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A Recursive Method for Solving Unconstrained
Tangential Interpolation Problems

Tibor Boros, Ali H. Sayed,Member, IEEE, and Thomas Kailath,Life Fellow, IEEE

Abstract—An efficient recursive solution is presented for the
one-sided unconstrained tangential interpolation problem. The
method relies on the triangular factorization of a certain struc-
tured matrix that is implicitly defined by the interpolation data.
The recursive procedure admits a physical interpretation in
terms of discretized transmission lines. In this framework the
generating system is constructed as a cascade of first-order
sections. Singular steps occur only when the input data is contra-
dictory, i.e., only when the interpolation problem does not have
a solution. Various pivoting schemes can be used to improve
numerical accuracy or to impose additional constraints on the
interpolants. The algorithm also provides coprime factorizations
for all rational interpolants and can be used to solve polynomial
interpolation problems such as the general Hermite matrix inter-
polation problem. A recursive method is proposed to compute a
column-reduced generating system that can be used to solve the
minimal tangential interpolation problem.

Index Terms—Interpolation, matrix decomposition, numerical
stability, polynomial matrices, rational functions, rational matri-
ces.

I. INTRODUCTION

SEVERAL problems in control, circuit theory, and digital
filter design can be reduced to the solution of matrix ra-

tional interpolation problems which have been widely studied
(see, especially, [1]–[8]). This paper treats left-sided tan-
gential interpolation problems with and without minimality
constraints. Applications occur, for example, in minimal partial
realization [1]–[3] and in the -parameterization of stabilizing
controllers for unstable plants [9]–[12].

In its simplest form, an interpolation problem would ask for
rational functions that meet the interpolation conditions

for given complex numbers and
The interpolants can further be required to

have minimal complexity measured in terms of their McMillan
degree. An extension of this problem to the vector case would
ask for rational matrix functions that satisfy
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tangential interpolation conditions of the form

where are given complex numbers and where and
are and complex vectors, respectively.

This paper deals with a generalization of these problems that
imposes tangential interpolation conditions both on and
on its derivatives. We describe an efficient recursive algorithm
for computing the rational interpolants and show how to handle
minimality constraints recursively. This will be achieved by
using a generalized Schur-type algorithm originally developed
for the fast triangular factorization of structured matrices and
by exploiting some degrees of freedom in its description (see
[13] for a review on matrix factorization). Relations to earlier
work will be presented after a formal problem statement.

A. Problem Statement

Let denote the field of scalar rational functions of
a single variable and the linear space of

rational matrix functions defined over Furthermore,
let be an operator that maps into an
upper triangular Toeplitz block-matrix, ,
as shown in (1) at the bottom of the next page, where
stands for the th derivative of

Problem 1.1 (Unconstrained Tangential Interpolation):
Consider a set of points and two sets of row vectors

and such that

(2a)

(2b)

(2c)

1) Given the nodes and the associated vectors and
find all rational interpolants that

are analytic at and satisfy the interpolation
conditions

for all (3)

2) Given the extraction points evaluate
for any particular solution

In the problem statement, we use the adjectiveuncon-
strained because no other restrictions, such as minimality
or boundedness, are imposed on the rational interpolants.
In particular, apart from the analyticity conditions at
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there are no other constraints on the location of poles of the
interpolants. At the same time, in this paper we also investigate
the following constrainedinterpolation problem.

Problem 1.2 (Minimal Tangential Interpolation):Given
the nodes and the direction vectors and as in
(2), find all rational matrix functions so that

• is analytic at and satisfies the interpolation
conditions (3);

• the complexity of (measured in terms of its McMil-
lan degree) is as small as possible.

B. Connections to Earlier Work

Prior work on the unconstrained tangential interpolation
problem has been largely carried out by Ballet al. [4], [5].
The main result in [4] states that the family of all rational
functions that satisfy (3) can be parameterized in terms of
a certain linear fractional map. Specifically, it is possible to
translate the interpolation data into a so-calledleft null pair

that describes the zero structure of a
rational matrix function denoted by

Reference [4, Th. 5.1.2] then states that satisfies the
interpolation conditions (3) if and only if, one can write

(4)

for some rational matrices and To compute a
suitable generating system (which incidentally is called
the resolvent matrixby the Odessa school of operator theory),
one has to first construct a so-calledright pole pair so
that the solution of the Sylvester equation

is invertible. Then, can be obtained from a global state-
space formula that involves and (see [5, pp.
23–24, 74, and 103] for the exact definition of left null pairs,
right pole pairs, and null-pole triples).

In this paper, we present a differentrecursive method
which can be used to compute the generating system as a
product of elementary first-order rational matrix functions.
The recursive technique allows us to update whenever
a new interpolation point is added to the input data set. The
aforementioned algorithm was first studied in connection with

a rather different problem,viz., the triangular factorization
problem for non-Hermitian matrices possessingdisplacement
structure [9], [14]–[13].

The factorization of a non-Hermitian matrix can be naturally
associated with two -input -output feedforward
cascade systems denoted by and Each step of the
algorithm determines first-order (lattice) sections in each of the
two cascades. The elementary sections obtained this way have
transmission zeros: certain inputs at certain frequencies yield
zero outputs (this is a general property of any linear system).
When the sections are designed appropriately, these “local”
transmission zeros combine to yield a “global” transmission
zero (see Proposition 4.2 below) which can be used to solve
unconstrained rational interpolation problems. This approach
has been successfully used in various other interpolation
problems as well (see, e.g., [6] for Schur-type and [15] for
unconstrained interpolation problems).

The matrix that we factor here isimplicitly determined
via a non-Hermitian displacement equation of the form1

(5)

where and are constructed directly from the inter-
polation data [as shown in (10)], while and are free
parameters that can be chosen to guarantee that no breakdowns
occur in the recursive algorithm. In contrast to the methods in
[4] and [15], the pair does not have to be known
in advance; the relevant entries can be chosen “on the fly”
when they are needed in the algorithm (see Algorithm 6.1).
The additional degrees of freedom in can be used
to impose various constrains on the rational interpolants (see
Section VIII). We further note that in this approach does
not have to be invertible or strongly regular, or even explicitly
known.

The main results on minimal interpolation problems to this
date appear in [1] and [3] where it is shown that, in the special
case when the transfer function is a column-reduced
polynomial matrix, it is possible to extract the admissible
degrees of complexity as well as the minimal degree of
complexity from the linear fractional parameterization formula
(4). In the scalar case, Antoulaset al. suggested first finding
the Lagrange interpolating polynomial and then applying long
division (Euclidean algorithm) to obtain in column-

1In principle, the signature matrixJJJ on the right-hand side of (5) could be
merged intoGGG orBBB: However, the present form allows us to remain consistent
with Schur-type interpolation problems where the underlying displacement
equation can be written asRRR � FFFRRRFFF �

= GGGJJJGGG�; i.e.,AAA = FFF andBBB = GGG

[13], [6].

. . .
...

(1)
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reduced form [1], [2]. Since it is difficult to extend this method
to the tangential case, one is obliged first to find a general
transfer matrix by using an unconstrained algorithm. In
the next step the generating system must be transformed
into column-reduced form via a sequence of elementary (uni-
modular) transformations [16]. A detailed algorithm for the
construction of a column-reduced rational matrix function
from a given null-pole triple has recently appeared in [7].
The corresponding solution set is parameterized via a global
state-space formula, but it is not immediately obvious how
to update the solutions when a new pole or zero is added to
the input data set. In our approach, a suitable column-reduced
transfer function can be obtainedrecursively by combining
the non-Hermitian generator recursion with a special pivoting
scheme.

C. Applications

In order to motivate applications we briefly mention the
following two problems that arise in control and circuit theory.

Problem 1.3 (Minimal Partial Realization [3], [5], [16]):
Let be the partial impulse
response of a -input -output linear multivariable system.
Find all admissible transfer functions that
match the measured data for Which of
these rational models have the minimal McMillan degree?

Solution: Introducing the arrays

and applying the relation leads to the
following tangential interpolation problem: Find all rational
matrix functions that satisfy

(6)

It is apparent that each row of and corresponds to
a tangential interpolation constraint on the rational function

Each constraint involves the derivatives of up to
the th order. Thus, the interpolation data set consists
of nodes with corresponding
multiplicities

In the scalar case thus (6) collapses to one
tangential constraint at which involves the derivatives
of up to the th order

...
...

Computing the solutions of the interpolation problem (6)
by using a generalized Schur-type algorithm is explained in
Sections IV–VI. Selecting the minimal interpolants from this
solution set is discussed in Section IX.

The next problem is borrowed from [12] (see also [5, Ch.
23], [10], [11], and [17]).

Problem 1.4 -Parameterization for Unstable Plants):Let
be a strictly proper rational plant,

having unstable poles at with corresponding multiplicities
Assume, furthermore, that the Laurent

expansion of at is given by

Find all controllers so that each entry of the
closed-loop transfer matrix

is stable.
Solution: It can be shown (see [12] for the details) that

will be stable if and only if the rational matrix function
is stable (i.e., analyticoutsidethe open unit disc) and

satisfies the following tangential interpolation conditions for

(7)

The stable rational solutions of (7) can be parameterized by
using the Hermite interpolating polynomial (see, e.g., [5] and
[18]). Computing the Hermite polynomial via a generalized
Schur-type algorithm is discussed in Section VIII below.

D. Preliminaries

Let denote the ring of scalar polynomials of a single
variable and the module of polynomial
matrices defined over the ring The expression

where and are polynomial matrices,
is called amatrix fraction descriptionof the rational function

A polynomial matrix is calledcolumn-reducedif its leading
column coefficient matrix has full rank. A square polynomial
matrix is column-reduced if and only if, the sum of its column
degrees is equal to the degree of its determinant.

The complexity of a polynomial matrix is measured by
its McMillan degree In particular, can be
determined by transforming into column-reduced form
and taking the sum of the column degrees. By definition,
the McMillan degree of a rational matrix function

is equal to the McMillan degree of the associ-
ated polynomial matrix (see, e.g., [16]).

Let be a constant matrix and let be
a scalar function that is analytic at the eigenvalues ofThe
value of on the matrix can be defined via theRiesz
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formula

(8)

where is a rectifiable simple contour that surrounds the
spectrum of (see, e.g., [5, p. 597]). It is especially easy to
evaluate this integral when is a Jordan matrix. For example

...

...

...
...

. . .

Finally, observe that the operator defined in (1) satisfies
the relation

(9)

for any two rational matrices and
By induction, this statement can be extended to

the product of a countable number of rational matrices. In
particular, is an algebra homo-
morphism.

This paper is divided into nine sections. In Section II, we
state a sufficient and necessary condition for the solvability
of Problem 1.1. In Sections III and IV we briefly review
the non-Hermitian forward generator recursion and the as-
sociated cascade system interpretation. Section V deals with
various parameterization schemes for the family of rational
interpolants. The main algorithm that solves Problem 1.1
appears in Section VI, while Section VII contains the physical
interpretation of the results in terms of discretized transmission
lines. Section VIII deals with polynomial interpolation prob-
lems such as the general Hermite matrix interpolation problem.
In Section IX, we obtain a generating system with a column-
reduced transfer matrix which gives a nice solution to the
minimal rational interpolation problem. Concluding remarks
are given in Section X.

It may be useful to note that, when specialized to the scalar
case, the procedures of this paper exhibit several improvements
over the scalar algorithm that we had presented earlier in [15].
In particular, here we have a simpler procedure for avoid-
ing breakdowns and for obtaining column-reduced generating
systems.

II. SOLVABILITY CONDITION

Problem 1.1 may fail to admit a solution when the inter-
polation data is contradictory. The solvability issues of one-
and two-sided tangential interpolation problems have been
analyzed in [19] by using a residual interpolation framework.
In this section we present a more direct algebraic approach,

which shows that solving a tangential interpolation problem
is equivalent to solving a matrix Padé approximation problem
where the Taylor coefficients obey a set of linear constraints.

Thus let and be three arrays constructed from the
interpolation data as

...

...
...

(10)

where and are
defined by

...
...

...

...

The triplet carries all information about
the th tangential interpolation constraint. The following state-
ment is now valid.

Proposition 2.1 (Solvability Condition):Problem 1.1 is
solvable if and only if

(11)

where
In system theoretical terms, the unconstrained tangential

problem is solvable if and only if the columns of lie in the
controllable subspaceof the pair If the pair is
controllable then Problem 1.1 can be solved for any right-hand
side If is not controllable but the columns of lie
in the controllable subspace of then the interpolation
data is redundant. Finally, if the columns of do not lie in
the controllable subspace of then the interpolation data
is contradictory. A sufficient condition for the controllability
of can be formulated in terms of the direction vectors

as follows:
Lemma 2.2 (Controllability):If for all and

the vectors are linearly independent
whenever then the pair is
controllable.

In particular, the interpolation problem is always solvable
when the nodes are distinct and for all

Proof of Proposition 2.1 and Lemma 2.2—Part A:Let us
first consider the special case when the interpolation points
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coincide. Assume therefore that

(12)

The th tangential constraint can be rewritten as

...
...

...
. . .

...

...

or more compactly as

...

where denotes the lower triangular shift matrix
with ones below the main diagonal. The set of all interpolation
conditions can be expressed as shown in the equation at the
bottom of the page, or, equivalently, as

...
(13)

where Problem 1.1 can now
be reformulated as follows: Find all rational matrix functions

that can be expanded at as

for some coefficients that satisfy the linear
constraints (13).

Obtaining from a given set of coefficients is
the well-studied matrix Padé approximation problem, which
always has a solution.2 Thus Problem 1.1 is solvable if and
only if the linear system (13) is solvable. The solvability
condition for (13) is, in turn, given by

(14)

Multiplication by a nonsingular matrix from the right leaves
the column space of unaltered.
Therefore, (14) can be re-expressed in terms of as

...
...

This proves Proposition 2.1 in the particular case when (12)
is valid. It is easy to see that the coefficient matrix in (13)
has full rank whenever the vectors are
linearly independent. This proves Lemma 2.2.

Part B: In general, the interpolation data contains several
sets of coinciding nodes. Without restriction of generality,
assume that the interpolation points can be arranged into
subsets as

...

(15)

where the nodes are distinct. Now introduce the
auxiliary indexes

2Also note that the matrix Padé problem can be reduced to a set of
independent scalar Padé problems.

...
...

...
...

...
...
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and define the arrays as

...

...
...

By repeating the arguments of Part A for each subset in
(15), Problem 1.1 can be reformulated as follows: Given the
distinct nodes find all rational matrix functions
that can be expanded at as

for some coefficients that satisfy the linear
constraints

...
(16)

where If the coefficients
are known, then the rational interpolants can

be obtained by solving a multiple-point matrix Padé problem
which is guaranteed to have a solution. Therefore, Problem
1.1 is solvable if and only if

for all (17)

If the assumptions of Lemma 2.2 are valid, then the coefficient
matrix in (16) has full rank and therefore (17) holds for
any This concludes the proof of Lemma 2.2. By using
nonsingular transformations it can be shown that (17) is
equivalent to

for all (18)

The equivalence of (18) and (11) follows immediately from
the fact that

...
...

and

...

This proves Proposition 2.1 in the general case.

III. T RIANGULAR FACTORIZATION AND

THE GENERALIZED SCHUR ALGORITHM

The key step in our approach to rational interpolation is
via an apparently unrelated matrix factorization algorithm that
we review in this section. To this end, let be a
structuredmatrix that satisfies a displacement equation of the
form

(19)

where are full-rank generator matrices,
is a signature matrix of the form

and are lower triangular matrices with diago-
nal entries and respec-
tively. The quantity is called the
displacement rankof with respect to and In the rest
of the paper we shall assume that for all and

so that (19) has a unique solution for In connection with
interpolation problems will be a Jordan matrix as defined
in (10) so that

...

(20)

The classical method to compute the triangular factors
of is provided by the well-known Gauss/Schur reduction
procedure

...

where and denote the first column, the first row,
and the upper-left corner element of Intrinsically this
method requires additions and multiplications. A faster
procedure can be obtained by exploiting the fact that theth
Schur complement inherits the displacement structure of
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i.e., it satisfies a displacement equation of the form

where can be obtained from
via the following algorithm [13]:

Algorithm 3.1 (Generalized Schur Algorithm)3: Start with
and repeat the following steps for

1) Obtain and by deleting the first rows and
columns of and

2) Choose matrices and that satisfy
and transform the generators and to proper form.
This means that and reduce the first row of
(denoted by ) and the first row of (denoted by

) to the forms

(21)

with a single nonzero entry in the same column position,
say the th position

3) Multiply the th column of by
and the th column of

by [the
functions and are defined in (24)].

4) Delete the first row of the resulting arrays to obtain the
new generators and

The generator recursionthat describes how to obtain
and from and can be written in a compact form as

(22a)

(22b)

These formulas have the following simple array interpreta-

3If RRR is a Toeplitz matrix andFFF = AAA = ZZZ; then the presented scheme
collapses to a now well-known algorithm of Schur [13].

tions:

...
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

...

The nonsingular transformations and can be imple-
mented in a variety of ways, e.g., by using a suitable sequence
of elementary Householder projections or Givens rotations,
and hyperbolic transformations. When the arraysand are
sparse (e.g., diagonal or bidiagonal), the generalized Schur
algorithm requires only operations. The triangular
factors of can be computed from as

The generalized Schur algorithm may break down if the matrix
is not strongly regular; this issue is addressed in Section VI.

IV. CASCADE SYSTEMS

The generator recursion (22) can be described in terms of
transfer functions as shown in [9], [13], and [14]. Similar
models have also appeared in the inverse scattering theory of
lossy transmission lines [20]. In the function domain each step
of (22) can be associated with two-input -output first-order
systems (see Fig. 1) with transfer functions

and

(23)

where and are obtained at theth step of the generalized
Schur algorithm, and the M̈obius transformations and

are defined as

(24)

Note that and satisfy
Therefore, the transfer functions and obey the
relation
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Fig. 1. Lattice filter interpretation of theith step of Algorithm 3.1.

After consecutive steps of Algorithm 3.1 we obtain two
cascade systems

and

(25)

that satisfy

(26)

The determinants of the transfer functions and can
be readily expressed as

(27)

where “ ” denotes proportionality. This shows that the zero-
and pole locations of and are uniquely determined
by the diagonal elements of and The next lemma
follows readily from (23) and (25).

Lemma 4.1 (Polynomial Transfer Matrices):If (re-
spectively, ) for all then [respectively, ] is
a polynomial (rather than rational) transfer matrix.

The main objective of this section is to show that the cascade
systems and inherently satisfy certain interpolation
conditions. In particular, we claim that the following statement
is valid.

Proposition 4.2 (Global Interpolation Properties):Let
and be as shown in (10), and let and be

suitable matrices so that Algorithm 3.1 terminates after the
th step. Then, obtained via (23) and (25) satisfies the

homogeneous interpolation conditions

(28)

for

For the proof, we shall need a lemma that characterizes
the local transmission properties of theth first-order section

To this end, note that the matrices obtained via the
non-Hermitian generator recursion inherit the Jordan structure
of In particular, if is the smallest index so that

then the eigenvalues of are
(with multiplicities
respectively).

Lemma 4.3 (Local Interpolation Properties):Let be
given by (10) and let be obtained at theth step of the
generalized Schur algorithm as shown in (23). Moreover, let

be the smallest index so that and
introduce the auxiliary indexes

The first-order section then satisfies the following (local)
interpolation conditions

(29)

(30)

for where denotes theth
row of

Proof of Lemma 4.3:Evaluate the consecutive rows of the
generator recursion (22). The 0th row yields4

(31)

where we used the fact that the upper-left corner element of
is exactly

Now let be an arbitrary index so that By
using the Riesz formula (8), it can be shown that theth row
of is given by

Thus

...

(32)

4Physically, (31) means that the first-order section���i(z) has a transmission
zero atz = �s; and the associated zero direction is given bygggi;0:
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Equations (31) and (32) validate (29). In a similar manner,
evaluating the th row of (22) for all that satisfy

validates (30).
Proof of Proposition 4.2:Let and

If then the recursive application of (30)
yields

...

(33)

Using (29) repeatedly times shows that

...

(34)

The homomorphism property (9) of the operator implies
that

(35)

Equation (28) follows immediately from (35)–(33).
The interpolation properties of the dual cascade can

be analyzed in a similar fashion. Here we only note that the
zero structure of is determined by the left null pair

(as seen from Proposition 4.2) while the pole structure
is determined by the right pole pair At the same
time, it follows from (26) that is a right pole pair,
and is a left null pair for the dual lattice (see [5,
Ch. 1–3] for a thorough study of the null and pole structure
of analytic and meromorphic matrix functions).

V. PARAMETERIZATION OF RATIONAL INTERPOLANTS

The homogeneous interpolation properties of de-
scribed in Proposition 4.2 can be converted into nonhomoge-
neous properties by using linear fractional maps. In particular,
let and be partitioned as

The following statement is then valid.

Proposition 5.1 (Rational Parameterization):Let
be as shown in (10), and let be obtained by executing
steps of the generalized Schur algorithm. Then, all solutions
of Problem 1.1 are given by

(36)

where and are rational
parameters that are analytic at and satisfy

for all

(37)

The existence of such a parameterization was first proved
in [4, Th. 5.1.2] by using a residual interpolation approach
(see also [5, Th. 16.4.1]). The generating system was
not obtained recursively in that context. In what follows, we
outline a rather different, inductive proof for Proposition 5.1
that relies on the recursive construction of

Proof—Sufficiency:Suppose and satisfy (37),
then (36) can be rewritten as where

Now, recall by (9) that is valid

for all Therefore, by Proposition 4.2

which implies that

Thus, if is nonsingular then

Hence the interpolation conditions (3) are satisfied.
Necessity:Let be a rational matrix function that

satisfies the interpolation conditions (3). We must show that
there exist suitable parameters and that satisfy (36)
and (37). Indeed, choose

or more explicitly
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Then

(38)

and therefore (36) is satisfied. Equation (38) further implies
that

thus (37) holds. It only remains to prove the analyticity of

at
Let us proceed by induction. By definition,

is analytic at for all The inductive assumption is that

(39)

is analytic at Now one must show that

(40)

is analytic at The inductive assumption along with
the expression

implies that each row of (40) is analytic atwith the possible
exception of the th row. In order to prove the analyticity of
the th row observe that

(41)

where (41) follows from the fact that transforms into
proper form. The proof is concluded by showing that

(42)

Indeed, let be the cumulative sum
of the indexes and assume that for

some Then (20) implies that and

(43)

(44)

(45)

(46)

where (43) follows from the fact that satisfies the
interpolation conditions (3), (44) follows from (39), (45)
follows from the homomorphism property (9), and (46) can be
verified by applying Lemma 4.3 recursivelytimes. Equation
(46), in turn, implies (42).

The parameters and in Proposition 5.1 are
not unique. Indeed, let be any rational
matrix function analytic at so that If the
parameters and satisfy (37) and correspond to an in-
terpolant then the parameters and
also satisfy (37) and correspond to the same interpolant. It
is possible to obtain a slightly different characterization for
the family of interpolating functions in terms ofright coprime
polynomialparameters which areuniqueup to a unimodular
factor.

Proposition 5.2 (Polynomial Parameterization):Let
be given by (10), and let be obtained after executing
steps of the generalized Schur algorithm. Then all solutions of
Problem 1.1 are given by

(47)

where and are right
coprime polynomial matrices chosen so as to satisfy

for all

(48)

The parameters and which correspond to a
particular interpolating function are unique up to a
unimodular right factor.

Proof: A simple algebraic proof can be found in [21, pp.
127–128].

So far, we did not make any particular assumption about
the pole structure of the transfer matrix If we further
assume that is a polynomial matrix (i.e., all of its poles
are at infinity), then the linear fractional parameterization
formula (47) givesmatrix fraction descriptionsfor all rational
interpolants

Corollary 5.3 (Matrix Fraction Description):Let
be given by (10) and let be obtained after executing
steps of the generalized Schur algorithm. Assume, furthermore,
that for all Then is a polynomial matrix
and all solutions of Problem 1.1 can be obtained as
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where the polynomial matrices and
are given by

(49)

for some right coprime polynomial parameters and
that satisfy (48). The coprimeness of and

implies the coprimeness of and and vice-
versa. The pair provides a matrix fraction
description for the rational interpolant

Proof: Lemma 4.1 implies that is a polynomial
matrix whenever for all The rest of the statement
follows from Proposition 5.2 if we take into account that
is a polynomial matrix. We only need to prove the claim about
coprimeness.

Two polynomial matrices are right coprime if and only
if, they do not have a common right eigenvector. It follows
from (49) that if and have a common right
eigenvector then and also have a common right
eigenvector. Thus, the right coprimeness of and
implies the right coprimeness of and

Conversely, assume that and do not have a com-
mon right eigenvector. Since is invertible on

and cannot have a
common right eigenvector over this set. On the other hand, by
(48), is invertible over Therefore,
it cannot have a right eigenvector over this set either. It follows
that and are right coprime.

VI. SOLUTION OF PROBLEM 1.1

In a triangular factorization problem, the matrixis given
in advance and the main goal is to find lower triangular arrays

and such that the displacement rank
is as small as possible. If is strongly regular, its

triangular factors can be computed efficiently by using the
generalized Schur algorithm. In connection with interpola-
tion problems the situation is somewhat different. The triple

is constructed first from the interpolation data as
shown in (10). Next, the generator recursion is used to obtain
a rational matrix function that makes it possible to
parameterize the solution set. In fact, it is not necessary to
compute explicitly in order to proceed with the recursion.
The bottom line of the above discussions is that the generalized
Schur algorithm provides a fast recursive method for solving
Problem 1.1.

Algorithm 6.1 (Main Algorithm)

Stage I: From the interpolation data, form the arrays
and as shown in (10). Set and Repeat
the following steps for

Step 1: Let where denotes the
first elements and denotes the last elements of

• If but then the interpolation data is
contradictory.

• If both and then the interpolation data
is redundant. Set and go to Step 3.

Step 2: Choose a nonsingular matrix which trans-
forms into proper form with a single nonzero entry in
one of the first positions:

where

(50)

Step 3: Choose such that and
for all

Step 4: Obtain as

Step 5: Update the generator as

where
Stage II: Compute

and evaluate for all
Remarks:

1) The computational burden ofStage I is flops.
The computational burden ofStage II is flops
for each extraction point

2) Stage Iof the algorithm can be looked at as a prepro-
cessing step. The generating system is synthesized as
the product of elementary first-order sections. This form
makes it possible to evaluate any rational interpolant at
any given point.

3) There are no break-downs in the algorithm. There is no
need to use higher order sections (look-ahead steps).

4) It is not necessary to choose the arraysand in
advance. It is enough to “dynamically” select the scalar

at the moment when it is needed in the algorithm.
5) According to (50) the pivot elements are always chosen

from the first positions of This ensures that
so that and satisfy

(37). Thus gives a particular
solution to the unconstrained interpolation problem.

6) The additional degrees of freedom in and can be
used to improve numerical accuracy or to impose ad-
ditional constraints on the interpolants. Some particular
examples include:

a) can be a unitary matrix (implemented as a
sequence of elementary Givens rotations and House-
holder projections). This choice might be useful
from a numerical point of view. In this case
is obtained as the product of simple unitary and
diagonal factors.
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Fig. 2. The feedforward lattice.

Fig. 3. The feedback lattice.

b) can be chosen in upper triangular form for all
In this case is upper triangular, and Proposi-
tions 5.1 and 5.2 provide anaffine parameterization
for all rational interpolants (see Section VIII).

c) If for all then is a polynomial
matrix. This feature can be used to solve polynomial
interpolation problems such as the general Hermite
problem (see Section VIII) or the minimal interpo-
lation problem (see Section IX). In general, can
be used to preassign the poles of

d) Suppose that the interpolation points lie in the
interior of the open unit disc. Under this assumption,
the special choice and a -unitary (sat-
isfying lead to a -lossless generating
system and to a Schur-type interpolant (analytic and
uniformly bounded in the interior of the open unit
disc). Such a choice for is possible if and only if,

(see [5], [6], and [9] for such constrained
interpolation problems).

VII. PHYSICAL INTERPRETATION

Algorithm 6.1 corresponds to the synthesis of a-input
-output feed-forward cascade system with

consecutive sections (see Fig. 2). The transfer
function of the feed-forward cascade satisfies the ho-
mogeneous interpolation conditions of Proposition 4.2. The
linear fractional map of Proposition 5.1 can be interpreted
physically by reversing the signal flow of the bottomlines
of the feed-forward lattice and by attaching a load5

to the right-hand side (see Fig. 3). The I/O
description of the first-order sections in the feedback lattice

5If QQQR(z) is not invertible, the load can be described by the implicit
relation yyy(z)QQQR(z) + uuu(z)PPPR(z) = 0; whereuuu(z) and yyy(z) denote the
input and output variables, respectively.

are given by

In circuit theory, is called thescattering matrixwhile
is called thechain scattering matrixassociated with

the th section. The global transfer function of the feedback
lattice is given by

where denotes the so-calledRedheffer star-product. Now, the
rational interpolant is obtained as the negative transfer
function from the top-left input lines to the bottom-left output
lines of the scattering cascade when the right-hand side is
attached to the load

In fact is constructed recursively via the generalized
Schur algorithm by attaching additional sections to the feed-
back cascade. The new sections are introduced in such a way
that they do not interfere with the interpolation properties
of the preceding sections. The closed-loop transfer function

satisfies the prescribed interpolation conditions inde-
pendently of the load (as long as is analytic at the
interpolation points).

There exists a strong analogy between the scattering rep-
resentation of the generalized Schur algorithm and the dis-
cretized version of a physical transmission line; this analogy
shows that the generalized Schur algorithm nicely solves many
inverse scattering problems (see, e.g., [22] and [23]).
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VIII. POLYNOMIAL INTERPOLATION

The primary goal in this section is to parameterize the
polynomialsolutions of Problem 1.1. In order to accomplish
this task, we need to first obtain a polynomial generating
system inupper triangular form.

Proposition 8.1: In Step 3 of Algorithm 6.1, choose
Moreover, construct in upper triangular form. This can be
done by choosing the left-most nonzero element in as a
pivot element. The above choices lead to

(51)

where and are polynomial
matrices such that

and

(52)

Proof: Since for all it follows from Lemma 4.1
that is a polynomial matrix. If we choose the left-most
nonzero element in as a pivot element, then can be
constructed in the following form:

...
...

...
...

...
. . .

...

...
. . .

...
...

...
. . .

...

where the “ ” ’s denote nontrivial entries. In this case, the first-
order factors as well as the transfer function are
upper triangular. Since the pivot elements are chosen from
the first positions, the relation must hold. The
statement about the determinant of follows from (27).
Note that the last step does not increase the McMillan degree
of

Corollary 8.2 (Affine Parameterization):Assume that
is an upper triangular polynomial matrix as shown in (51).
Then all solutions of Problem 1.1 are given by

(53)

where and are right
coprime polynomial parameters such that
In particular, is a polynomial solution of Problem 1.1.

Let denote the rational parameter
that appears in (53). It is evident that (53) establishes a one-
to-one correspondence between the set of rational interpolants
and the set of rational matrix functions that are analytic at

Moreover, the affine map (53) preserves analyticity,viz.,
is analytic at if and only if, is analytic at

This feature can be used to parameterize all rational
interpolants that are “stable” in a certain region.

Corollary 8.3: All solutions of Problem 1.1 that are analytic
in a prescribed region are given by

(54)

where is some rational parameter that is
analytic in

In particular, note that in (54) is a polynomial in-
terpolant if and only if, is a polynomial parameter.
Hence, the polynomial solutions of Problem 1.1 can be readily
parameterized.

Example: Let denote the space of scalar polynomials
with degree not exceeding and let denote the space
of matrices whose elements belong to

Problem 8.4 (Hermite Matrix Interpolation):Let
be a set of distinct points. With each point associate

constant matrices Find a polynomial
matrix that
satisfies

(55)

Problem 8.4 can be recast into a tangential framework by
introducing

and

where both and contain exactly blocks. Now, (55)
can be written as

Equation (55) imposes independent constraints on
Thus, (55) must have auniquesolution in the dimensional
space This solution is called theHermite matrix
polynomial. The following special cases often occur in the
literature [24].

• Simple Hermite problem(or osculatory interpolation):

• Lagrange interpolation:
(with the Lagrange matrix polynomial as a unique

solution).
• Taylor interpolation: (with the Taylor

matrix polynomial as a unique solution).

Solution of Problem 8.4:Construct the arrays as
shown in (10). In this special case Proposition 8.1 gives rise
to an upper triangular generating system of the form

(56)

Due to the special structure of the (1, 1) entry of
(56) can be written as where

The pivot elements are chosen exactly
times from each of the first, second, th positions, and
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therefore cannot have an element whose degree is larger
than Thus, by uniqueness, must be the Hermite
matrix polynomial.

In the Appendix two examples are presented for the scalar
Hermite and the matrix Taylor problems. In [15] we thoroughly
discussed the scalar Lagrange problem.

IX. M INIMAL TANGENTIAL INTERPOLATION

Assume that is a polynomial matrix. By definition,
the McMillan degree of the interpolating function

is equal to the McMillan degree of the poly-
nomial matrix

In connection with Problem 1.2 one has to minimize the
McMillan degree of over all possible
polynomial matrices and under the constraint

In [2], Antoulas
et al. pointed out that this problem can be solved by construct-
ing the parameters and in polynomial echelon
form, provided that is a column-reducedpolynomial
matrix. In what follows, we show how to modify Algorithm 6.1
so as to obtain the generating system in column-reduced form.

Suppose the transfer matrix
of the first sections is column-reduced (i.e., the

degree of the determinant is equal to the sum of the column
degrees). The question is how to construct the next section

so that the multiplication

(57)

preserves column-reducedness. By setting the transfer
matrix can be expressed as

Multiplication by the diagonal factor obviously preserves
column-reducedness (it increases both the degree of the deter-
minant and the sum of the column degrees by one). Therefore,
we need to concentrate only on the constant factor
Multiplication by does not change the degree of
Thus, the objective is to design in such a way that the
multiplication in (57) leaves the column degrees of
unaltered. This can be done in the following manner.

Lemma 9.1 (Column-Reduced Transfer Matrix):Let
be a column-reduced polynomial matrix with column degrees

and let Choose
an index so that

In other words, let be the smallest among the column
degrees that correspond to a nonzero entry in Determine

so that

...

...

(58)

with The polynomial matrix then
remains column-reduced.

Proof: Multiplication by means adding the scaled
version of the th column of to the other columns. Since
the degree of theth column is not larger than the degree of
any other column in the matrix, this operation does not change
the column degrees of

The following algorithm shows how to keep track of the
column degrees of the generating system

Algorithm 9.2 (Minimal Interpolation):

Stage I: Construct and as shown in (10). Set
and Repeat

the following steps for
Step 1: Same as Step 1) in Algorithm 6.1.
Step 2: Construct as shown in Lemma 9.1. Let

denote the position of the pivot element.
Step 3: Choose
Step 4: Obtain as

Step 5: Update the generator as shown in Step 5 of
Algorithm 6.1, and set

Stage II: Now is
column-reduced. with column degrees The family
of minimal interpolants can be parameterized by choosing

and in a special polynomial echelon form as
shown in [2].

In the generic case, the pivot elements can be chosen
cyclically from the 1st, 2nd, th positions of This
leads to a characteristic feedforward cascade where the delay
elements lie successively in the first, second, th line (see
Fig. 6 in the Appendix).

Furthermore, the column degrees are
identical to the controllability indices of the pair
In this manner Algorithm 9.2 can be used to compute
the controllability indices of any pair where
is in Jordan canonical form.

X. CONCLUDING REMARKS

We have developed a fast recursive algorithm for solving
the left-sided tangential interpolation problem. The basis of
the presented method is a generalized Schur-type algorithm
originally developed in the context of recursive factorization
of non-Hermitian matrices possessing displacement structure.
The advantage of this approach is multifold. First, the recursive
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Fig. 4. The Hermite lattice in the scalar case.

algorithm allows us to update the solution whenever a new
interpolation point is added to the input data set. Second,
the matrix whose inverse appears in earlier solutions (see
Section I-B) does not have to be invertible or strongly regular.
There are no break-downs and no singular minors in the algo-
rithm. The generating system is constructed in cascade form by
using only first-order sections. Third, the inherent freedom in

combined with certain characteristic pivoting schemes can
be used to improve numerical accuracy, and impose additional
constraints on the interpolants. In particular, we have obtained
a recursive solution for the minimal tangential interpolation
problem.

APPENDIX

Example 1: Scalar Hermite Interpolation

Let and Find a scalar polynomial
with degree such that

The number of nodes is The associated multiplicities
are The input arrays of the generalized Schur
algorithm are

i.e., contains two Jordan blocks of size 2. Four consecutive
steps of Algorithm 3.1 yields the generating system

The Hermite interpolating polynomial
can be physically implemented as the negative

transfer function of the feedforward lattice from the top left
input to the bottom right output in Fig. 4. Note that the

Hermite polynomial can be represented in the Newton basis
as

The set of all
interpolating polynomials can be parameterized as

where is an arbitrary
polynomial. Note that implies
Thus the Hermite polynomial has minimal degree in the set of
polynomial interpolants. The set of all rational solutions can
be parameterized as

where and are polynomials such that
for

Example 2: Matrix Taylor Interpolation:

Let be a complex point. Find a polynomial matrix
such that

In the matrix case each point gives rise to two tangential
constraints. Therefore, and

Four iterations of Algorithm 3.1 yields the generating system
shown at the bottom of the page.

Thus, the Taylor matrix polynomial is given by

Fig. 5 depicts a physical implementation of
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Fig. 5. The Taylor lattice in the matrix case.

Fig. 6. Feedforward lattice with a column-reduced transfer matrix.

Example 3: Minimal McMillan Degree Interpolation:

Let and be three points. Find a
rational matrix with minimal McMillan degree
such that

Now and the initial arrays are

Four iterations of Algorithm 9.2 yield the transfer matrix

Fig. 6 shows that the delay elements of the lattice sections
are located repeatedly in the zeroth, first, and second scalar
channel. This characteristic configuration yields a column-
reduced transfer matrix. The column degrees of are

The minimal interpolants have
McMillan degree and all of them can be
parameterized as

where are scalar parameters such that
for
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