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Time-Variant Displacement Structure
and Interpolation Problems

Ali H. Sayed, Member, IEEE, Tiberiu Constantinescu, and Thomas Kailath, Fellow, I[EEE

Abstract— We derive a new recursive solution for a general
time-variant interpolation problem of the Hermite-Fejér type,
based on a fast algorithm for the recursive triangular factor-
ization of time-variant structured matrices. The solution follows
from studying the properties of an associated cascade system
and leads to a triangular array implementation of the recursive
algorithm. The system can be drawn as a cascade of first-order
lattice sections, where each section is composed of a rotation
matrix followed by a storage element and a tapped-delay filter.
Such cascades always have certain blocking properties, which
can be made equivalent to the interpolation conditions. We
also illustrate the application of the algorithm to problems in
adaptive filtering, model validation, robust control, and analytic
interpolation theory.

I. INTRODUCTION

HE successful application of interpolation problems in

control and circuit theory has inspired the study of
generalizations to the time-variant setting. The extension of
classical optimal control results to time-variant plants has been
discussed by Feintuch and Francis [1], [2], and by Khargonekar
et al. [3]-[5], and on the mathematical side there are precursors
in the works Arveson [6] and Ball and Gohberg [7]. More
complete analyses have been presented very recently. Alpay,
Dewilde, and Dym [8], [9] developed a time-variant algebraic
theory that is based on the so-called W-transform. This was
then applied, along with generalizations of reproducing kernel
Hilbert space techniques, to the solution of a time-variant (or
nonstationary) version of the Nevanlinna—Pick problem. Ball
et al. [11] addressed the same problem by using a formulation
that is also based on the W-transform and on extensions of
the theory described in [12].

In this paper we present a computationally-oriented solution
for a general time-variant interpolation problem, based on the
concept of time-variant displacement structure and on a fast
generalized Schur-type algorithm for the recursive triangular
factorization of a certain (implicitly defined) matrix. The
point is that this recursive procedure can be associated with
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a time-variant “transmission-line” (a cascade of elementary
time-variant sections), and transmission lines have certain
(physically meaningful) “blocking” properties that make ev-
ident the family of all solutions to the interpolation problem.
This readily allows us to treat a time-variant version of the
Hermite-Fejér problem, which includes as a special case
the aforementioned Nevanlinna—Pick problem. Results in this
direction have been reported earlier in [29], [34]. We also
remark that Dewilde and Dym have recently extended their W-
transform-based approach beyond the Nevanlinna-Pick case
to the solution of what they call a fundamental interpolation
problem [10].

The present paper develops a new recursive approach,
which has already been carried out in the time-invariant
case in [13]-[16], where the picture is the following. Linear
systems have transmission zeros: certain inputs at certain
frequencies yield zero outputs. Each section of the cascade
can be characterized by a (p + ¢) x (p + ¢) rational transfer
matrix T;(z) say, that has a left zero-direction vector g; at a
frequency f;, viz.,

T

T;
g Ti(fi) = [us vi][Ti " 12

Ti,22] (fi)=0

which makes evident (with the proper partitioning of the
row vector g; and the matrix function 7;(z)) the following
interpolation property: u;7T; 12 Ti,_zlz(fi) = —uv;. Hence, one
way to think of solving an interpolation problem is to find
a way of constructing a particular cascade from the given
interpolation data. We shall extend this picture to the time-
variant setting and describe the associated recursive solution.
We shall also describe applications in adaptive filtering, robust
control, model validation, and analytic interpolation theory.
The paper is organized as follows: after a brief introduction
of our notation, we state in Section Il the general time-variant
Hermite-Fejér problem addressed in this paper. In Section III
we derive necessary and sufficient conditions for the existence
of solutions in terms of the positivity of a certain time-
variant structured matrix R(t). In Section IV we show that
the structure of R(t) can be exploited in deriving an efficient
algorithm for its Cholesky factorization, and in Section V we
show that the algorithm naturally leads to a cascade structure
that parameterizes all solutions to the interpolation problem.
In Section VI we further simplify the recursive algorithm
and describe a triangular array implementation in terms of
a cascade of lattice sections. In Section VII we discuss several
applications whose solutions follow as special cases of the
theory developed here. We first specialize the recursions to
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the time-invariant case leading to a computationally efficient
procedure for the solution of analytic interpolation problems
that arise in several areas in circuit theory and control. We
then consider a model validation problem that arises in the
context of validating uncertainty models in robust control and
show how to solve it recursively by applying a special case
of the general algorithm of this paper. A further extension
of the Theorem 3.1 is also shown to solve the so-called
strong Parrott’s problem that arises in the study of the spectral
properties of the four-block operator in control. As a final
example, we consider the recursive least-squares problem
that arises in adaptive filtering and control and show that
the algorithm of this paper collapses to the well-known QR
algorithm, but with the extra ingredient of providing a parallel
method for the extraction of the weight vector.

A. Notation

We first introduce some notation. We consider a finite-
dimensional linear time-variant state-space model with a
bounded upper-triangular transfer operator 7. The matrix
entries of T are denoted by T;; (of dimensions r(z) x 7(5))
and correspond to the time-variant Markov parameters of the
underlying state-space model

T_1,-1 To19 To1s

T
Tor To2

0 T Tz Tis

(1

where denotes the (0, 0) entry of 7. We further consider
a stable sequence of scalar points {f(t)}:ez (Z is the set of
integers), viz., 3 ¢ > 0 such that |f()] < ¢ < 1 for all ¢.
We also introduce the symmetric functions 3;:) of n variables
(taken k at a time). That is, s((,") =1 and

>

1< <---<ix <n

s - - )
r \T1, T2, 7In)— iy Liy =t Ty

3 corresponds to s(()g)

sgs)(:tl, To,T3) = T + Tz + T3, sés)(asl, T3, T3)
T1Zo + T1T3 + Tox3, and s§3)(a:1, T9, T3) = T1T2T3.

For a uniformly bounded sequence of 1 x 7(t) row vectors
{u(t)}tez, viz., 3¢ > 0 such that ||ju(t)]| < € for all ¢, we

define the 1 x 7(t) row vector u(t) ¢ T (f(t)) as
u(t) o T (f(8)) = u(®)Tee + f(t)u(t — 1)Te-1,:

For example, n
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This corresponds to a time-variant tangential evaluation along
the direction defined by u(t). More generally, we define the
1 x r(t) row vectors (for p > 0)

1
u(t) o ];T(”) (7(®)

= ngﬁ-p)[f(tL f(t_l)aaf(t_m_p+l)]
=0

3

We shall also use the compact notation [u1(t) us2(t)] e
HZ (f(¢)) to denote the row vector [u1(t) @ 7 (f(t)) ui(t)e
HFTD(f(t)) + ua(t) @ T (f(t))], which we also write as

7T (f(1))
T(@) |

More generally, we write [u3(t) u2(t) - - u.(t)] e
7-(f(t)) = (see the equation at the bottom of the page). We

finally denote by e; = [01x; 1 0] the sth basis vector of the

n-dimensional space of complex numbers C**™.

: u(t -—m- p)Tt—m—p, t-

II. THE TIME-VARIANT HERMITE-FEJER PROBLEM

We now state the general Hermite—Fejér interpolation prob-
lem treated in this paper. We consider m stable time-variant
points {a;(t)}7-5}, and we associate with each point a;(t) a
positive integer r; > 1 and uniformly bounded row vectors

a;(t) and b;(t) partitioned as

ai(t) = [’ () u$(t) u(t)] and

bi(t) = [o7() (1) - wD)]
where ug-’)(t) and vﬁ-’)(t) G =1,---,r;) are 1 x p(¢t) and
1 x ¢(t) row vectors, respectively. That is, a;(t) and b;(t)
are partitioned into 7; row vectors each. The time-variant
tangential Hermite—Fejér interpolation problem then reads as
follows.

Problem 2.1: Given m stable points {¢;(t)}, with the as-
sociated uniformly bounded data a;(t) and b;(¢), describe
all upper-triangular strictly contractive transfer operators S
(IS lloo < 1) that satisfy

bi(t) = ai(t) e H g (ou(t))
for0<i<m-—1landteZ.

(C))

]
It is clear that the above Hermite—Fejér problem includes,
among others, several important special cases such as:

* Scalar time-variant Carathéodory-Fejér: m = 1, ag(t) =

+FOf = Dult = DTema e+ @ Oro =, p(t) = alt) = 1, ag(t) = [1 0 -+ 0],
T(f®) ITOUE) ATOGW) - ZEpTC00)
THE)  JTOEE) - 2y TD)
fa(®) walt) - ue(t)]e : :
0 TU®)  ATOFW)
T (f(1)
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bo(t) = [Bo(t) B1(t) -+ Bn-1(t)]. In this case, we * Scalar Nevanlinna—Pick: J(t) = diagonal {1, —1},

are reduced to finding upper-triangular strict contractions ao(t)
S (with scalar entries s;;) that satisfy s;; = fo(t), ay(t) 0
se-1,t = Pi(t), 1 St—n-1,t = Ba-1(t), or equiva- F(t)= . ;
lently, 18®(0(t)) = Bi(t) fori = 0, 1,---,n— 1, where 0 -
0(t) = 0 for all ¢ € Z. an-1(t)
* Scalar time-variant Nevanlinna~Pick: m = n, o;(t)
stable, 7 = 1, p(£) = q(t) = 1, ai(t) = 1, by(t) = Bi(t). L Bo(t)
In this case, we are reduced to finding upper-triangular G(t) = 1 Au(t)
strict contractions S (with scalar entries s;;) that satisfy : :
S(a(t)) = Bi(t) fori =0,1,---,n— 1. 1 Bn-1(t)
III. SOLVABILITY CONDITION We shall show in the next sections that by applying a simple

The first step in the solution consists in constructing three ~Tecursive procedure to F () and G(t) we obtain a cascade
matrices F(t), G(t), and J(¢) directly from the interpolation structure that satisfies the interpolation conditions (4) and, in
data: F(t) contains the information relative to the points fact, parameterizes all solutions. Meanwhile, we shall associate
{cu(t)} and the dimensions {r;}, G(t) contains the infor- with the interpolation problem the time-variant displacement
mation relative to the direction vectors {a;(t), by(t)}, and cduation (a special case of a time-variant Stein equation)
J(t) = (Tpe) ® —Iys)) is a signature matrix, where I R " *

> ty—F(t)R(t - 1)F*(t) = G@t)J(t)G* (¢ 6
denotes the p(t) x p(t) identity matrix. The matrices F'(¢) and ® (R O ®JIOE® ©
G(t) are constructed as follows: we associate with each ;(t)  where the symbol * stands for Hermitian conjugation (complex

a Jordan block F';(t) of size r; x 7; conjugation for scalars), and the notation F™*(t) (similarly
a;(t) G*(t), and other quantities throughout this paper) stands for

— 1 o) F(t)* (G(t)").
Fit) = . . In this paper, we are interested in time-variant interpolation

problems for which R(t) is positive-definite for all ¢ (in the
sense described ahead by (8) in Theorem 3.1). This would
then allow us to derive a recursive solution and a cascade of
first-order lattice sections that satisfies the desired interpolation

1 a,-(t)
and two 7; x p(t) and r; x ¢(t) matrices U;(t) and V(t),
respectively, which are composed of the row vectors associated

with a;(t) ) ) conditions. For this reason, we shall further assume that the
ugl_) ®) v(f)(t) interpolation data satisfy the following additional assumption
o o that rules out degenerate cases and is automatically satisfied in
i — (170 Y0
i(t) = . and Vi(t) = . . many problems (this condition will become clearer throughout
3 3 the presentation. See also [14], [16] for a related discussion in
ot (t) ¢ )(t)
T _ el the time-invariant setting): if we define
Then F(t) = diagonal {Fy(t), F1(t),---, Fm—_1(t)} and
Us(t)  Volt) “uw
G Vi) = F@OF({t-1U(t-2) FQUE-1) U@
G(t) = . . =[U(t) V(@)]

; : we shall then require that I{ (¢) satisfy the property
Un—1(t) Vim-1(t)

Letn = Y75" r; and r(t) = p(t) +q(t), then F(t) and G(t)

are n xmn and n X,T(t) matrices, respectively.IWe shall denote  yhere 4 is a fixed constant. Consider, for example, the scalar

the diagonal entries of F(¢) by {fi(t)}iy (for examp!e, Carathéodory-Fejér problem described earlier. For this case,

fo®) = f1(#) = --- = fro-1(8) = ao(t)). For the special e oot 34(1)=[--- 0 0 I,], where I, is the n x n reversed

examples considered in the previous section, the matrices F(t), identity matrix. Hence, we always have U (£)U*(t) = I,, and

G(t), and J(t) are given by: (7) is automatically satisfied. The more general case that allows

* Scalar Carathéodory—-Fejér: J(t) = diagonal {1, —1}, for positive-semidefinite matrices R() is treated in [13], [17],

0 [29]. We now prove the existence of solutions to Problem

1 0 2.1, where it is assumed that the interpolation data satisfy the

. ? stability and uniform boundedness conditions stated prior to

1 0 Problem 2.1 and the nondegeneracy condition (7).

Theorem 3.1: Under the nondegeneracy condition (7), the

1 Be(®) tangential Hermite—Fejér problem is solvable if, and only if,

Bi(t) there exists a real number ¢ > 0, independent of ¢, such that

. (5)  the solution R(t) of (6) satisfies

URU*(t)>p>0 forallt @)

Ft)=Z=

a(t) =

0 Bn-1(t) R(t)>el foralltelZ. ®
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Proof: If R(t) satisfies (8) and the interpolation data are
stable and uniformly bounded, then the recursive algorithm
described in the next sections finds a strictly contractive
solution S to Problem 2.1. Conversely, assume there exists a
strictly contractive upper-triangular operator S that solves (4).
Then the following upper-triangular submatrix of S is also a
strict contraction

S(t) = St-2,t-2 Si—2t-1 Si—ot
St—1,t-1 Se—1¢

If we further define

V()
=

it then follows from the stability and uniform boundedness
of the interpolation data that ¢/ (t) and V (t) are bounded
operators. Moreover, we can check by direct manipulations
(see Appendix A) that because of (4) the following relation
is satisfied

FOF(t—-1)V(t—2) FOV(E-1) V()]

V() =U(1)S (t). )

On the other hand, from (6) and the definition of G(¢),
we see that R(t) = U(U*(E) - V(E)V*(@E) = U BT -
S ()S*(1)JU*(¢t). But U ()U*(t) > p (because of (7)) and
S (t) is a strict contraction, i.e., I — S(#)8*(t) > € > 0 for
some real € independent of ¢. Hence, R(¢) > eI for every ¢
and for some € > 0 (independent of t). [ |

A proof of Theorem 3.1 in full generality, and for block
matrices, is described in [17]. Notice that the above proof
explicitly uses the displacement equation (6) and shows (at
least implicitly) that the contraction & (¢) can be constructed
from R(t) through (9). While an efficient construction will
be given below, we remark that the proof establishes an im-
portant link between displacement equations and interpolation
conditions. The displacement equation (6) imposes a so-called
Toeplitz-like structure on R(t); the matrix G(¢) in (6) is called
a generator matrix [13], [16], [18]. We should stress at this
point that we only know F(¢), G(t), and J(¢), whereas the
matrix R(t) = [nj(t)]{f;io itself is not known a priori. While
there are approaches to the interpolation problem that give
formulas involving R~1(¢), the recursive solution described
in the next sections does not need R(t) or R™1(¢); it only
uses F'(t), G(t), and J(t).

IV. A RECURSIVE ALGORITHM

We now focus on the time-variant displacement equation
(6) and show that it allows the successive computation of the
Schur complements of R(t) to be reduced to a computationally
efficient recursive procedure applied to the generator matrix
G(t). We shall later prove that this recursive algorithm leads
to a cascade structure with the desired interpolation properties.

Let R;(t) denote the Schur complement of the leading
1 X 4 submatrix of R(t). If I;(t) and d;(¢) stand for the first

column and the (0, 0) entry of R;(t), respectively, then (the
positive-definiteness of R(t) guarantees d;(¢) > 0 for all 7)

Rit) — L(Bd () (8) = [g Ri+°1 (t)J = Rina(t). (10)

Hence, starting with an n X n matrix R(¢) and performing n
consecutive Schur complement steps, we obtain the triangular
factorization of R(t), viz.,

*

R(t) = Lo(®)dg (0I5 (1) + [ll?t)} ) Ll((’t)] o

= L(t)D () L*(¥)

where D(t) = diag {do(t),---,dn_1(t)} (D~1(t) stands for
(D(t))™1), and the (nonzero parts of the) columns of the
lower triangular matrix L(t) are {lo(t),--,ln—1(t)}. This
procedure requires O(n3) operations (elementary additions
and multiplications).

The point, however, is that the procedure can be speeded
up to O(r(t)n?) operations in the case of matrices R(t) that
exhibit a time-variant displacement structure as in (6). In this
case, the above (Gauss/Schur) reduction procedure can be
shown to reduce to a recursion on the elements of the generator
matrix G(t). The computational advantage then follows from
the fact that G(t) has r(¢)n elements as compared to n? in
R(t). The following theorem shows that the triangular factor
at time (¢ — 1), viz., L(t — 1) can be time-updated to L(t) via
a recursive procedure on G(t).

Theorem 4.1: The Schur complements R;(t) are also struc-
tured with generator matrices G;(t), viz., R;(t) — F;(t)R;(t —
1)F;(t) = Gi(t)J(t)G; (t), where G;(t) is an (n — ©) X r(t)
matrix that satisfies, along with ;(t), the following recursion:
Golt) = G(t), Fot) = F(t)

[ g0 ] =IRwLe-1 G
J(g (1) IOk DI

where g;(t) is the first row of G;(t), F;(t) is the (n—i) x (n—1)
submatrix obtained after deleting the first row and column
of F;_1(t), and h;(t) and k;(¢) are arbitrary 7(¢) x 1 and
r(t) x r(t) matrices, respectively, chosen so as to satisfy the
time-variant embedding relation

i 201 Rl o]

[di‘gt) Jl()t)] (12)

where d;(t) satisfies the time-update recursion
di(t) = fi(0)di(t = 1) f7 () + g:(1)J (£)g (1)

Proof: We prove the result for ¢ = 0. The same argument
is valid for ¢ > 1. Let dy(¢), lo(t), and go(¢), denote the
(0, 0) entry of R(t), the first column of R(t), and the first row
of G(t), respectively. It then follows from the displacement
equation (6) that lo(t) = F'(t)lo(t — 1) f3(¢) + G(t)J(t)g5(t)
and do(t) = fo(t)do(t—1)f5(t)+90(t)J (£)g5 (). Let F1(t) be
the submatrix obtained after deleting the first row and column
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of F(t). Using the expressions for lo(t), do(t), and (10), it is
straightforward to check that we can write

Ry(t) - F(t)Rl(t - F*(t)

=~ G5 B OF O~ VeI OGO

+G(?) f(t)ga‘(t)lé(t - DF*(t)fo(t)
Dot = )F(t)lo(t — D)go(t)J(¢)
96 ()5t — F(2)]

+G@Jm{ﬂn-5%£§9

We now verify that the right-hand side of the above expression
can be put into the form of a perfect square by introducing
some auxiliary quantities. Consider an r(¢) x 1 column vector
ho(t) and an r(t) x 7(¢) matrix ko(t) that are defined to
satisfy the following relations (in terms of the quantities that
appear on the right-hand side of the above expression—explicit
expressions for ho(t) and ko(t) will be given later)

9o()J ()95 (?)
do(t)do(t — 1)’

%mmm.m)

ho(®)J (D)ho(t) =

k(6T (tyko(t) = J(t) — % ’
: __ft)g)
kwwmmw__ﬁaé__ a4

Using {ho(t), ko(t)}, we can factor the right-hand side of (13)
as G1(t)J(t)G3(t), where G1(t) = F(t)lo(t — 1)h5()J(t) +
G(t)J(t)k§(t)J(t). Recall that the first row and column of
R (t) are zero. Hence, the first row of G4(t) is zero, Gy (t) =

[0 GT(t)]T. Moreover, it follows from (14) (and from the
expression for do(t)) that

[ £ o )
_ [do—l(t -1 0 ]
(i} J(t)

which is equivalent to (12) for ¢ = 0. [ |

A. Discussion

Relation (11) is the general form of the generator recursion.
It is expressed in terms of the quantities h;(t) and k;(t), which
we still need to choose to satisfy the embedding relation (12).
We shall show later that this is always possible. In fact, we
shall derive explicit expressions for h;(t) and k;(t), which will
allow us to substantially simplify the general recursion (11).

Before proceeding further, we first discuss the implications
of the stability and uniform boundedness of the interpolation
data {f;(t), a;(t), bi(¢)} on the boundedness of the quantities
d;(t) and g;(t) that are needed in the recursive procedure.
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Lemma 4.1.1: The sequences {d;(t)}:cz and {gi(t)}:cz
obtained through the recursive Schur reduction procedure are
uniformly bounded. More specifically, there exist real numbers
bg, cq, and ¢, (independent of t) such that

lg: (M < ¢4

Proof: 1t is clear that {do(t)}scz is uniformly
bounded from above since {fo(t)}:cz is stable and
{go(t)J(t)g5(t)}+cz is uniformly bounded. A similar
argument shows that {lo(t)}¢cz is also uniformly bounded.
Now using (11) we get g1(t) = exF(t)lo(t — 1)hg(®)J () +
e1G(t)J(t)k}(t)J(t). But we shall show in Section VI that
{ho(t)}tez and {ko(t)}tcz can always be chosen to be
uniformly bounded sequences. It then follows that {g1(%)}tecz
is also uniformly bounded. Repeating this argument we
conclude, by induction, that there exist real numbers ¢4 > 0
and ¢, > 0 such that d;(t) < cq and [|gi(t)|| < cq forall ¢ € Z.

To show that the sequence {d;(t)}:cz is also uniformly
bounded from below, we use the fact that the successive Schur
complements R;(t) also satisfy relations similar to (8). To see
this, we rewrite each step of the Schur reduction procedure

(10) in the form
o) 0 d;(t) 0
Ri(t) = | ][o Rira(t)
) [l,v ¢ 0

d:(t) In—i—l
H g 09

which exhibits a congruence relation. We define, for notational
simplicity,
o]
In_i

which is an invertible lower triangular matrix. Assume
Ri(t) > &1 for some ¢; > 0 independent of ¢ (¢g = €). Then
clearly d;(t) > ¢; and A;(¢) is uniformly bounded. For any
nonzero column vector y, we can always write y = Af(t)x
for some nonzero column vector X, since A;(t) has full rank.

Therefore,
* dz(t) 0 x* ( ) 0 *
y [ 0 R'i-(-l(t):\ A (t)[ Ri+1(t)]Ai (5

= x*Ri(t)x > &|x|I” = & A7 @)y )" = einallyll®

where in the last equality we used the fact that {A; Y)Y eez
is uniformly bounded. Consequently, d;41(t) > €;4+1 and we
can choose bd = mil’losgsn_l €;. | ]
Remark: Conversely, we can show that if {d;(t)}scz is
uniformly bounded from below, then (8) is satisfied. For this
purpose, we apply the same argument and use (16) backwards
starting with R,,_1(t) = dn—1(t) down to Ro(t) = R(%).

0<bg<di(t)<cqg and for all t. (15)

At = [5%

V. RELATION TO THE INTERPOLATION PROBLEM

The question now is: How does the recursive algorithm
(11) relate to the Hermite-Fejér interpolation problem? The
relevant fact to note here is that each recursive step gives rise
to a linear first-order discrete-time system (in state-space form)

S (@) hi () J(¢) ]
T(t)gi (t)  J(0)k;(8)J(t)
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F{OL( =1} L

It INOHO)
Jingl (1) SOk (01}

Gty ——> — | °
Gin()

Fig. 1. One step of the time-variant generator recursion.

which appears on the right-hand side of (11). This can be
thought of as the (state-space) transition matrix of a first-order
system as

Kt +1) yi()] =[xi(t) wi(t)]
J()gi () J(&)k;(t)JI(t)

where x;(t) denotes a (scalar) state, w;(¢) denotes a 1 x r(t)
row input vector, and y;(t) denotes a 1 x r(t) row output
vector at time t. Moreover, the generator recursion (11) has a
transmission-line picture in terms of a cascade of elementary
steps as shown in Fig. 1, where each step depends on the
parameters { f;(¢), gi(t), hi(t), ki(¢)}. The A block represents
a storage element where the present value of [;(t) is stored for
the next time instant.

The second important observation, which we shall verify
very soon, is that each such section exhibits an intrinsic block-
ing property. The cascade of n sections would then exhibit
certain global blocking properties, which will be shown to be
equivalent to the desired interpolation conditions. Interesting
enough, these blocking properties simply follow from the fact
that each step of the Schur reduction procedure yields a matrix
with a new zero row and column (as in (10)), which translates
to a generator matrix with a new zero row (as in (11)).

A. Properties of the First-Order Sections
Let 7; = [T{))] 7

I j=—oo denote the upper-triangular transfer
operator associated with (17) (refer to (1)), where Tl(;) denote
the (r(l) x r(j)) time-variant Markov parameters of 7; and

are given by
T =J (k1) (1),
1), =J(Dgf (R 1+ 1)J (1 + 1),

T =T (0g; W7+ D A+2) 2 — 1)
“hi(j)J(3), forj>I1+1.

The output and input sequences of 7; are clearly related by

[ yi(=1) yi(1) ]
:[ w;(—1) w;(1) ]'E

After n recursive steps (recall that G(¢) has n rows) we obtain
a cascade of sections 7 = 737, ---7,,_;. The cascade is
depicted in Fig. 2, where we partitioned the input and output
vectors of each section (namely w;(t) and y;(t)) accordingly
with J(t) = Jp(t) &) _Iq(t): Wl(t) = [Wi,l(i') Wi,g(t)] and
Yi(t) = [¥i,1(t) y:, 2(t)]. The cascade may be regarded as a
generalized transmission line.
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wo1(t) —| e

% ‘[7|~1
woa(t) = ™

> Yr-11(t)

™ Yu-12(1)

Fig. 2. Cascade of first-order time-variant sections.

Lemma 5.1.1: Each first-order section 7; is a bounded
upper-triangular linear operator.

Proof: We already know that {f;(t)}tcz and g;(t)}icz
are stable and uniformly bounded sequences, respectively.
We shall show later in Section VI that {h;(t), k;(t)}iez
can always be chosen to be uniformly bounded sequences
as well. It is then a standard result that the (stability and)
uniform boundedness of {f;(t), gi(t), hi(t), ki(t)} assures
the boundedness of the corresponding transfer operator 7; (see,
e.g., [19]). [ |

Moreover, if we define the direct sum J = @ezJ(¢),
it then follows that each 7; also satisfies the following 7-
losslessness property.

Lemma 5.1.2: Each first-order
TIT = ad T*IT T, = J.

Proof: The proof is a direct consequence of the embed-
ding construction (12), which leads to the relations

FE(Od7H @) f:(0) + RE (0T (Dha(t) = d7 (¢ = 1),

section 7; satisfies

FEOAT (Dg:(8) + RED I @)ki(t) = 0,

g7 ()7 (£)gi(8) + ki ()T (B)ki(t) = J(0).
Therefore, we can expand d” L(¢) and write

a7t = A+ DI+ Dhi(t+ 1) + 7t + 1)
. h:(t + 2)J(t + 2)hi(t + Z)fi(t + 1)
+ A+ D+ 2)RI(E+3)J(t+3)
“hi(t+3)fi(t + Dfit+1)+---.

Now the tth element on the main diagonal of 7; 7 7;* (denoted
by Au) is given by

Au = J()[EF ()T (O)k:(t) + gf (7 (£ +1)J(t + 1)
“hi(t+ 1)gi(t) + g7 () £ (t + DRI (t +2)
S+ 2hi(t +2) fi(t + Dga(t) + - -] ().

Using the expression for d; 1(t) we obtain Ay = J(t) —
J(t)gr ()1 (t) — diH(t)]gi(t)J(t) = J(t). The same ar-
gument can be used to show that the off-diagonal elements of
T;J T;* are zero. We use a similar procedure for proving that
T*JT.=J. [ ]
Furthermore, each section 7; satisfies an important blocking
property in the following sense (using definition (2)).
Theorem 5.1.1: Each first-order section 7; satisfies

[~ fi)fi(t—D)g:(t—2) fit)
~gi(t—1) gi(¢)

where g;(t) is at the tth position of the row vector. Conse-
quently, g;(t) ® T,(fi(t)) = 0.

=0 7]
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Proof: This follows directly from the embedding result
(12) (as well as from the fact that each step of the generator
recursion (11) produces a new zero row). The output of 7; at
time t is given by

yi(t) =+ filt) fi(t — 1)gi(t — 2)Ti—2,¢
+ fi(t)gi(t — 1)Tem1, ¢ + 9:(t) T
= [=di(t = 1) + di(t = )] iR ($)J () =

where we substituted the expressions for the Markov param-
eters {T};};<¢ and used

di(t) = g:(t)J (t)g; (t) + fi(t)gs(t — 1)J(¢t — 1)
~gi(t = 1)f ()
+ fi() fi(t — D)ga(t — 2)J (t - 2)
gt =2)ff - 1f () +

The same argument holds for the previous outputs. ]

In general terms, the blocking property means that when
g:(t) (which is the first row of G;(t)) is applied to 7; we
obtain a zero output at f;(t) at time ¢. We say that f;(t) is a
time-variant transmission-zero of 7; and g;(t) is the associated
time-variant left-zero direction. We remark that the concepts
of transmission zeros and blocking directions are central to
many problems in network theory and linear systems [20].

Remark: In the time-invariant case, the above blocking
property reduces to (dropping the time index)

[~ flei figi g ?NT=[0 7]

where 7; is now an upper-triangular Toeplitz operator (T,(j') =
Ti(ll—)ﬂ)' Hence, giTOI) + giTl(')fi + g,-Tzfl)fi? +--- =0, 0r
equivalently, g;7;(f;) = 0, where T;(z) denotes the transfer
matrix of the time-invariant discrete-time system, T;(z) =
Tk T+ Jgtl="t — 77 R

B. Properties of the Cascade

The J-losslessness and blocking properties of each section
7; reflect on the entire cascade 7. The following result is
a direct consequence of Lemmas 5.1.1 and 5.1.2 and the
definition of 7.

Lemma 5.2.1: The cascade 7 is a bounded upper-triangular
linear operator and satisfies T J7* =T*J7T = J.

It also follows from Theorem 5.1.1 that 7 satisfies a global
blocking property.

Theorem 5.2.1: The entire cascade 7 satisfies the global
blocking property

[-- FOFt-1)G(t-2) F@#)G(Et-1)

Git) 06 0 --JT=[0 ?] (8)

where G(t) is in the tth position. That is, if we apply to T
the block input
Ut)=[-- FRFt-1)Gt-2) F(t)

-G(t-1) Gt 0 0 --1

then the output is zero up to and including time ¢.
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Proof: This follows from the generator recursion (11)
and from the Jordan structure of F'(t). When the first row of
U(t) goes through the first section 7p, it annihilates the output
of the entire cascade 7 due to the blocking property of Zo.
When the second row of U(t) goes through 7, we obtain
at the output of 7y (as a consequence of (11) and the Jordan
structure of F'(t), and similar to the proof of Theorem 5.1.1) a
zero-direction vector for 77, which again annihilates the output
of the entire cascade 7, and so on. u

Expression (18) is closely related to the interpolation con-
ditions of Problem 2.1. To clarify this, we denote by s; =
;;__t, Tp, 80 = 0, the total size of the Jordan blocks prior to
the 4th Jordan block, F';(t). By comparing terms on both sides
of (18) (and by using (3) and the Jordan structure of F(t)) we
can verify that (18) is equivalent to the following result.
Theorem 5.2.2: The entire cascade 7 satisfies

[esz' G(t) esi+1G(t) esi+T1'—1G(t)]

e HE () = 0. (19)

The row vector on the left-hand side of (19) is composed of
the r; row vectors in [U;(t) V;(t)] associated with o(t), viz.,

LP® o0 @ @ - W@ D)

The Jordan structure of F'(¢) is essential in deriving (19) (see
[16, Chapter 9] for more motivation and detailed calculations).

C. From Blocking Properties to Interpolation Properties

We now verify that the global blocking property (18) (or
equivalently, (19)) is equivalent to the desired interpolation
properties stated in Problem 2.1.

For this purpose, recall that each first-order transfer operator
7; is formed of r(I) X r(j) matrix entries T(’) We thus partition

Tl(;) accordingly with J(I) and J(35), viz.,

7Y = [Tlii Tl?]
TZ{ 2 T2; 2

where Ty] ;. 713 ;. T3}, and T34 ; are p(1) x (), o) 4(i).
q(l) x p(j ), and (1) x q(j) matrices, respectively. We further
define the upper-triangular operators
i Ij 100 i lj qoo
71(2) = [T1Jz,i]1,j=—oo and 73(2) = [T2J2, =0
Lemma 5.3.1: The operator 7’1(;)7'2;(i) is upper-triangular
and strictly contractive.
Proof: See Appendix B. a
We also partition the matrix entries Tj; of the cascade T
accordingly with J(I) and J(j)

T
n= [0 )
T T
and consider the triangular operators

15100 1j
Tn= [Tlﬂl,j=—oos To = [T2]1]l°°j=—oo’

’

1j100
Tz = [133)7% = oo Too = (TR I, j=—o00"
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Fig. 3. Scattering interpretation.

We can also verify (as done in Appendix B for the proof
of Lemma 5.3.1 and by using Theorem 5.4.1 ahead) that
S = —’1'127'251 is also an upper-triangular strictly contractive
operator. Moreover, it follows from Theorem 5.2.2 that S
satisfies the required interpolation conditions. For example,
we conclude from the blocking property of 7 that

[ fo)fo(t —1)go(t —2) fo(t)
w(t=1) aoft) 0 0 ---1[%%[0 7]

or equivalently, vgo)(t) = u(lo)(t) e S (ap(t)). This argument
can be extended to show that S satisfies the remaining inter-
polation conditions. In fact, all solutions to Problem 2.1 can
be parameterized in terms of a linear fractional transformation
based on 7 as follows.

Theorem 5.3.1: All solutions S of the tangential Her-
mite-Fejér problem are given through a linear fractional
transformation of a strictly contractive upper-triangular
operator K

S = —[T1uK + Tha|[Tar K + Tpo] . (20)

Proof: The proof of this fact is by now a standard one

and similar to the time-invariant counterpart (see, e.g., [8],

[10], [11], [17] for details). ]

The solution S in (20) has a nice scattering interpretation.

Recall that the input and output row vectors of 7 are related
(schematically) by

[Yn-1,1(t) ¥n-1,2(t)] = [Wo,1(2t)

The scattering operator ¥ associated with 7 is defined by the
relation

[Yn-1,1(8) wo,2(t)] = [wo,1() ¥n—1,2(8)]%

In this setting, the solution S is the transfer operator from the
top left (1 x p(t)) input to the bottom left (1x g(¢)) output, with
a strictly contractive load (—K) at the right end, as shown in
Fig. 3.
In summary, we are led to the following recursive procedure
that parameterizes all solutions to the Hermite—Fejér problem
(this general procedure will be greatly simplified in the next
section—see Algorithm 6.2.1 ahead).
Algorithm 5.3.1: The Hermite-Fejér Problem 2.1 can be
recursively solved as follows:
* Construct F'(t), G(t), and J(¢) from the interpolation data
as described in Section III.

¢ Start with G(¢) and apply n steps of the generator
recursion (11). This leads to a cascade of first-
order sections that are completely determined by the
{£:(8), gs(8), ha(t), ki(D)} as in (17).

» The entire transfer-operator parameterizes all solutions in

terms of an arbitrary strictly contractive upper-triangular

Wo, Z(t) ]T
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operator K as shown in (20). Specifically, any such S
satisfies the interpolation conditions a;(t)eH g (ai(t)) =
b;(t) for 0 <i<m—1landte€ Z

D. A Global State-Space Description

Each first-order section 7; has a state-space description in
terms of the quantities f;(t), ¢:(¢), hi(t), and k;(t), as shown
in (17). We also include here, for completeness, a state-space
description for the entire cascade 7. Following an argument
similar to that presented in [14], [16], [22] and in Appendix
C, we can derive the following result.

Theorem 5.4.1: The entire cascade 7 admits an n-
dimensional time-variant state-space description of the form

x(t+1) y®)]
_ F (1) H~(#)J(t)
=0 Ol soR0)
where H(t) and K (t) are r(t) x n and r(t) X r(t) matrices
that satisfy the time-variant embedding relation

7 SOl slne &)
_ [R(t) 0 ] ‘
0 Jt)

Furthermore, H(t) and K(t) can be expressed in terms of
F(t), G(t), and the Cholesky factor L(t) (R(t) = L(t)L (t))
as

H(t) = 07 ()J(O)G* ()L (t) - 7($)L7 (¢ — 1)

OO (- 1) - T (OF ()]

K(t) = 07 (1)L — JOG @)L () — (1)

T - )Fr )T

)G
where ©(t) is a J(t)-unitary matrix and 7(t) is a scalar on
the unit circle.

We remark that the above formulas are time-variant ana-
logues of expressions obtained in [12] and [22]. They are also
related to the global solution presented in [11].

VI. SIMPLIFIED GENERATOR
RECURSION: LATTICE STRUCTURES

The theory developed so far gives a recursive solution of
the Hermite—Fejér Problem 2.1, and one could in principle stop
here. The point, however, is that the generator recursion can
still be greatly simplified. We shall pursue this line of argument
here and show that the above cascade can be reduced to a
simpler form by conveniently choosing the free parameters
h;(t) and k;(t). Recall that these parameters are to be chosen
at will as long as they are uniformly bounded (over ¢) and
the embedding relation (12) is satisfied. We shall show in
this section that a simple convenient choice is possible that
will reduce the first-order sections to simple (so-called lattice)
forms. To begin with, we show in Appendices C and D the
following result (see [22] for the time-invariant results).
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Lemma 6.1: Tt follows from the embedding relation (12)
that the parameters h;(t) and k;(t) can be expressed in terms
of the known quantities f;(t), g:(t), and d;(t) as

ot 1= (011 :
10 = 07O ey it D0}

_o-! 7 (8)J (8)g; (£)gi(t)

k0 =070 o ~ g e | @
where ©;(t) is an arbitrary J(t)-unitary matrix, (0;(t)J(t)©}
(t) = J(¢)), and 7;(t) is an arbitrary complex number chosen
on the circle |7;(¢)|*> = di(t — 1)/d;(t). Moreover, choosing
©;(t) = I(y) and 7;(t) in the opposite direction of f;(t), then
{hi(t), ki(t)}+cz are guaranteed to be uniformly bounded.

A. Proper Generator Form

In fact, alternative and computationally more attractive
choices for ©;(t) (other than ©;(t) = I) are also possible
as we now further elaborate. Recall that g;(t) denotes the
first row of Gi(t). If g;(t) has positive J(t)—norm, i.e.,
g:(t)J(£)g; (t) > O, then we can always reduce it to the form

g:(t)0;(t) = [6:(t) O 0] (22)

where the (single) nonzero entry 6;(t) is in the first position.
For this purpose we can, for example, implement ©;(t)
as a sequence of elementary rotations, as a Householder
transformation, or in other convenient ways. If, on the other
hand, g;(t) has negative J(t)-norm, i.e., g;(t)J(t)g; (t) < 0,
then we can always reduce it to the form

g:(t)0:(t) = [0 0 &(t)] (23)

where the (single) nonzero entry §;(t) is in the last position. In
either case we say that G;(t) is reduced to proper form. The
point to check is whether the corresponding {hi(t), ki(t)}tcz
in (21) will still be uniformly bounded.

To guarantee this we add the additional assumption that
the sequence {g;(¢)J(t)g; (t)}+cz be uniformly bounded from
below (it is clearly uniformly bounded from above because
of (15)). That is, we assume that there exists a real number
by > 0 such that b, < |gi(t)J(t)g;(¢)| for all ¢. Observe
that this assumption is automatically satisfied for strictly lower
triangular matrices F'(t) (as in the Carathéodory-Fejér case,
for example), since in these cases we have g;(t)J(t)g; (t) =
d;(t) and {d;(t)}+ecz is uniformly bounded from below as
established in Lemma 4.1.1.

Lemma 6.1.1: Under the assumption that
{g:(t)J(t)g} (t)}rez is uniformly bounded from below,
the sequences {h;(t), ki(t)}scz in (21) that are obtained
by using the ©;(¢) that reduces G;(t) to proper form are
uniformly bounded.

Proof: 1t follows from the boundedness of
{g:(1)J()g} (t)}rez that {6i(t)}tez is also uniformly
bounded from below since |6;(t)|> = |g:(t)J(¢)g} (t)|. But
@il = 16:®1 < lgi(®Il|8:(#)|| and hence,
e Il < lg®ll/I6:(t)]. We thus conclude that
{©;(t)}+ez is uniformly bounded. It then follows, as argued
in Appendix D, that the resulting sequences {h;(t), ki(t)}tez
are uniformly bounded. |
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Li(t)

1)
8it) Giplt) ]

Fig. 4. A positive proper step of the generator recursion.

B. Simplified Recursions

The generator recursion is greatly simplified if we choose
©;(t) at each step so as to reduce the generator to proper form.
For example, in the case g;(t)J(t)g; (¢) > 0, (11) reduces to

[®) 600 ] = EOUE-D Go)

HO) Sl o]

'[@i(t)[éi((f)] 0.0 HYH (}H @4)

where we defined the scalar quantity

1-n®)fi®) .

#0 =T mam ™
The above generator expression has a simple array interpreta-
tion. It shows that G, () can be obtained as follows: multiply
Gi(t) by ©;(t) and keep the last (r(t) — 1) columns; the
first column of G;,1(t) is obtained as a linear combination of
F;(t)l;(t — 1) and the first column of G;()©;(t). In fact, this
linear combination is obtained through an elementary unitary
transformation. If we let ;(t) and z;;(t) denote the first
columns of G;(t)©;(t) and G;41(t), respectively, and define
the normalized column ;(¢) = l;(t)d; 1/2(t), then using the
above generator recursion we have (this also follows from
(11))

. 0 . _

[ 40y ] = B@EE-D mO10@
where Uj(t) is the 2 x 2 unitary matrix (Us(t)U;(t) = I2)
given by

IHO
)= 545

(25)

—p}%] [In(()t)l ¢z‘(2t)]’

pilt) = 6i(t)

Jdit-1)

This is summarized in Fig. 4 where we show the structure
of a single step: the first column of Gj(t) goes through the
top line and the last (r(¢) — 1) columns propagate through
the bottom line. The output T;(t) of the top line (which is
the first column of G;(t)©;(t)) goes through an elementary
unitary rotation U;(t), along with F;(t)l;(¢ — 1), and generates
the first input of the next section (z;41(t)), as well as L:(t).

A similar argument holds for the case g;(t)J(t)g;(t) < 0
and leads to Fig. 5. Now, however, the elementary unitary
transformation U;(t) is replaced by an elementary hyperbolic
transformation V;(t)

Vi(t)[(l) _Ol]Vi*(t) = [(1) _01]-
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Gt
(t) oun

0
Gt

Fig. 5. A negative proper step of the generator recursion.

Latt-1) Ljit-1) Lt

G0, i) Fiag (0, figgr(D), .o

Fig. 6. First-order time-variant tapped-delay line.

Let 3;(t) and y;41(¢) denote the last columns of Gi()0:(t)
and G,41(t), respectively. The generator recursion (11) then
reduces to

[® .00 ] =EOL-1) o)
fi* (t) #i(t)6:(t) [0 1 }

ol 0T ewl o @0
04(t) [_52,(1&)} i(t) [O —d’i(t)fi(t):l

which has the following array interpretation: multiply G;(t) by
©;(t) and keep the first (r(t) — 1) columns; the last column
of G;41(t) is obtained through the elementary transformation

[, 00 | = ROLC-1) woW©

where

- | fi®
vitt) = {—pz‘(t)

Sl ao)

We are thus led to the following simplified version of
Algorithm 5.3.1.

Algorithm 6.2.1: Make the additional assumption that the
{9:(t)J(t)g; (t) }+ez are uniformly bounded from below. Then
the Hermite—Fejér Problem 2.1 can be recursively solved as
follows: construct F'(t), G(t), and J(t) from the interpolation
data as described in Section III. Start with Go(t) = G(t),
Fo(t) = F(t), and repeat for s = 0, 1,---,n — 1.

* At step ¢ we have Fi(t) and G;(t).

* Verify whether the first row of G;(¢) has positive or nega-
tive J(t) norm, and use a convenient J(¢)-unitary rotation
©;(t) that would reduce g;(t) to the corresponding proper
form ((22) or (23)). This determines 6:(t) and p;(t).

* Choose a scalar 7;(t) on the circle |7;(t)]? = d;(t —
1)/d;(t) and in the opposite direction of fi(¢). This
determines ¢;(t).

* Apply either of the simplified recursions (24) or (26),
depending on whether g;(t).J(t)g} () is positive or nega-
tive. Each such step completely characterizes a first-order
section in simplified form, as it appears on the right-hand
sides of (24) and (26).
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C. Triangular Array Implementation

We now discuss in more detail the computational aspects of
the above algorithm. More specifically, we show that it can
be implemented as a triangular array of processing elements,
where each cell consists of a rotation matrix followed by a
storage element and a tapped-delay filter.

To begin with, the matrix-vector product F;(t)l;(t — 1),
indicated in the feedback line in either Figs. 4 or 5, can be
implemented by a time-variant tapped-delay filter. To clarify
this, recall that F;(¢) has a Jordan structure of the form

fi()
Eiv1(t)  fiyr(t) 0
Eita(t)  figa(t)

Fi(t) =
Eiva(t)  fiya(t)

&(t)=1oro0.

That is, F;(¢) has ones and zeros on the first subdiagonal
(whose entries we shall denote by £;(t), 7 > 4, &(t) = 1
or 0, (&(t) = 0)). The entries on the first subdiagonal have
zeros at the starting points of Jordan blocks. If we denote the
entires Ofi,'(t— 1) by Zi(t— 1) = [27_) O(t— 1) Zi, 1(t— 1) v -]T,
then the computation of the elements of the column vector
Fi(t)l;(t — 1) involves operations of the form

firi @i, 5t = 1) + &g (O, j-1(t = 1),

Hence, the entries of F;(t)l;(t — 1) can be obtained as outputs
of time-variant tapped-delay filters, whose coefficients are
given by the rows of Fj(t). This is shown in Fig. 6. The
A block stores the elements of 7;(£) for the next time instant,
and multiplication by F;(t) corresponds to a first-order time-
variant finite-impulse-response filter whose coefficients vary
(for a fixed t) as follows: when the first row of G;(t) is fed
through ©;(t), the filter coefficients are f;(¢) and 0. When
the (j + 1)th row of G,(t) is fed in, the filter coefficients
are &y;(t) and fi4;(¢), and so on. More precisely, recall
that G;(t) has (n — i) rows. Hence, we can decompose Fig.
4 (or Fig. 5) into (n — ¢) elementary sections as shown in
Fig. 7 for the positive case. Each section consists of the same
J(t)-unitary transformation ©;(t), followed by an elementary
rotation U;(¢), the storage element A, and the tapped-delay
filter whose coefficients vary from section to section. One row
of G;(t) is applied to each section. The outputs of the layer
are then the rows of G;;1(t). Notice that the output of the
top section is zero, since each generator step produces one
ZEro row.

A similar layer also exists for each negative step
(9:(t)J(t)gr(t) < 0), except that now each section has
a slightly different structure where the storage element and
the tapped-delay filter act on the bottom line, as shown in
Fig. 5. If we represent each section in either Figs. 4 or 5 by a
square box, then n steps of the generator recursion correspond
to a triangular array as depicted in Fig. 8. The first layer of
the array operates on the n rows of G(t) and produces the
n — 1 rows of G1(t). The second layer operates on the rows
of G1(t) and produces the n — 2 rows of Ga(t), and so on. It

320
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(fi{1).0)

First row of
G

-
First row of
Giv(t)

Second row of |
Gilt)

Last row of
;Gin(l)

Last row of
Gitt)

Fig. 7. A layer of elementary sections: g;(t)J(t)g7 (t) > 0.

] &

)

G(t) Ghlt Ga(t)

Gaai(l)

Fig. 8. A triangular array implementation of the generator recursion.

is clear that once the rows of G(t) propagate through the first
layer, the array can already receive the rows of G(t + 1), etc.

D. An Example: Carathéodory-Fejér Interpolation

We consider here, for the sake of illustration, the time-
variant Carathéodory—Fejér example that was described earlier
in Section III. This corresponds to choosing m = 1, ap(t) = 0,
ro=np=gq=1Jt)=J = (1 -1), and F(¢) and
G(t) as in (5). The assumption that {g;(t)J(t)g} (t)}tcz be
uniformly bounded from below is automatically satisfied here
since f;(t) = 0 and hence, g;(t)J(¢)g?(t) = di(t) > ba > 0.
Using the simplified recursion (24) we can thus write

[G(:H(()t)} = ZGi(t - 1)8i(t — 1) [(1) g]

+Gi(1)0s(t) [g ‘1)]
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where ©;(t) is a simple hyperbolic rotation defined by

1 [ 1 _’Yi(t)]
I-w@PLY® 1)

04(t) =

where we denote the entries of the first row of G;(f) by
9i(t) = [uii(t) vii(t)]. The above recursion is the time-variant
analogue of the array form associated with the classical Schur
algorithm [23], [18].

VII. APPLICATIONS

The theory developed so far in this paper provides a
recursive procedure for the solution of a general time-variant
Hermite-Fejér interpolation problem as in (4) (see, e.g., Al-
gorithms 5.3.1 and 6.2.1). It also provides an O(r(t)n?)
procedure for the time-update of the triangular factor L(t —1)
to L(t). We now describe several problems in control, model
validation, analytic interpolation theory, and adaptive filtering,
whose recursive solutions can be obtained as special cases of
the algorithm of this paper and correspond to different choices
of F(t).

A. Analytic Interpolation Theory

We first show that by specializing Algorithm 6.2.1 to the
time-invariant case, we are led to a computationally efficient
procedure for the solution of rational analytic interpolation
problems, which arise in several applications in circuit theory
and control (see, e.g., [12], [21], [24], [25] and the references
therein). All we need to do is to drop the time index t.
For example, the bounded upper-triangular operator 7 now
becomes a Toeplitz operator with 7 X r entries 7};_;; and can
be associated with an r x r rational matrix function T'(z) that
is analytic inside the open unit disc (|z| < 1), viz,,

T(Z)=T0+T12+T2Z+"'.

It is then straightforward to check that definition (3) collapses
to a tangential evaluation of the pth derivative of T'(z), viz.,
5T®(f) (If] < 1), along the direction of a 1 x r row vector
u, viz., uT®)(f). Moreover,

[wr we]HF(f) = [ us] TE)f) %g((l}gf)]'

The time-invariant Hermite—Fejér problem can then be stated
as follows: consider m stable points {a;}g" (i.e., inside the
open unit disc). We associate with each a; a positive integer
r; > 1 and two row vectors a; and b; partitioned as

a; = [ugi) ug)]’ b; = [vgi) vﬁf)]

where uy) and vﬁ.i), (G=1,---,r;),are 1 x p and 1 X q row

vectors, respectively.
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Problem 7.1.1: Given m stable points {«;} and the associ-
ated row vectors a; and b;, describe all rational p x ¢ Schur
functions S(z) (i.e., S(z) analytic and strictly bounded by 1
in |z| < 1) that satisfy b; = a; H g (a;) for 0 <5 <m — 1.

Following the discussion in Section III, we construct the
following (time-invariant) matrices

Q; ()
— 1 (e 73 !
Fi = . . ) UZ = . i
R Q)
1 o Ury
o
Vi=1:
of?
and define F' = diagonal {Fy, F1,---,Fon_1}
Up Vo
. . _ 1 0
G = . - = [U V]’ J = P .
- ' 0 -1,
Um—l Vm—l

Letn = Z;l—ol riand r = (p+q), then F and G are nxn and
n X r matrices, respectively. We also assume UU* > 0, where
U = [-- F*U FU U]. We further denote the diagonal
entries of F by {f;}72) and consider the following time-
invariant displacement equation (compare with (6))

R - FRF* = GJG". 27

Theorem 3.1 then collapses to the following.

Theorem 7.1.1: Under the nondegeneracy condition UU/* >
0, the tangential Hermite—Fejér problem is solvable if, and only
if, the solution R of (27) is positive-definite (R > 0).

The successive computation of the Schur complements of R
in (27) also leads to a recursive update of the generator matrix
G. The corresponding proper form (as described in Section VI-
B) is as follows: let g; denote the first row of G;, which is the
generator of the ith Schur complement of R. We now always
have g;Jg > 0 since d; > 0 and d; = g;Jg; /(1 — |f:]?).
Hence, we can always choose a J-unitary rotation ©; that
reduces g; to the form

9:0; =[6; 0] (28)
In this case, the corresponding generator recursion (24) can be
compactly written as follows.

Algorithm 7.1.1: The generators of the successive Schur

complements of R in (27) satisfy the recursion

0 | _+~0 |1 O o |0 O
[G,-H}_q)’cl@’{o 0]+Gl®1{0 11»-1} (29)

where ®; is an (n — ) x (n — ¢) “Blaschke” matrix, ®; =
(F; = fil,_;)(I,—; — frF;)~!. Moreover, the ith column
of the triangular factor of R is given by I; = (I,—; —
fIF;)7'G;0;[6; O]T. The generator recursion (29) has the
following simple array interpretation: multiply G; by ©; and
keep the last 7 — 1 columns; multiply the first column of G;0;
by ®;; these two steps result in G; ;. Each step of (29) also
leads to a first-order J-lossless section, which we shall denote
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by T;(z). This can be easily seen by writing down (24) in the
present case

0 I &1 0]
[li Gi+1]=[Fili Gil @z[%] @i[_Ofi (;] -

This defines a first-order section T;(z)
r_a.|=fi O {67, -1 o1 6i
= d §lrei]e-mm i o
z—fi 0
= : l_zf«;‘K .
o5

Observe that the blocking property of each such section is
very evident since

g:Ti(fi) = 9:0: [3 (I)] =[5 0][8 ﬂ =0.

(3D

As in the time-variant case, the local blocking properties
reflect on the entire cascade T(z) = To(z)---Tr—1(%), and
lead to the following parameterization result: partition 7'(2)
accordingly with J

o) — Tll(z) T]Q(z)
T(~)_ [T21(Z) TQQ(Z):|'

Theorem 7.1.2: All solutions S(z) of the tangential Her-
mite-Fejér problem are given through a linear fractional
transformation of a Schur matrix function K(z)

8(2) = —[T11(2)K(2) + T12(2)]
. [Tgl(z)K(Z) + TQQ(Z)}_I.

We are thus led to the following O(rn?) recursive solution
of the time-invariant Hermite-Fejér algorithm (see [13], [15],
[16] for more details along the lines of this paper).
Algorithm 7.1.2: The Hermite-Fejér Problem 7.1.1 can be
recursively solved as follows: construct F', G, and J from the
interpolation data as described in the beginning of this section.
Start with Gy = G, Fy = F, and repeat fori =0, 1,---,n—1.
e At step ¢ we have F; and G;.
¢ Use a convenient J-unitary rotation ©; that reduces g;
to the proper form (28). This determines 6; and the first-
order section T;(z) as in (31).
The cascade of all n sections parameterizes all solutions
S(z) as described in the above theorem.

B. Time-Domain Model Validation

We now consider another application that arises in the
problem of model validation. In robust control, it is often the
case that uncertainty models are used to cope with the lack of
an exact mathematical model for a physical plant (see, e.g.,
[27], [28]). In this context, an uncertainty model is usually
described in terms of a known nominal model, represented
by an upper-triangular operator My, a modeling uncertainty,
represented by an upper-triangular operator S, and the form by
which Mg and S are combined. A simple example is that of
additive dynamic uncertainty [27], viz., an uncertainty model
of the form (Mg + WS), where S is constrained to be a
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(strictly) contractive operator and W is a known weighting
function. The associated model validation problem can then
be stated as follows: assume we apply an input sequence to

the physical system, say {ug, ©1,- -, Un—1}, where {u;} is a
1 x p row input vector at time :, and measure the associated
noisy output sequence, say {vg, v1,-- -, Vn—1}, Where {v;} is

a 1 x g row output vector at time 7. The question is then
to verify whether there exists a model for the plant of the
form (Mg + WS) that maps the given input sequence to the
measured output sequence

Un-1 ] !

= [uo

[vo v1

Uy Un—1 (Mo + WS).

This clearly reduces to checking whether there exists a strict
contraction S mapping the signals:

[vo © Vn-1]—[uo w Un1]Mo

and [’u,o ul un_l]W.

More involved examples are considered in [27], [28]. As
above, a major step in the solution is to check whether there
exists an upper-triangular strictly contractive operator that
maps two sets of signals. But this is a special case of the
following general time-variant Carathéodory—Fejér problem:
given data points {u;(t), vi(t)}tez, ¢ = 0,1,---,n — 1, it
is required to find conditions for the existence of an upper-
triangular strict contraction § = [S;;] such that

[uo(t—n+ 1) un_l(t)]
St7n+l,tvn+1 St7n+l,t
Si-1,6-1 Si—1,¢
St
= ['I)()(t -n+ 1) 'Un_l(t) ]

Hence, the recursive algorithm developed in this paper (Al-
gorithm 5.3.1 and especially its simplified form in Algorithm
6.2.1) provides a recursive solution for the model validation
problem.

To put this into our framework, we construct a displacement
equation as in (6) with

up(t) vo(2)
u(t) = : , o V()= : ,
u’"—l(t) Un—l(t)
Fity=2, G@#)=[U@l) V(@]

Theorem 7.2.1: The tangential Carathéodory—Fejér prob-
lem has solutions if, and only if, there exists a real number
€ > 0, independent of ¢, such that R(t) = U (t)U*(t) —
V(#)V*(t) > el for all t € Z, where

Uug (t)

uo(t — 1) u(t)

U) =

Up—2(t — 1) un_.l Q)

and a similar expression for V (t) with v;(t) instead of w;(2).

ug(t — n+1)
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In applications where data is available over a finite period
of time, say |t| < N, the condition in the statement of the
theorem is equivalent to the positivity of R(t), viz., R(t) > 0
for |¢t| < N. The recursion of Algorithm 6.2.1 then provides
an efficient procedure for testing this condition. It computes,
for each ¢, the diagonal entries {do(¢),--,dn—1(¢)} and the
positivity condition R(t) > O is satisfied if, and only if,
di(t) >0fori =0,---,n— 1.

We finally remark that the condition of strict contractivity
on S can be relaxed as discussed in [17], [29].

C. Strong Parrott’s Problem

We mentioned earlier that a rather general extension of
Theorem 3.1 is possible [17], [29], where the entries of R(t)
are regarded as linear operators acting on appropriate Hilbert
spaces, and the positive-definiteness condition is relaxed to
positive-semidefiniteness (R(¢) > 0). An immediate applica-
tion that fits into this framework is the so-called strong Parrott
problem, which arises in the study of the spectral properties of
the key “four-block” operator in control (see, e.g., [30]-{331]):
given matrices B;;, 1 < j < i< n, § =[S Sy -+ 5y
and T = [Ty Tp --- T,), it is required to find conditions
for the existence of a contraction 7 of the form (? denotes
unspecified entries)

B
_|Bai Bz ?
Bnl Bn2 Bnﬂ

such that S7 = T. To put this problem into our framework,
we define

0
I
ui)= |0, 1<t<n-1,
0
Sn+t
I
u@)=1| 0 |, -n+1<t<0,
0
A T
B, 0
V()= [Br-1.1|,  V(1)=|Br2|,
L Bix Ba»
z p
0 0
V(2)= Bn3 7---,V(’I’L—1)=
. 0
; Bnn
| B33
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I' 0
G(t)=[U(t) V()], for —n+1<t<n-1

and all the elements equal to zero for the other time indices.
We then consider the associated time-variant displacement
equation as in (6). A generalization of Theorem 3.1 (as in
{17], [29]) then shows the following.

Lemma 7.3.1: The above strong Parrott problem has solu-
tions if, and only if, the solution R(t) of (6) satisfies R(t) > 0
for all t € 7.

It is easy to check that the above condition is equivalent to
that stated in [30], [33].

D. The QR Algorithm in Adaptive Filtering and Control

In adaptive filtering and control, one is often faced with
the task of solving a linear system of (so-called normal)
equations of the form ®(t)w(t) = b(t), where ®(¢) is an
n X n positive-definite Hermitian matrix usually referred to
as the autocorrelation matrix, b(¢) is an n x 1 column vector
known as the cross-correlation vector, and w(t) is an n x 1
so-called weight vector. The reader is referred to [26] for more
on the derivation and motivation of the normal equations in
the context of the recursive least-squares problem.

It often happens (e.g., in an exponential windowing scheme)
that the quantities ®(¢) and b(¢) satisfy time recursions of the
form ®(t) — A®(t — 1) = wu*(t)ult), b(t) — Mb(t — 1) =
z(t)u*(t), where X is a positive scalar (0 < A < 1),
u(t) is a row vector, and z(¢) is a scalar. In the adaptive
applications, one is often faced with the problem of solving
@(t)w(t) = b(t), for successive time instants ¢, 41, t+2, - -,
and one expects a computationally efficient procedure for
going through the calculations, w(t) — w(t + 1) — w(t +
2) — ... since the corresponding quantities, (®(t), b(t)),
(®(t+1), b(t+1)), (®(t+2), b(t+2)), - - - are closely related.
For example, ®(¢ + 1) and A®(t) differ only by a rank-one
matrix u*(¢ + 1)u(t + 1).

We will now show how to exploit the existing time-
variant displacement (or low-rank) structure to derive a fully
parallelizable solution of the normal equations and one that
avoids the drawbacks of approaches based on back-substitution
techniques. The discussion that follows exploits the fact that
the generator recursion in Algorithm 6.2.1 also propagates the
triangular factor of the time-variant matrix R(¢).

The main point is to start by expressing w(t) as a Schur
complement in a suitable block matrix and then to properly
exploit the structure of this matrix. Consider the following
square (2n x 2n) extended matrix

R(t) = {(I}(j) ”Ef) 3]

and note that the Schur complement of ®(t) in R(t) is
precisely [—w(t) 0], which completely identifies the desired
weight vector w(t). This already suggests the following route:
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if we can show how to efficiently go from the Schur comple-
ment at time ¢ — 1 to the Schur complement at time ¢, then we
obtain an efficient procedure for going from w(t — 1) to w(t).
But this is precisely what is provided by Algorithm 6.2.1. It
follows from the displacement structures of ®(¢) and b(¢) that
R(t) is also structured, viz.,

R(t) - [Aé" ;l ]R(t—l): {u*ét)}[u(t) 2(t) 0]

which is a special case of a non-Hermitian time-variant dis-
placement equation of the form R(t) — F(t)R(t — 1)A*(t) =
G(t)J(t)B*(t), with A(t) = L, J(t) =1, A =1

F<t>=[”" 0}, G(t)=[u*ét)J, and

0 I
u*(t)
B(t) | =(t)
0

Although R(t) has a non-Hermitian structure, we are only
interested in its first » Schur complementation steps (that is, in
its first n triangular factors). But the leading n X n submatrix
of R(t) is Hermitian (equal to ®(¢)) and hence, Algorithm
6.2.1 is still applicable. Following this argument, we can show
(see [16, 18] for more details) that the simplified generator
Algorithm 6.2.1 collapses to the following.

Algorithm 7.4.1: The solution of the normal equations that
arise in the recursive-least squares problem can be recursively
updated as follows: form the prearray of numbers on the left-
hand side of the equation below; choose any unitary matrix
O(t) that produces the zero block in the postarray; the other
entries in the postarray can then be shown to be the quantities
needed for the next time-instant plus the entries denoted by
2(t) and Aw(t), which are used in updating the solution w(t)

VAS/2(t —1) u*(t)
V(- 1)~ /2(t 1) z*(t) | O1)

KOt -1) 0
B1/2(t) 0
= )@ /2(t) (1)
"2 Aw(t)

and w(t) is time-updated via w(t) = w(t—1)— Aw(t)e*(t). m

The above algorithm provides a parallel procedure for the
extraction of the weight vector w(t) and avoids the drawbacks
of a back-substitution step (see, e.g., [18] for more details and
for the corresponding systolic architecture). It is also worth
noting here that the normal equations correspond to a particular
diagonal choice of F(t), namely, F'(t) = (A & I). The results
of this paper however, are applicable to more general matrices
F(t) as discussed in [16], [18].

VIII. CONCLUDING REMARKS

‘We posed and solved a general time-variant Hermite—Fejér
interpolation problem by an approach that handles the time-
variant case in much the same way as it handled the time-
invariant counterpart [14]-[16]. The derivation is based on
a simple matrix calculation known as the Schur reduction
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procedure and leads to a recursive construction of a time-
variant cascade or transmission-line structure that makes evi-
dent the interpolation properties. State-space descriptions. for
each section and for the entire cascade were also derived
in terms of the original interpolation data and a time-variant
structured matrix R(%). The cascade is constructed recursively
by implicitly considering the triangular factorization of R(?).
Unlike other approaches, we do not require explicit knowledge
of the matrices R(t) or R~1(t). The whole recursive proce-
dure works only with the matrices F(t) and G(t) that are
constructed directly from the interpolation data. The overall
computational complexity is then O(r(t)n?) operations per
time step, where r(t) is a so-called displacement rank (the
number of columns of the matrix G(t)). Under a supplemen-
tary condition, we further obtained a substantial simplification
of the cascade structure and presented a triangular array of
lattice sections that solves the interpolation problem. We then
considered applications in adaptive filtering, robust control,
model validation, and analytic interpolation. Other applications
to the solution of matrix completion problems are also possible
(see e.g., [13], [17], [29D).

APPENDIX A
ADDENDUM TO THEOREM 3.1

We check that the interpolation conditions (4) and the
relation V (t) = U (t) S (t) are indeed equivalent. This follows
easily by expanding V (¢) and U (t). For example, the first
entries of V(¢) and U (t) corresponding to the first Jordan
block Fo(t) are of the form

r o muwwu_n ng'
(t=1)+ fot)w(t —1) v(2)
V(t) = &W n+ﬁwﬁm—1 200 |
L : _
r fo(t)u(o)(t -1) u”(t)]
50’(t -1+ fo t)“§o)(t -1 W)
U= w0~ 1) + folte Ot -1) ui(t)

We now use (3) to obtain the desired result.

APPENDIX B
PROOF OF LEMMA 5.3.1
We verify here that T a1, 22 ) is an upper-triangular strictly
contractive operator. We first remark that because of the J-
losslessness property of Lemma 5.1.2 we conclude that

T >1 and THOTH > 1 (B.1)
which implies that ’1}( is an invertible operator and that 7, (’)
is contractive. That is, ||7 "] < 1. We already know that

T is upper-triangular (by construction). We need to verify
that its inverse is also upper-triangular. Let X ~(") denote the

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 39, NO. 5, MAY 1994

following leading subsection of ']’2(2")

n—2,n—2 n—2,n—1 n2n
T22z T221 T221

x—( =
m—1,n-1 mn—1,n
0 T22 i T22 1
22,1

It then follows from (B.1) that

X x-() > 1 (B.2)

Similarly, we define (™) and 7, to denote the corresponding
leading subsections of 7; and J, respectively. It follows from
the embedding relation (12) that we can write

T = YW T,V = [g*(n - ;1) )f*(n) d=(n)
g'(n
e fmen-1) g(m)]20. B3

But X~ is the (2, 2) block entry in Y™, ie.,

? ?
y = {? X—(n)]-

Hence, we conclude from (B.3) that X ~(") also satisfies

X-mWx—"M >, (B.4)
Combining (B.2) and (B.4) we conclude that X~(™) is in-
vertible for every n and that the inverses X () are uniformly
bounded by one, i.c., || X™)]|| < 1 for all n. Therefore, X ™
is a sequence of bounded operators. Deﬁne the following

operators (acting on the same space as ’1'22 )

- (n)
(n) _ X 0
xo =57 0]

Then X (™ and X(™+1) satisfy the following nested property
(they differ by just one block column)

. X® 2
(nt1) _ [X T
X = [ 0 ]

’ (B.5)

We now verify that the sequence {X(™},cz is strongly
convergent. That is, there exists an operator X: X' — Y
(where X and ) are appropriate Hilbert spaces), such that
lim,, o0 [|aX™ — aX|| = 0 for all @ € X. By the strong
operator convergence theorem [34], we only need to check that
the sequence {aX(™} is Cauchy in Y for every a in a total
subset of X. That is, for every € > 0, there exists an N, such
that ||aX ™ — aX(™)|| < € for every n, m > N.. To verify
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this, we consider the following sequence of vectors {a;}, a; €
X (which is dense in X), a; =[-- 00 7 7 ...], where a;
has an increasing number of zeros (as j increases). For every
j, we set N, = j and consider all n and m greater than N..
Clearly (using the nesting property (B.5) and choosing, without
loss of generality, m > n), a;(X(™ — X(™)) = 0. That is,
lla; X™ — a; X™)|| = 0 for every N, = j and n, m > j,
which shows that {a; X(™} is indeed a Cauchy sequence.
Therefore, X (™ converges strongly to X. It also follows that
X converges weakly to X. Hence, lim,, o, (X' (n) ej, €) =
(Xej, e;), where (, ) denotes inner product and {e;} are the
basis vectors. Choosing 7 < j we readily conclude that X is
also an upper-triangular operator.

In summary, we proved that the inverses X converge
strongly to a bounded upper-mangular operator X. We now
verify that the operators ’T22  and X coincide over a dense
subset of their domain of definition. This follows immediately
by considering again the sequence of inputs a; and observing
that aﬂ'z(z = a; for every j. Therefore, we proved that
'2’22 is invertible and that its inverse is an upper-triangular
strict contraction. Finally, it follows from Lemma 5.1.2 that
T, is also an upper-triangular strict contraction.

APPENDIX C
VALUES OF h;(t) AND k;(t)
For each time instant ¢, we consider a transfer matrix
©;(z, t) defined by the expression
©i(z, t) = J()k; (1)J(t)
+J()g; (D271 = FE O] R ()T (2).

It follows from the embedding relation (12) that

0;(z, t)J(1)O] (2, t) = J(t) on the circle 22"

_di(t—-1)

= ——di(t) . (C.6)
Let 7;(t) be an arbitrary point on this circle. We first show
how to choose a pair (hi(t), ki(t)) such that the corresponding
transfer matrix, ©;(z, t), would satisfy Oi(mi(t), t) = I, or
equivalently, k;(¢) + hy(t)[r;*(t) — fi(t)]tgi(t) = L. It
follows from (12) that h;(t)d(t — 1) £ () + ki(t) J () g2 (1) =
0. Therefore, we can solve for h;(t) and k;(t)

() — 1—77(t) fi(t) «
0= rwam - ae - nrre %O

Lo 7 (t)J ()97 (£)g:(t)
ki(t) = Ly — OG) = di(t—1)fF(t)

The claim is that all other possible choices of h;(t)
and k;(t) are related to h(t) and k;(t) by hi(t) =
O; 1 (t)ha(t) and ki(t) = ©;(t)k;(t), for an arbitrary J(t)-
unitary matrix ©;(t). To check this, let ©;(z,t) be the
transfer matrix of any other possible choice (hi(t), ki(2)).

Clearly ©;(7;(t), t)J(t)OF (m:(t), t) = J(t), since =(t) is
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a point on the appropriate circle. If we define ©;(z, t) =
0;(z, t)@_l(’ri() t), then (':')(T,() ty = I,,(t) Using the
fact that this condition is satisfied by (h;(t), k; (1)) above,
we readily conclude that h;(t) = ©;'(r(t), t)hi(t) and
ki(t) = ©71(ri(t), O)ki(?).

APPENDIX D
PROOF OF THE UNIFORM BOUNDEDNESS OF h;(t) AND k;(t)

We use the boundedness of {d;(t)}+cz (as stated in Lemma
4.1.1, (15)) and the freedom in choosing 7;(¢) and ©;(t), to
guarantee the uniform boundedness of h;(t) and ;(t). For this
purpose, we fix ©;(t) = I, and consider the quantity

T (8)di(t) — di(t — 1) f7(2)

which appears in the denominator of the expressions for h;(t)
and k;(t). Observe that

(D.7)

(e (Odi(0) — dilt — D20
e di (t 1)L, 1
>ra)d‘ f(ﬂ—

and recall that 7;(¢) is an arbitrary point in the complex plane
to be chosen on the circle of radius dii(f(;)l)
choose a point 7;(¢) that is in the opposite direction of f;(t)
(we can also choose 7;(t) to be in the direction orthogonal to
fi(t)). Then we clearly have

() - d“

. So assume we

|7 (t)l

1 fat-1 _ [
ca\l  dit) >\/:3'

This shows that (D.7) can always be uniformly bounded
from below. It then follows from the uniform boundedness of
{£:(£), g:(¥)}sez that {hi(t), k;(t)}iez can always be chosen
to be uniformly bounded sequences.

20| L >
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