorithm
[9] devised to account for the fact that the appropriate coefficient
matrix for constant-parameter state-space systems is not Toeplitz but
is close-to-Toeplitz in a certain sense [10]. It was shown in [9] that
the additional structure provided by the assumption of a constant
state-space model allowed the generalized Levinson algorithm to be
simplified to the Chandrasekhar recursions of the algorithm in {2];
for the stationary case, a similar connection to the usual Levinson
algorithm for Toeplitz matrices was observed by Lindquist [3].

This provided a nice hierarchy: briefly, solving a general set of
N x N linear equations needs O(N>) elementary computations. The
Toeplitz and close-to-Toeplitz assumption allows this to be reduced
to O(N?) by using the generalized Levinson algorithms, while
further assuming an n-dimensional underlying constant-parameter
(or time-invariant) state-space model allowed, via the Chandrasekhar
recursions, a reduction to O(Nn?) computations. The Riccati equa-
tion handles time-variant state-space systems, but takes O(Nn®)
elementary computations whether or not the system is time variant.
While these connections were satisfying, it was already clear at that
time that the Levinson-type algorithms were not the most natural
progenitor of the discrete Chandrasekhar equations. The reason is that
the Levinson algorithms are essentially fast algorithms for obtaining
the triangular factors of the inverse of Toeplitz (and close-to-Toeplitz)
matrices, while the Chandrasekhar recursions essentially give the
factors of the Toeplitz (and close-to-Toeplitz) matrices themselves.
This distinction is somewhat obscured in the Toeplitz case, because
the fast algorithms for the two matrix problems are very closely
related and can be easily derived from each other. This fact is
true even for certain (so-called admissible [11]) families of close-
to-Toeplitz matrices, but the relationship breaks down in general. It
was only in the late 1970s that it was first realized [12] that the
appropriate fast algorithm for direct factorization was the so-called
Schur algorithm, going back to a paper of Schur in 1917 [13], rather
than the Levinson algorithm first presented in 1947 [8].

With these insights, it was natural to examine the relationship
of the Chandrasekhar recursions and the (generalized) Schur al-
gorithm. This was done by one of the authors in 1982 [14] by
using the generating function language approach developed in [15].
More recently, Georgiou et al. [16] also wrote about the relation
between the Schur algorithm, the Chandrasekhar recursions, and
matrix spectral factorization problems. The results and techniques
in [16], however, apply only to Toeplitz matrices and stationary
stochastic processes that arise from stable constant-parameter state-
space models with certain special initial conditions; these methods
do not permit extension to any other case, e.g., unstable systems or
arbitrary initial conditions.
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In this paper, we present a new approach that is valid for all
constant-parameter models. The derivation also includes some new
Chandrasekhar recursions [18], [19] that have been obtained for a
special class of time-variant models that exhibit a certain structure
in their time variation.

II. ARRAY FORM OF THE SCHUR ALGORITHM

We start by reviewing some results from a famous paper of Schur
[13] on the fast triangular factorization of (covariance) matrices with
a particular structure [see (1)]. Among several important results in
[13] is the following: given an N x N positive-definite Hermitian
matrix R of the special form

R = L(uo)L"(uo) — L(vo)L"(vo) (1

where the symbol * stands for Hermitian conjugation (complex
conjugation for scalars), uo and vo are two column vectors, say

llg = [Uoo uio ll,\'71,o].

T
Vo = [1'00 ST 1'N—l.0]

and L(a) denotes a lower triangular Toeplitz matrix with first column
equal to a, there is an efficient recursive algorithm for finding the
Cholesky factorization of R, viz., R = TL", where T is lower
triangular. The computational complexity of the algorithm is O(V?)
elementary operations (additions and multiplications), and it can
be derived in a variety of ways (see, e.g., [11], [13], [15], [19],
[20]). The recursive procedure has a simple array form: start with
Go = G = [uovo] and choose a (1 = —1)-unitary (i.e., hyperbolic)
rotation Op that rotates the top row of Gy to proper form, viz.,
[u00v00] @0 = [W000], where |Too|* = Juoo|* —|roo|>. An expression
for ©¢ can be given in terms of the so-called reflection coefficient ~o

1 N .
@o=7{ 1_: '0]~ 7‘022-
VI[P l-w 1 upo
It follows from the positive-definiteness of R that its (0. 0) entry is
positive and hence, |uoo|* — |voo|® > 0, or equivalently, |vo| < 1.
Multiplying Go by ©p leads to a postarray G of the form

oo oo ] oo O
uio Uio U0 Tro _
Go6y = 6 = = Gp.

uz0 20 U220 T20

We now proceed to shift down the first column of G by one element
leading to G,

_j0 0

TG

The recursive procedure now continues as follows: compute -+,
multiply the prearray G; by ©; to reduce its top row to proper
form, shift down the first column of the postarray G, and so on.
Schematically, we have the following picture

Ugo 0 7 0 0
U0 Tio

shife [ Y11 U1t
—
U20

T20 21 U21

Go =

r T r 0
Torlegt T
Gi=1, | = |z ¢
0 0
shife [T & 00
e x| T ]:GH—l:l- 2)
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We can interpret (2) in words: multiply G; by ©; and keep the
second column; shift down the first column of G;0;. These two
operations result in Git1.

A. Quasi-Toeplitz Matrices

1t is straightforward to verify that a matrix R has the special form
(1) if, and only if, it satisfies the following so-called displacement
equation [10]

R-ZRZ" =GJG", G=[uo J=@1s-1). 3

Vo],

We say that G is a generator of R and that (1, —1) is its displacement
inertia. Moreover, R is termed a quasi-Toeplitz matrix, since all such
matrices can be shown to be congruent to a Toeplitz matrix [15]. We
now go back to the array form (2) of the Schur algorithm and verify
its relevance to the Cholesky factorization of quasi-Toeplitz matrices
R = j];\,;fjl_,_o as in (3). Let R; denote the Schur complement
of rgo in R. The claim is that R is also quasi-Toeplitz with a
generator equal to the matrix G, obtained after the first step of
2), viz., Ry = ZR1Z* = G1JG7. To check this, we compute
R, — ZR:Z* and show that it can indeed be factored as G1JG7T.
So let Iy and go denote the first column of R and the first row of G
respectively. It follows from (3) and from the definition of ©q that
lo = GOg[Uo00]" and do = I—ﬂoolg. But R, is defined by

0 o } =

It is then straightforward to verify that Ry — ZR1 2™ = G1JGT,
which shows that G is indeed a generator matrix of Ry =
[75,3 ;\,;37:0. This process can now be repeated. If we define R
to be the Schur complement of rf’)é) in R, then G2 is a generator of
R> and so on. In summary, we have given an alternative verification
of the following result established earlier in {11], [15], [20].
Lemma 1 (Schur Complements): The matrices G; associated with
the array form (2) of the Schur algorithm are generator matrices of
the successive Schur complements of the Hermitian quasi-Toeplitz
matrix R given by (3), viz., R; = L(u;)L*(w) — L{vi)L"(v:),
where R, denotes the Schur complement with respect to the leading
i x i submatrix of R, and {u;, v;} are the array vectors obtained after
i steps of the algorithm. Moreover, the columns of the Cholesky factor
L (denoted by {I,}) are the first columns of the successive proper
generators G;, viz., I; = Gi©;[10]". (]

B. Generalized Schur Algorithm

The striking fact is that these results can be nicely extended to
matrices with quite general displacement structure (see [19], [26]). A
first generalization consists in going beyond quasi-Toeplitz matrices
to those with displacement inertia (p, ¢). For example, a special
structure that is relevant to the discussion in later sections is the
following

R-ZRZ, =GJG" “@

where R is a positive-definite matrix with p x p block entries, Z,
is the lower triangular shift matrix with ones on the pt? subdiagonal
and zeros elsewhere, J = (I, & —I,) is a signature matrix, and G is
a generator matrix with p + ¢ columns. The Cholesky factorization
of such R can be computed recursively by using the following block
array picture (see, e.g., [15], [19]), which is a nice generalization of
(2): start with Go = G and repeat for { > 0: determine a J-unitary
matrix ©; that reduces the top p rows of §; (denoted by g;) to the
form ¢;©; = [r;0], where r; is a p x p matrix. That is, a p X ¢
zero-block is introduced in ¢;©;; shift down the first p columns of
GO, by p steps and keep the last ¢ columns unaltered.
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III. EXPLOITING STATE-SPACE STRUCTURE

We now show that if R can be obtained as the covariance
matrix of the output process of a state-space model, then the array
algorithm gets simplified and collapses to the so-called Chandrasekhar
recursions in state-space estimation theory. This is due to the fact that
the state-space assumption imposes further structure on the generator
matrix itself and hence, allows for more simplifications.

We first give a brief review of the state-space estimation problem
(see, e.g., [21], [22]). Consider a p x 1 process {y;} with an n-
dimensional state-space model

xi+1 = Fixi + Giu,. yi=Hxi+vi, fori>0 (5

where {F;. G;. H;} are known matrices with dimensions n X n,
n X m, and p X n respectively. We assume that xo, u,, and v; are
stochastic variables that satisfy Exo = Xo, E(xo —Xo ){x0 — %o )" =
Iy, Eui(xo — Xo)* = Evi(x0 —%X0)"* =0, Ev; = Eu; =0, and

u; - * Qi Ci
E[v, } [ vil= [C,' R, ]5"
with R, positive-definite. The symbol é;; is the Kronecker delta func-
tion equal to unity when i = j and zero elsewhere, and the letter E'
denotes expected value. Let X;;_, and ¥,;_; denote the linear least-
squares estimates of x; and y; given {yo. - -.yi—1} respectively.

The Kalman filter [5], {21], [22] computes these quantities via the
recursions

Vieor = HXium1. Xipny = Fikgio + KGR ee (6)

where €; =y — HiX;j;—1, Rc.i = cov(e:), and K; = cov(Xit1€:).
Kalman showed that &i’; and R.. ; can be computed by the expressions

K, =FPy_1H +GC; and R.;=H:Pj H +R: (T)

where P;,_; = E(x; —X;);—1 )(X: —X;ji—1)" is the error covariance
in the one-step prediction of x,, and satisfies the Riccati difference
recursion: Foi—; = Ilo

P =FP,_\F -%, K, .+G:Q:G. K,.=k.R_ .

®)
We can check that the number of operations (i.e,. multiplications and
additions) needed in going from index i to index (¢{+ 1) in the Riccati
recursion is O(n®), and this is true whether or not the state-space
model has constant parameters. As mentioned in the introduction,
however, one expects a computationally more efficient procedure in
the case of time-invariant (also called constant-parameter) systems
{F. G. H. Q. R. C'}. Indeed, it was shown [2] that in the constant-
parameter case the complexity can be reduced to O(n’a) per
iteration, where the so-called displacement rank a is given by a =
rank (Pyjo — Pyy_1) = rank (FII F* + GQG" = K. 0L, o — Io).
This is achieved by using the so-called Chandrasekhar recursions to
compute {K;. R..;} for use in (6). There are many forms for the
Chandrasekhar recursions [1}, [2], [23], but we have shall rederive
here perhaps the simplest and numerically most-favored (so-called
square-root) version [24].

A. Displacement of R with State-Space Structure
Let R denote the covariance matrix of the process {y.} of the
state-space model (5)
R=E[y: ~¥ )y, ~ _y-j)‘]?.cjzo
= [cov (vi- ¥, )T =0 ¥; = EYy;.
The matrix R is clearly a Hermitian positive-definite block-matrix

with p X p block-entries. We now show that for time-invariant
state-space models, the covariance matrix R exhibits displacement
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structure, in the sense that R — Z, R Z, has low rank. We then show
that the generalized Schur recursion (Section II-B) reduces to the
extended Chandrasekhar recursions when the extra structure provided
by the assumed state-space model is properly incorporated into the
Schur recursion.

Let X; = Ex;, and define II; = E(xi — Xi)(x: — X:)™ to be
the state covariance matrix. It follows from the state equation (5)
that TI; obeys the recursion ;11 = FILF + G:QG} . Moreover,
the following identities are easy to verify. Let A = II; — Ilo.
Then ;41 — II; = F*AF*, cov(yi, ¥i) — cov(¥i-1, Yi-1) =
HFECDAFC-UH* and cov(yi, Yit1) — cov(¥i-1, ¥i) =
HFG-DAFYH"

From these identities, we can readily conclude that (recall that
Ko = FlloH* + GC)

YR=R-Z,RZ; =

Rco K3H* K;F*H* K;F?H*
HE, HAH" HAF*H* HAF“H*
HFK, HFAH* HFAF'H* HFAF“H*

HF?K, HF?AH* HF’AF*H* HF?AF?H*

There is clearly a significant redundancy in the elements of R —
Z,RZ;, since the third and later rows differ only by multiples of
F from the rows above. One suspects that the block displacement
rank is low, and this can be verified by going through the first few
(in fact, two) steps of Schur reduction. Let us begin with the Schur
complement of the (0, 0) block entry of VR, which is

R. o
HKy . i i
VR- HFK, R o[Re.o K¢H®™ KoF'H” -]
0 0 0 0
0 HéPH™ HéP F*H” H6P,F?H*
_|o HFsP H* HFSPF*H* HFSP, F*H*

0 HF26P,H* HF*sP, F*H* HF?6P, F**H"

0

H * * *
=|gp|épl0 B* FH -]

where we used the following relation

HAH - HE, oK, oH" = H(Il; - o - K, oK o) H”
= H(Plyo - P0|-1)H*

and defined 6 P, = Pijg — Po|-1. It now follows easily that the Schur
complement of the leading 2 x 2 block in V'R is zero. In other words,
the displacement VR has block rank 2

REAO R(,O * 0 0
HE, | _ | HE H H
VR= |gFK, |Roo|HFK, | + |HF| P |HF

To find a generator for R, we factor 6P1 as 6P1 = Pyjo — Py, =
LoSLE, where Lo is N X o and S is the a X « signature matrix of
(Pijo — Po|—1), viz., S is a diagonal matrix with as many £1’s on
the diagonal as 6 P, has positive and negative eigenvalues. Then we
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can write VR = R — Z,R2; = GJG", where
HK, HL,

I, 0
J={" 5] and G= |gFK,, HFL,

This establishes the fact that R is indeed a structured matrix as
defined in Section II-B, and hence we can compute its Cholesky
factor via the array form of the generalized Schur algorithm. We
may note the special caes of stable F' (i.e., the eigenvalues of F
have less than unit magnitude) and Iy = II, the unique solution
of T = FIIF* + GQG™, which can be seen to yield a block
Toeplitz covariance matrix R, studied in [16] by using a different
argument, which does not extend to nonstationary processes (non-
Toeplitz covariance matrices) as considered here.

B. Generalized Chandrasekhar from Generalized Schur

Notice, however, that the rows of the generator matrix G are closely
related: going from one row to another (except for the first row) just
changes the power of the F' matrix. This is a consequence of the
underlying state-space model for the covariance matrix R. We now
verify that because of this additional structure in the generator matrix,
the generalized Schur algorithm collapses to the Chandrasekhar
recursions.

The first step in the Schur algorithm involves multiplying by ©o,
which is the identity matrix since the first block-row of G already has
a p x a zero block, and then shifting down the first block-column
to get

RM? HL,
q HEK,o HFLo
%= |HFK, . HF%L,

Let ©, be a J-unitary matrix such that [R}/2HLo]©; = [XO].
Applying ©, to the first two (block) rows of Gi (denoted by A) we
obtain a (block-triangular) postarray of the form
R'2  HI, o X 0

HL,o HFL,| ' |Y Z
where we can identify the unknowns {X, Y, Z} in terms of known
quantities. For this purpose, we compare entries on both sides of
the equality AJA* = AO;JOTA" leading to XX* = Rc.o +
HLo,SLGH™ = R..1. So we can choose X = Ri/f Moreover,
YX® = KAy + FEQSLEH* = K, and hence, we can identify
Y = KlR:_I,/Q = K ,.1. Finally, YY" + Z5Z* = KoR; \Ag +
FLoSLF® = Py — Pyjo = L1SL7, which shows that we can
identify Z as L;. We thus conclude that

RS HL)g _[R} ©

Koo FLo| '~ |Ky: LiJ
Therefore, G,0; is equal to (we now invoke the special structure of
the rows of G;)

AGl = [

R/} 0
HE,, HL,
66, = |gFK,, HFL,

Next we shift down the first p columns to get
R/} HL

. HK,. HFL,

Y2= |HFK,, HF’L,
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choose a J-unitary matrix O, shift down, from O3, and so on. We
see that because of the special state-space structure of the elements
of the generator of R, there is again a significant redundancy in the
factorization arrays: the equality of the first two nonzero rows tells
enough to fill out all other rows. So the basic recursion is just the
square-root Chandrasekhar recursions

K,: FLi| "7 |Kpis1 Lin

where 6, is any J = (I & S)-unitary matrix that introduces the
block zero entry on the right-hand side, and P;yopi41 —
Lit1SLYy.

i+l =

IV. STRUCTURED TIME-VARIANT MODELS

The computational advantage of the Chandrasedkhar recursions (9)
stems from the fact that it propagates a low rank factor L; instead
of Piy1)i, where Pipq1; — Pijimy = LiS: L]. A direct generalization
would be to consider differences of the form P, i1, — ¥ P;i1¥;,
where ¥, are convenient time-variant matrices that also result in a
low rank difference, say of rank «. That is, Piyy); — f,-P”i_lWZ‘ =
L,;S:L}, for some n x o matrix L; (it also follows that for the special
time-variant models to be discussed ahead we have S; = .S, Vi).

We consider again the state-space model given by (5), and we
shall say that it is a structured time-variant model if there exist n X n
matrices ¥, such that F;, G, and H; vary according to the rules

H,' = HH.]fl‘. F,+1¢l - fl'+1F,. Gi+1 = fi+1G1.

(10)
It is clear that constant-parameter systems satisfy (10) with ¥; = I.
Other special cases of (10) often arise in the recursive least-squares
problem [17]-[19]. We shall assume that the covariance matrices
R;, Q:, and C; are time-invariant whereas F;, H;, G, vary in time
according to (10) (the restrictions on {R:, Q:, C:} can be relaxed
as discussed in [18], [19]).

The point is that the conditions specified in (10) guarantee that
the covariance matrix R of the output process {y:} still has a time-
invariant displacement structure of the form R — Z,RZ; = GJG",
and hence its Cholesky factorization can still be carried out via the
generalized Schur algorithm. Thus, following the same reasoning as
in Section III, we can easily verify that for structured time-variant
models as above we get

R!/2 0
lep.() H, Lo

H,FYEK, , HFML,

R - 2,RZ] = LY
PP B PR, . HsFAL,

R!? 0
HK,o HiLo
H,FUE, , HFWL,
HsFOK, , HsFPL,

Io S

where we define FU = F,F._y---F, FI = I, and Lo and S
are defined via the (nonunique) factorization Pyjo — ¥oPyj—1 PS5 =
LoSL§. Applying the generalized Schur algorithm to the above
generator we readily verify that it collapses to the following extended
Chandrasekhar recursions [18], [19]

RE Ml [E0 0

o 2 .ol
Wik, FiaL Ky i1 Li+1:| (an
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V. SUMMARY

We reviewed a generalized Schur algorithm for fast Cholesky
factorization of matrices with displacement structure. The covari-
ance matrices of the generally nonstationary processes generated by
constant-parameter state-space systems have displacement structure.
But the state-space assumption induces additional structure, which
collapses the Schur recursions to the Chandrasekhar recursions de-
rived in the 1970s for fast recursive linear estimation.
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Input-QOutput Linearization with
State Equivalence and Decoupling

In-Joong Ha and Sung-Joon Lee

Abstract—In this note, we attempt to characterize the whole class of
nonlinear systems that can be linearized to controllable and decouplable
linear systems. We present the necessary and sufficient conditions for
our problem to be solvable. More importantly, we explicitly characterize
the nonlinear system satisfying these conditions by a set of parameters
which are invariant under the group action of state feedback and
transformation. This set of parameters can be calculated without solving
a set of partial differential equations. Using this set of parameters, we
can directly determine which of the canonical forms of decouplable and
controllable linear systems is feedback equivalent to the nonlinear system.
For the design of decoupled system with linear input-output dynamic
characteristics, it is more convenient to deal with the canonical form
which is the simplest representer of the original system.

I. INTRODUCTION

Suppose that we can transform a nonlinear system of dimension n
with the output into a linear system of dimension n with the output via
appropriate state feedback and transformation. The resulting closed-
loop system then will have the input—output dynamic characteristics
of a linear system. Moreover, the internal stability of the closed-
loop system can be readily guaranteed. This approach is often
called input-output linearization with state equivalence for which
the necessary and sufficient conditions have been found by Lee et
al. [11] for the case of single-input/single-output (SISO) systems and
by Cheng ez al. [1] for the case of multi-input/multi-output (MIMO)
systems. The problem we consider in this note is more demanding
than the problem of input—output linearization with state equivalence.
We require that the MIMO nonlinear system, for which the problem
of input—output linearization with state equivalence is solvable, can
be decoupled.

There are important reasons why we attempt to solve our problem.
First, decoupling is known to be an efficient control method for some
MIMO systems. For instance, see [10], [12], and [15]. Second, the
necessary and sufficient conditions for our problem to be solvable are
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