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A Recursive Method for Solving Unconstrained
Tangential Interpolation Problems

Tibor Boros, Ali H. SayedMember, IEEE and Thomas Kailathl,ife Fellow, IEEE

Abstract—An efficient recursive solution is presented for the tangential interpolation conditions of the form
one-sided unconstrained tangential interpolation problem. The
method relies on the triangular factorization of a certain struc- viY (o) = wy
tured matrix that is implicitly defined by the interpolation data.
The recursive procedure admits a physical interpretation in  whereay are given complex numbers and whexg and wy,
terms of discretized transmission lines. In this framework the are] x p and1 x ¢ complex vectors, respectively.

generating system is constructed as a cascade of firstorder ;g haner geals with a generalization of these problems that
sections. Singular steps occur only when the input data is contra-

dictory, i.e., only when the interpolation problem does not have IMPOSeS tangential interpolation conditions bothl6f) and
a solution. Various pivoting schemes can be used to improve On its derivatives. We describe an efficient recursive algorithm
numerical accuracy or to impose additional constraints on the for computing the rational interpolants and show how to handle
'f”terﬂo'ar,‘ts- lT,he algolnthm 3'30 pro‘é'des coprime faCtorl'Zat'OUSI minimality constraints recursively. This will be achieved by
for all rational interpolants and can be used to solve polynomial \qin 4 generalized Schur-type algorithm originally developed
interpolation problems such as the general Hermite matrix inter- . o ;
polation problem. A recursive method is proposed to compute a fof the fast triangular factorization of structured matrices and
column-reduced generating system that can be used to solve theby exploiting some degrees of freedom in its description (see
minimal tangential interpolation problem. [13] for a review on matrix factorization). Relations to earlier
Index Terms—interpolation, matrix decomposition, numerical Work will be presented after a formal problem statement.

stability, polynomial matrices, rational functions, rational matri-

ces. A. Problem Statement
Let C(z) denote the field of scalar rational functions of
[. INTRODUCTION a single variablez € C and C’*?(z) the linear space of

VERAL problems in control, circuit theory, and digital? <4 r’?tional matrix functions defined ovexz). Furthgrmore,

iiter design can be reduced to the solution of matrix rdét 7~ be an operator that maps(z) < Cpxq(zz m:o an
tional interpolation problems which have been widely studigdPPer triangular Toeplitz block-matrid’y (z) &€ C**™(z),
(see, especially, [1]-[8]). This paper treats left-sided ta@S Shown in (1) at the bottom of the next page, whefeé(z)
gential interpolation problems with and without minimalityStands for theith derivative ofY'(z). . .
constraints. Applications occur, for example, in minimal partial Problem 1.1 (Unconstrained Tangential Interpolation):

realization [1]-[3] and in th&)-parameterization of stabilizing Con5|de1r a set of po'”lt@k}zgl and two sets of row vectors
controllers for unstable plants [9]-[12]. {ur}iZo and{w};Z, such that

In its simplest form, an interpolation problem would ask for an €C (2a)
rational functionsy(z) that meet the interpolation conditions Lxp
y(ax) = wy for given complex numbers;, and wy (k = o=k w2 o vke], Wi €C (2b)
0,1,---,m — 1). The interpolants can further be required to wx =[wx,1 wk2 -+ wrr], wii €CL (20)

have minimal complexity measured in terms of their McMillan
degree. An extension of this problem to the vector case would

ask for p x ¢ rational matrix functionsY(z) that satisfy 1) Given the nodesy; and the associated vectoss and
wy, find all rational interpolant¥(z) € CP*%(z) that

_ _ _ are analytic at> = 4 and satisfy the interpolation
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there are no other constraints on the location of poles of therather different problemyiz., the triangular factorization
interpolants. At the same time, in this paper we also investiggimblem for non-Hermitian matrices possessiigplacement
the following constrainedinterpolation problem. structure [9], [14]-[13].

Problem 1.2 (Minimal Tangential Interpolation)Given The factorization of a non-Hermitian matrix can be naturally
the nodes«; and the direction vectors, and w; as in associated with twdp + ¢)-input (p + ¢)-output feedforward
(2), find all rational matrix function®”(z) € C?*(z) so that cascade systems denoted@®yz) andI’(z). Each step of the

* Y(z) is analytic atz = «, and satisfies the interpolationalgorithm determines first-order (lattice) sections in each of the

conditions (3); two cascades. The elementary sections obtained this way have
« the complexity ofY (z) (measured in terms of its McMil- transmission zeros: certain inputs at certain frequencies yield
lan degree) is as small as possible. zero outputs (this is a general property of any linear system).

When the sections are designed appropriately, thészl"

transmission zeros combine to yield gldbal’ transmission

i i o . zero (see Proposition 4.2 below) which can be used to solve
Prior work on the unconstrained tangential interpolation, ,nstrained rational interpolation problems. This approach

problem. has bee_n largely carried out by Bajlal. [4], [51' has been successfully used in various other interpolation

The main result in [4] states that the family of all ratlona{)mmemS as well (see, e.g., [6] for Schur-type and [15] for

functions that satisfy (3) can be parameterized in terms Bﬁconstrained interpolation problems).

a certain linear fractional map. Specifically, it is possible to The matrix R that we factor here igmplicitly determined
translate the interpolation data into a so-calleft null pair via a non-Hermitian displacement equation of the form
{F,G} that describes the zero structure ofpat q) x (p+q)

B. Connections to Earlier Work

rational matrix function denoted by R - FRA" = GJB” (5)
o) = [911(2) 912(2)} where F,G, and J are constructed directly from the inter-
O11(2) On(2) polation data [as shown in (10)], whild and B are free

parameters that can be chosen to guarantee that no breakdowns
occur in the recursive algorithm. In contrast to the methods in
[4] and [15], the pair{A, B} does not have to be known
Y (2) =[011(2)P(2) + O12(2)Q(2)] in advance; the relevant entries can be chosem the fly
) -1 when they are needed in the algorithm (see Algorithm 6.1).
[O21(2)P(2) +O(2)Q() ) The additional degrees of freedom {, B} can be used
for some rational matriced®(z) and Q(z). To compute a to impose various constrains on the rational interpolants (see
suitable generating syste@(z) (which incidentally is called Section VIII). We further note that in this approaéh does
the resolvent matrixoy the Odessa school of operator theory))ot have to be invertible or strongly regular, or even explicitly
one has to first construct a so-calleght pole pair {4, B} so known.

Reference [4, Th. 5.1.2] then states tl&fz) satisfies the
interpolation conditions (3) if and only if, one can write

that the solutionk of the Sylvester equation The main results on minimal interpolation problems to this
date appear in [1] and [3] where it is shown that, in the special
FR—-RA=GB case when the transfer functic®(>) is a column-reduced

is invertible. Then@(z) can be obtained from a global State_polynomial matrix, it is possible to extract the admissible

space formula that ivolveB, G, A, B, and K™ (see [5. pp. (o008, T STMOELY B CE OF 8 BADS, T O
23-24, 74, and 103] for the exact definition of left null pair plexity P

. ) : S('4). In the scalar case, Antoul&s al. suggested first finding
right pqle pairs, and null-pole ”'p'?‘s)- . the Lagrange interpolating polynomial and then applying long
In this paper, we present a differemécursive method

. . division (Euclidean algorithm) to obtai®(z) in column-
which can be used to compute the generating system as a ( g ) (%)
product of elementary first-order rational matrix functions. in principle, the signature matrix on the right-hand side of (5) could be
The recursive technique allows us to upda@) whenever merged inta& or B. However, the present form allows us to remain consistent
. lati .. dded he i d Twith Schur-type interpolation problems where the underlying displacement
a new interpolation point is added to the input data set. TRg,azion can be written &8 — FRF* = GJG*, ie., A = F andB = G

aforementioned algorithm was first studied in connection with3], [6].

Yo %Yu)( ) %Y@)(z) G _1 1)!Y(k—1) ”
1.4 1 s
T Y () o Th(2) = " Fi ))(Z) * 2)'YEZE; &)
R :
| v
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reduced form [1], [2]. Since it is difficult to extend this method The next problem is borrowed from [12] (see also [5, Ch.

to the tangential case, one is obliged first to find a gene2s], [10], [11], and [17]).

transfer matrix@(z) by using an unconstrained algorithm. In Problem 1.4 Q-Parameterization for Unstable Plants)-et

the next step the generating systéf{r) must be transformed P(z) € CP*4(z) (p < q) be a strictly proper rational plant,

into column-reduced form via a sequence of elementary (uhiaving unstable poles at; with corresponding multiplicities

modular) transformations [16]. A detailed algorithm for the, (k¥ =0,---,m — 1). Assume, furthermore, that the Laurent

construction of a column-reduced rational matrix functioexpansion ofP(z) at z = «y is given by

from a given null-pole triple has recently appeared in [7].

The corresponding solution set is parameterized via a global i p

state-space formula, but it is not immediately obvious how P(z) = Z Py - (7 — ),

to update the solutions when a new pole or zero is added to =R

the input data. set. In our apprqach, a s_uitable cqump—reducﬁ%d all controllersC(z) € C%*? so that each entry of the

transfer function can be obtainedcursively by combining .

o . ) . . closed-loop transfer matrix

the non-Hermitian generator recursion with a special pivoting

scheme. Ho(s) = [Ip ~PQ —(I,- PQP
euATsT Q 1,-QP

Q=C(,+PC)!

PkJ' € Crxe,

C. Applications

In order to motivate applications we briefly mention the
following two problems that arise in control and circuit theoryis stable.

Problem 1.3 (Minimal Partial Realization [3], [S], [16]):  Solution: It can be shown (see [12] for the details) that
Let Wo,Wy,--- , W1 € CP* be the partial impulse H,_,(») will be stable if and only if the rational matrix function
response of g-input g-output linear multivariable system.Q(») is stable (i.e., analytioutsidethe open unit disc) and

Find all admissible transfer functiori(~) € CP*4(z) that satisfies the following tangential interpolation conditions for
match the measured da#; for ¢ = 0,---,L — 1. Which of . = 0,1,---,m — 1:

these rational models have the minimal McMillan degree?

Solution: Introducing the arrays Pr—rp Pr—wy1 - Pro -+ Pky,,k_l]Tg’“ (o)
V=[p Opxp -+ Opyyl s et Tk

and applying the relatio®; = (1/i!)Y9(0) leads to the The stable rational solutions of (7) can be parameterized by
following tangential interpolation problem: Find all rationatsing the Hermite interpolating polynomial (see, e.g., [5] and

matrix functionsY (z) € CP*¢(z) that satisfy [18]). Computing the Hermite polynomial via a generalized
Schur-type algorithm is discussed in Section VIII belows
VTL0)=w. (6)

It is apparent that each row dP and W corresponds to
a tangential interpolation constraint on the rational functi Lo
Y (z). Each constraint involves the derivatives¥tz) up to . Preiiminaries . . _
the (L — 1)th order. Thus, the interpolation data set consists Let C[z] denote the ring of scalar polynomials of a single
of p nodesag = a; = --- = a,_; = 0 with corresponding variablez € C, andC?*[z] the module ofp x ¢ polynomial
multiplicities o =, = --- = r,_; = L. matrices defined over the ring[z]. The expressioY (z) =
In the scalar case = ¢ = 1, thus (6) collapses to oneN(2)D™*(z) whereN(z) andD(=) are polynomial matrices,
tangential constraint at, = 0, which involves the derivatives IS called amatrix fraction descriptiorof the rational function
of y(z) € C(z) up to the(L — 1)th order Y(z).
A polynomial matrix is calleccolumn-reducedf its leading
i o - 0 column coefficient matrix has full rank. A square polynomial
Y(0) ly(l)(o) . 1 y(Lfl)(O) matrix is column-reduced if and only if, the sum of its column
1 (L—1)! degrees is equal to the degree of its determinant.
y(0) 1 y=2(0) The complexity of a polynomial matriX(z) is measured by
(L —2)! its McMillan degreeé{Y (z)}. In particular,6{Y(z)} can be
: determined by transformin’(z) into column-reduced form
4(0) and taking the sum of the column degrees. By definition,
the McMillan degree of a rational matrix functioi(z) =
Nr(2)Dg*(z) is equal to the McMillan degree of the associ-
Computing the solutions of the interpolation problem (6ated polynomial matri>{N£(z) Dﬂ(z)]T (see, e.g., [16]).
by using a generalized Schur-type algorithm is explained inLet F' € C™*™ be a constant matrix and lé{z) € C(z) be
Sections IV=VI. Selecting the minimal interpolants from thia scalar function that is analytic at the eigenvalueg'ofThe
solution set is discussed in Section IX. m value of ¢(-) on the matrixF' can be defined via thRiesz

I[wo wyr o wL—1]-
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formula which shows that solving a tangential interpolation problem
1 o is equivalent to solving a matrix Padpproximation problem
() = i /(ZIn —F) " ¢(z)dz (8)  where the Taylor coefficients obey a set of linear constraints.
~

Thus letF', G, and J be three arrays constructed from the
where v is a rectifiable simple contour that surrounds thgterpolation data as

spectrum ofF’ (see, e.g., [5, p. 597]). It is especially easy to

evaluate this integral wheR is a Jordan matrix. For example rTo
rfo 1 o J1
r= fO . ' - d)(F) L jrn—l
ol [ Vo Wy
- 1 o 1 a-| " Wz v wl, J [IP }
¢(fo) =M (fo) "D (fo) o : N ’ B -1,
1! (n—1)!
. _Vrn—l Wrn—l
= ¢(fo) : (10)
1
ﬁd)(l)(fo) T XT TEXp T Xq
'd)(fo) where Jy € C+*" V, € C>*? and W, € C"*? are
- defined by
=T5(fo)-
. . . . . [y Vg1
Finally, observe that the operatdt* defined in (1) satisfies 1 o Vi o
the relation T = ] ) ; Vi = ’
TkY‘gyl (Z) = TkYo (Z)T§1 (Z) (9) L 1 (a4 vk:"’k
for any two rational matrice¥ o(z) € CP*¢(z) andY(z) € [ Wit
C?**(z). By induction, this statement can be extended to _ | k2
the product of a countable number of rational matrices. In b :
particular, T*: CP*P(z) — Ck*#(3) is an algebra homo- Lwic r,

morphism.

This paper is divided into nine sections. In Section Il, w&he triplet {7, (o), Vi, W} carries all information about
state a sufficient and necessary condition for the solvabilitlye kth tangential interpolation constraint. The following state-
of Problem 1.1. In Sections Ill and IV we briefly reviewment is now valid.
the non-Hermitian forward generator recursion and the as-Proposition 2.1 (Solvability Condition)Problem 1.1 is
sociated cascade system interpretation. Section V deals vgivable if and only if
various parameterization schemes for the family of rational

interpolants. The main algorithm that solves Problem 1.1 Im W eIm [V FV FV ... F==x"ly] (11)
appears in Section VI, while Section VIl contains the physical
interpretation of the results in terms of discretized transmissi@fherer,,,,. = max {ro, 71, -, 7m_1}. m

lines. Section VIII deals with polynomial interpolation prob- |n system theoretical terms, the unconstrained tangential
lems such as the general Hermite matrix interpolation probleroblem is solvable if and only if the columns B lie in the
In Section IX, we obtain a generating system with a columigpntrollable subspacef the pair{F, V'}. If the pair {F,V} is
reduced transfer matrix which gives a nice solution to th&ntrollable then Problem 1.1 can be solved for any right-hand
minimal rational interpolation problem. Concluding remarksjqew  If {F, V1 is not controllable but the columns ® lie
are given in Section X. o in the controllable subspace ¢F,V'} then the interpolation

It may be useful to note that, when specialized to the scal@ita is redundant. Finally, if the columns Bf do not lie in
case, the procedures of this paper exhibit several improvemegis controllable subspace fF, V'} then the interpolation data
over the scalar algorithm that we had presented earlier in [1R]. contradictory. A sufficient condition for the controllability

In particular, here we have a simpler procedure for avoidz r i 1 can be formulated in terms of the direction vectors
ing breakdowns and for obtaining column-reduced generatlgg " as follows:
) .

systems. Lemma 2.2 (Controllability):If v, # 0 for all &, and
the vectorsvy,i,vi+1,1,--,vk4,1 are linearly independent

Il. SOLVABILITY CONDITION wheneveray, = ajy1 = -+ = gy, then the paiF,V} is

Problem 1.1 may fail to admit a solution when the intersontrollable. [

polation data is contradictory. The solvability issues of one- In particular, the interpolation problem is always solvable
and two-sided tangential interpolation problems have bewafen the nodesy. are distinct andv;, ; # 0 for all k.

analyzed in [19] by using a residual interpolation framework. Proof of Proposition 2.1 and Lemma 2.2—Part Ret us

In this section we present a more direct algebraic approadinst consider the special case when the interpolation points
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coincide. Assume therefore that for some coeI’“ficients{Y(i)(a)};’gg"_]L that satisfy the linear
constraints (13).

ObtainingY (z) from a given set of coefficient¥ ) (@) is
the well-studied matrix Pd&dapproximation problem, which
always has a solutiohThus Problem 1.1 is solvable if and

Qg =1 = "+ = Qp—1 = Q. (12)

The kth tangential constraint can be rewritten as

Ug 1 only if the linear system (13) is solvable. The solvability
Uk 2 Vg1 condition for (13) is, in turn, given by
Vg3 Vg2 Vg, 1 ) ) L
ImWelm[V 2Z V 2zv ... zU=="Yy] (14)
Uk, ry, i Ukr—1 Uk, —2 " Uk,1 Multiplication by a nonsingular matrix from the right leaves
Y (@) the column space d¥ 2V ... Z"m=~DVy] unaltered.
oy Therefore, (14) can be re-expressed in termB'ef Z+al as
Y (a) W1
1y @ W2 ImWelV ZvV ... Z="1y]
2! = | "ks3 il al @1 - i :
: I 2al - (rpex— Dam="21
1 W,y
7Y(T’“_l) o Tmax — 1 —Pmax—3
L (s — 1)! (a)_ . r - < > a 1
or more compactly as
Vi Zo Vi ZIVie - ZF V] J
Y (@) - S :
=V FV ... Fo="V].
1 =W This proves Proposition 2.1 in the particular case when (12)
WY@FU(@ is valid. It is easy to see that the coefficient matrix in (13)
Tk — .

has full rank whenever the vectots 1, vy 1, ,VUm—1,1 are
where Z,, denotes the+, x 7, lower triangular shift matrix linearly independent. This proves Lemma 2.2.

with ones below the main diagonal. The set of all interpolation Part B: In general, the interpolation data contains several
conditions can be expressed as shown in the equation at 38¢& of coinciding nodes. Without restriction of generality,

bottom of the page, or, equivalently, as assume that the interpolation points can be arranged finto
] subsets as
v zv Z°v ... Z™meTly]
Y (@) Qg = Q1 = -+ = Q-1 = Qo
Y(l)(a) Qg = Qg +1 = * " = Omg+m—1 — aq
=W (13)
1 ' Cg+evodmy,_o = 77 = QOmgteedmy, 1 —1 = a1 (15)

) 'Y(rmaxfl)(a)

(e = 1)! where the nodeg@,}; -, are distinct. Now introduce the
whereZ =Z%,, &4, &---® Z,,,_,. Problem 1.1 can now auxiliary indexes

be reformulated as follows: Find all rational matrix functions

Y (») that can be expanded at= & as f—
(7) P “ I’L():Oa szmi, £:1a2aL_1
=0

« @ — 1
Y(2)=Y(@) + YO @) —a) +- + T
Pmax—1) (= —\("max—1 —\Tmax 2Also note that the matrix Pédproblem can be reduced to a set of
v )(a) (=~ a)( ) +O0{(z - @) } independent scalar Pagroblems.
Y(a)
Vo Z,Vo Zzo Vo e Z:,;axflvo 0 e
Vi Zm V1 Zgl Vi . Z:T”_IVl e
V’rn—l Z’lw.m,—l V’rn—l sz—l V,,n_l - Z:::yajl—lvnl_l 1 Wnl_l

Y(”’maxil) -
(Tmax - 1)‘ (a)
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and define the array&F,, V., W }[Z,) as and
[T e EO
_ T, W,
Fg _ e+l . W= .
- jm'-l-mc—l Wit
V. W .. . . .
e e This proves Proposition 2.1 in the general case. |
- VHH-l — WHH-I
Vé = . ) Wé = .
%4 W ' lll. TRIANGULAR FACTORIZATION AND
LY petme—1 fetme—1

THE GENERALIZED SCHUR ALGORITHM

By repeating the arguments of Part A for each subset inThe key step in our approach to rational interpolation is

(1.5).' Problem_l.lLEeIn _be reforn_’nulated as fOHOW.S: Given the, an apparently unrelated matrix factorization algorithm that
distinct nodeqa, },, , find all rational matrix functiond"(z)

h b dod ate o we review in this section. To this end, |& € C**™ be a
that can be expanded at= @, as structuredmatrix that satisfies a displacement equation of the
1 form

Y(2) =Y (@) +YP(@)(z—a)+ -+ (Famas — D)1

. . R—-FRA" = GJB" 19
Y oD ) (2 — ) nes ) 49
+ Of(z —avg)™} where@, B € C"*" (n > r) are full-rank generator matrices,

‘ ] J € C™*" is a signature matrix of the form
for some coefficientY ) (@,)} 2=~ that satisfy the linear

constraints

1 0
o N JIIPGB—IqI[é’ _I} ptg=r
[V[ .V, ZéV[ s Zémax Vg] q
(1) and F', A € C™*"™ are lower triangular matrices with diago-

Y (@) o nal entries{ fo, f1,- -, fn—1} and{aog, ay, -, a,—_1}, respec-
=W, (16) tively. The quantityr = rank{R — FRA"} is called the
displacement rankf R with respect toF' and A. In the rest
1 y(r.m—l)(z) of the paper we shall assume that- f;a} # 0 for all i and
(Tmax — 1! 7 so that (19) has a unique solution fBt In connection with

interpolation problemd” will be a Jordan matrix as defined

whereZ, = Z,, &Z,,41P - ®Z,, +r,—1. If the coefficients in (10) so that

Y@ (@) are known, then the rational interpolarig~) can
be obtained by solving a multiple-point matrix Ragroblem

which is guaranteed to have a solution. Therefore, Problem fo=hi==fha=a
1.1 is solvable if and only if fro =fro41 = = fro4m—-1 =01
MW, elm[V, ZV. Z.V, --- Z " %)
for all 4. (17) f7‘0+'“+7’m72 == f7‘0+---+1‘m,2+1‘m,1—1 = Qppp—1- (20)

If the assumptions of Lemma 2.2 are valid, then the coefficientThe classical method to compute the triangular factors
matrix in (16) has full rank and therefore (17) holds fopf R is provided by the well-known Gauss/Schur reduction
any W,. This concludes the proof of Lemma 2.2. By usingrocedure

nonsingular transformations it can be shown that (17) is
equivalent to

W T v Tk 7 Z(rmax—L)7> 0 _ .
ImW, elm(V, F/V, F,V, --- F, Vil : =R; — l;d; Yuf, i=01,---,n—1
for all £. (18) 0 Rivs
The equivalence of (18) and (11) follows immediately from Ry =R
the fact that
T, Vo where [;,u;, and d; denote the first column, the first row,
7, v, and the upper-left corner element &;. Intrinsically this
F= ) , V= ) method require®(»?) additions and multiplications. A faster

procedure can be obtained by exploiting the fact thatithe
Fr, Vi Schur complemenR; inherits the displacement structure of
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R, i.e., it satisfies a displacement equation of the form tions:

* ok ok 0 =x
&—Fi&Af:GiJBf ¥ ok k| @, [x x ok
G, =|. =4 .
where {G;,B,,F;, A;} can be obtained fro{G, B, F, A} ¥k X * ok ok
via the following algorithm [13]: 0 0
Algorithm 3.1 (Generalized Schur Algorithtn)Start with $:(Fy)xjthcol. *

*
*
Il
—
«
+O
—
| I

Gy = G,By = B, and repeat the following steps for
1 =0,1,---,n— 1.

* * *
1) Obtain F’; and A; by deleting the firsti rows and % k% 0 « 0
columns of F and A. « % x| |k o %
2) Choose xr matrices®; andI’; that satisfy®, JI"; = J B,=|. . .|— .
and transform the generato® and B; to proper form. * * * . x s
This means tha®; and I'"; reduce the first row of7;
(denoted byg, ;) and the first row ofB; (denoted by 000
b;o) to the forms Bildi)xgtheol. | [ 0 }
; Bt
* * *
. < The nonsingular transformatior®; and I'; can be imple-
9,00:i=[0 --- 0 % 0 --- 0] . ; : :
: _ mented in a variety of ways, e.g., by using a suitable sequence
bioli =[0 - 0 i 0 .. 0] (1 of elementary Householder projections or Givens rotations,

and hyperbolic transformations. When the arr&yand A are
sparse (e.g., diagonal or bidiagonal), the generalized Schur
algorithm requires onlyO(rn?) operations. The triangular

with a single nonzero entry in the same column pOSitimf'actors of R can be computed fron;, B; as
(2] T

say thejth positionj € {1,2,---,r}.

3) Multiply the jth column of(G;0;) by ¢,(F;) = (F; — I, =(I; — a'F;)"'G,Jb},
filn—i)(I,,—; — alF;)~! and thejth column of(B;I;) . a1 . g;Jb;

functions¢(z) and (=) are defined in (24)]. ] ) ) )
4) Delete the first row of the resulting arrays to obtain then€ generalized Schur algorithm may break down if the matrix
new generator€y;; and B;_1. R is not strongly regular; this issue is addressed in Section VI.
]
The generator recursiorthat describes how to obtafd; IV. CASCADE SYSTEMS
andB;; from G; andB; can be written in a compact form as The generator recursion (22) can be described in terms of
transfer functions as shown in [9], [13], and [14]. Similar
models have also appeared in the inverse scattering theory of

0 0,_, 0 O lossy transmission lines [20]. In the function domain each step
[ G } =¢(F;)G:©;| 0O 1 0 | +G,H; of (22) can be associated with tweinput »-output first-order
i+l 0 0 0, systems (see Fig. 1) with transfer functions
I,y 0 O [1; 1 0 0
0 0 I,y 0 0 I
0 0, O 0 and
|:B‘ :| =v;(A;)B; ;|0 1 0 + B, I’; _Ij—l 0 0
ol 0 0 0,1 Liz)=r;| 0 i(z) 0 (23)
I, , 0 0 | 0 0 I ]
0 0 0 ] (22b) where®; andI’; are obtained at thi&h step of the generalized
0 0 Iy Schur algorithm, and the 8bius transformation®;(z) and
1;(z) are defined as
These formulas have the following simple array interpreta- pi(z) = z—fi ¥i(2) S (24)

1—arz’ :1—f7§kz'

Note that ¢;(z) and #;(z) satisfy ¢;(2)¢;(1/2")* = 1.
3If R is a Toeplitz matrix andF = A = Z, then the presented schemeTher.efore’ the transfer functior®;(z) and I';(z) obey the
collapses to a now well-known algorithm of Schur [13]. relation ©;(z)JI;(1/2*)* = J.
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For the proof, we shall need a lemma that characterizes
the local transmission properties of tth first-order section
©,(z). To this end, note that the matric# obtained via the
non-Hermitian generator recursion inherit the Jordan structure
of F. In particular, ifs is the smallest index so tha rg+r;+

-+ 75, then the eigenvalues df; are o, avsy1, -+, m—1
(with multiplicities ro+714- - -+ 7s— 4, 7541, Ts425 P15
respectively).

Lemma 4.3 (Local Interpolation Properties):et F be
given by (10) and le®;(>) be obtained at théh step of the
generalized Schur algorithm as shown in (23). Moreover, let
s be the smallest index so thakrg + r; +--- + 75, and
introduce the auxiliary indexes

Vg1 =To+71+ - +75 — 1,

Vsl =V + Tk, k=s+1s+2--,m—2
The first-order sectio®; (z) then satisfies the following (local)
interpolation conditions

Fig. 1. Lattice filter interpretation of thé&h step of Algorithm 3.1. [gi,O Gin o Giis l]TVs+1( 5)
. . . = [0 9iv10 9i+11 yi+1,us+172] (29)
After n consecutive steps of Algorithm 3.1 we obtain two l9: g g, 175 ()
cascade systems Gk Jhretl Gt =T 6,
= [gi—l—l,z/k—l 9iv1,0, gi+l,uk+1’k—2] (30)
O(#) =60(2)81(2) * On-1(?) for k€ {s+1,s+2,---,m— 1} whereg, , denotes theth
and row of G;.
Irz)=Ly(x)"1(2) - I'h_1(2) (25) Proof of Lemma 4.3:Evaluate the consecutive rows of the
that safi generator recursion (22). The Oth row yields
at satisfy 0 00 I, 1 0 O
1\" 0=¢i()g,00:|0 1 0| +9,,0,| 0 0 0
9(z)JF<;> =J. (26) 00 0 0 0 I,
The determinants of the transfer functic®$z) and I"(z) can Ii-n O 0
be readily expressed as =9;,00i| 0 ¢i(a;) O
. 0 0 I
det B(z H Gy el ~ I1 1’ = ‘f: =9;00i(2) (31)
v=1 —az) 7=1 — iz where we used the fact that the upper-left corner element of

(27) ¢i(F;) is exactly ¢;(av,).

where ‘~" denotes proportionality. This shows that the zero Now let £ be an arbitrary index so th&l<{<ws.1. By

and pole locations o®(z) andI'(z) are uniquely determined using the Riesz formula (8), it can be shown that £tierow

by the diagonal elements aF’; and A;. The next lemma fdi’( i) is g|venl by

follows readily from (23) and (25). 200 (-1 Y
Lemma 4.1 (Polynomial Transfer Matriceslf a; = 0 (re- g 2 (¢ - 1)!¢ (o) dilas) 0 0}

spectively, f; = 0) for all ¢ then©(z) [respectively,I’(z)] is Thus

a polynomial (rather than rational) transfer matrix. [ | 90
The main objective of this section is to show that the cascade 1 0 @ 91

systems(z) and I(z) inherently satisfy certain interpolation 9411 = [F/)i (o) ooy (o) ¢i(@s):| :

conditions. In particular, we claim that the following statement )

is valid. 9i.c
Proposition 4.2 (Global Interpolation Properties).et 0

F,G, and J be as shown in (10), and let and B be -0; |0

suitable matrices so that Algorithm 3.1 terminates after the 0

nth step. Then@(z) obtained via (23) and (25) satisfies the 1 0

homogeneous interpolation conditions :971:0591‘

0 0 I

0 I,., 0 0O
0
)+

9“ 1>( A
(32)

gi,l (f— )
Wkl Wr1 Vk2 Wr2 o Ve, Wi YLACHE
T (o) = O (28)

4Physically, (31) means that the first-order sectidiz) has a transmission
for k€ {0,1,---,m —1}. B zero atz = a,, and the associated zero direction is givengpy;.
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Equations (31) and (32) validate (29). In a similar manner, Proposition 5.1 (Rational Parameterization)et {F',G, J}
evaluating thefth row of (22) for all ¢ that satisfyr,, < be as shown in (10), and I€(z) be obtained by executing
£ < 1,41 validates (30). m steps of the generalized Schur algorithm. Then, all solutions
Proof of Proposition 4.2:Let 7g = 0, and7,, = ro + 71 + of Problem 1.1 are given by
-+ r,—1. If k>0, then the recursive application of (30)
yields Y(z) =—[011(2)P(z) + O12(2)Q(2)]
[B21(2)P(2) + 02(2)Q()] " (36)

[yo,ﬂ, 907,41 yo,Fk+rk—1]Ték§ (ak)Tél (o)
T ()T (o) where P(z) € CP*4(z) and Q(») € C%%(z) are rational
— g g TE 7 1775 (o) parameters that are analytic @ and satisfy
— 91,7, -1 1,7 L+ —214 @, \Yk
T (on) T 1(Oék) det {Oa (ar)P(ar) + O22( 0 ) Q) } # 0, for all k.
o
(37)
= ra = e = =11 33 u
970 9ra 9] (33) The existence of such a parameterization was first proved
Using (29) repeatedly, times shows that in [4, Th. 5.1.2] by using a residual interpolation approach
. . (see also [5, Th. 16.4.1]). The generating sys®xz) was
P — K &
97,0 971 972 9117 e (O"“)Te:kﬂ(a’“) not obtained recursively in that context. In what follows, we
T . (ar)--Tg. . (o) outline a rather different, inductive proof for Proposition 5.1
. ;_ . e . 1T () that relies on the recursive construction(z).
TeFLO IRl TetLre =20 65, 1y Proof—Sufficiency:SupposeP(z) andQ(z) satisfy (37),

To. () Te | () then (36) can be rewritten as(z) = —N(z)D™(z) where
|:N(Z):| _ |:611(Z) 612(2):| |:P(Z):|

=0 0 --- 0] (34) D(z) | [O2(z) Oxn(2)][Q(2)]

The homomorphism property (9) of the opera®i* implies Now, recall by (9) tha‘TTg] () = TZ(Z)TTS] (z) is valid
that for all &> 0. Therefore, by Proposition 4.2

or i vy why e v, wk’”ﬁ]Tg(ak) [Ve1 Wi Uk2 We2 o Uk, Wk,rk]TiN] (owk)

= [Qo,ﬁ, o7, +1 " go,ﬂ,-q-m,—l]TekO (o) b
TG ()T (). (35) = [”k,)l Wii Vk2 W2t Uk W, )
- - Tg(ar)Tpr(ar) =0

Equation (28) follows immediately from (35)—(33). ] [Q]

The interpolation properties of the dual cascddg) can e
be analyzed in a similar fashion. Here we only note that tﬁ%h'Ch implies that
zero structure of@(z) is determined by the left null pair W1 vk o Uk T (on)
{F,G} (as seen from Proposition 4.2) while the pole structure Flwes wie o w0 () = 0.

is determined by the right pole pajid*, JB*}. At the same
time, it follows from (26) tha{ #*, JG™ } is a right pole pair, Thus, if D(«;) is nonsingular then

and{A, B} is a left null pair for the dual latticd™(z) (see [5, i

Ch. 1-3] for a thorough study of the null and pole structure hy wk2 o vk ]T g o ()
of analytic and meromorphic matrix functions). =[wp1 wr2 - Weel

Hence the interpolation conditions (3) are satisfied.
_ _ _ Necessity:Let Y(z) be a rational matrix function that
The homogeneous interpolation properties @fz) de- garisfies the interpolation conditions (3). We must show that

scribed in Pro.position 4.2 can be cor_lverted into nonhomoqﬁére exist suitable parametdP§~) andQ() that satisfy (36)
neous properties by using linear fractional maps. In particulay,q (37). Indeed, choose

let @ and I" be partitioned as {P( )} { ¥ )} <1 )\» { Y/ )}
p q Sl=ee| = 2) 9 I
6(z) = {’g;g égg} i’ or mc())ie)explicitly I I

V. PARAMETERIZATION OF RATIONAL INTERPOLANTS

p q * *®
—— —— 1 1
P(Z) :Fll <7—*> Y(Z)+F21 <7—*>

I'i(z) I'i2(z) } Ip
I'(z) = .
&= o |
The following statement is then valid.

Q(z) =-I

*

)

~
S

)Y(z)* — I

~~
S
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Then somek. Then (20) implies thalf; = a4, and
o) {P(z)} :9(;:)9_1(;:)[ YI(Z)} _ [ YI(z)} 0 0 --- 0
Q(2) -1y —14 =[vro Wro Uk W1 ccc Ukp—1 W1
(38) T yy(ew) (43)
and therefore (36) is satisfied. Equation (38) further implies e
that = [yo,j—wk 9o7.+1 yo,a+rk71]
.T(; o [A](ak) (44)
O21(2)P(2) + Oxn(2)Q(2) = -1, CTURTLE -
:[yo,ﬁ, o7, +1 go,ﬂ-q-rk—l]TeO...ek,l(ak)
thus (37) holds. It only remains to prove the analyticity of .T’va] (o) (45)
B
P(z _ _ _ Y(z =0 --- . I 7 ) 46
[QEZ” :enil(z)en;(z)...eol(z){ —I(q)} [ 9i0 Gi 7y trio—i) [ﬂ](ak) (46)
at foo fuo e fo1. where (43) follows from the fact tha¥(z) satisfies the

interpolation conditions (3), (44) follows from (39), (45)
follows from the homomorphism property (9), and (46) can be
verified by applying Lemma 4.3 recursiveljtimes. Equation
AT der . B Y(2 (46), in turn, implies (42). [ |
BEZ; :ei—ll(z)"'eol(z)[ —I(q)} (39) The parametersP(z) and Q(z) in Proposition 5.1 are
not unique. Indeed, lelR(z) € C?*(z) be any rational
is analytic atz € { fo, f1,- -, fi—1}- Now one must show that matrix function analytic aty; so thatdet R(ay) # 0. If the
parameter$’(>) and@Q(») satisfy (37) and correspond to an in-
(z) | _ 0, (20,1 (»)- ..901(2)[ Y(z)} terpolantY (), then the parameteB(z)R(~) and Q(z)R(z)
‘ - -1, also satisfy (37) and correspond to the same interpolant. It

(40) is possible to obtain a slightly different characterization for

the family of interpolating functions in terms afyht coprime

is analytic atz = f;. The inductive assumption along with,olynomial parameters which areniqueup to a unimodular
the expression

Let us proceed by induction. By definitiofy” () —I,]7
is analytic atz = f; for all ¢. The inductive assumption is that

factor.
I._, 0 0 Proposition 5.2 (Polynomial Parameterizatiohgt {#',G,J}
- . be given by (10), and le®(z) be obtained after executing
9;1(3) =1 o 1 —ajz 0 9;1 steps of the generalized Schur algorithm. Then all solutions of
Z— oy Problem 1.1 are given by
0 0 I,._;
’ Y(2) = —[011(2)Pr(z) + 612(2)QR(7)]
implies that each row of (40) is analytic Atwith the possible 021 (2)Pr(2) + O (2)Qp(2)] ™t (47)
exception of thejth row. In order to prove the analyticity of )
the jth row observe that where Pr(z) € CP*?[z] and Qr(z) € C??[z] are right
coprime polynomial matrices chosen so as to satisfy
] 0 0
’ s det{0y; (ar)Pr(on) + O22(0)Qp(cr)} £ 0, for all k.
0 0 1 0 0 i
[ o ——p o (48)
0 0 I ; The parameterd’r(z) and @r(%) which correspond to a
o A(2) pa_rticular int_erpolating functionY’(z) are unique up to a
i |B(z) unimodular right factor. n
1 ats A(2) Proof: A simple algebraic proof can be found in [21, pp.
=—"[0 .- 010 --- 06t [B(Z)} 127-128]. [
a J:Z o So far, we did not make any particular assumption about
Li- aizg‘ o [A(Z)} (41) the pole structure of the transfer matéX(z). If we further
z— f; 7"V B(2) assume tha®(z) is a polynomial matrix (i.e., all of its poles

are at infinity), then the linear fractional parameterization
formula (47) givesmatrix fraction descriptiongor all rational
interpolantsY(z).
A(f) Corollary 5.3 (Matrix Fraction Description)Let {F .G, J}
9i0 {B(fi)} =0. (42) pe given by (10) and le®(z) be obtained after executing
steps of the generalized Schur algorithm. Assume, furthermore,

Indeed, letF, =79 + 1 +--- + r,_1 be the cumulative sum that a; = 0 for all i. Then &(z) is a polynomial matrix
of the indexes;,, and assume that, < i <7, +r, — 1 for and all solutions of Problem 1.1 can be obtainedrds) =

where (41) follows from the fact th&; transformsg, , into
proper form. The proof is concluded by showing that
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Nr(2)Dz*(z) where the polynomial matrice® (z) and Step 2: Choose a nonsingular matri€?; which trans-
Dg(z) are given by forms g, , into proper form with a single nonzero entry in

one of the firstp positions:
B[00 S)loma] o

for some right coprime polynomial parameteP%(z) and gio=10
Qr(z) that satisfy (48). The coprimenessBi(z) andQ () _ . .
implies the coprimeness aN(z) and Dg(z), and vice- Step 3: Choosea; such thata; # 1/} anda; # 1/¢
versa. The paif N r(z), Dr(z)} provides a matrix fraction for all £. ' _
description for the rational interpolaiif(z). ] Step 4: Obtain ©;(z) as

Proof: Lemma 4.1 implies tha®(z) is a polynomial

N

9:09: =[gio 0] where
0 % 0 - 0. (50)

matrix whenevera; = 0 for all . The rest of the statement Li-a 0 0
follows from Proposition 5.2 if we take into account ti¢~) 6i(z)=6;| o z—fi 0
is a polynomial matrix. We only need to prove the claim about 1—aiz
coprimeness. 0 0 I_;

Two polynomial matrices are right coprime if and only
if, they do not have a common right eigenvector. It follows  Step 5: Update the generatd®; as
from (49) that if Pr(z) and Qz(%) have a common right

eigenvector thelV g(z) andDg(z) also have a common right 0 0,_, 0 O
eigenvector. Thus, the right coprimenesd\ot(z) andDg(z) {G } =9,G©,| 0 1 0
implies the right coprimeness 6§ (%) and Pr(z). i+l 0 0,_;

Conversely, assume th#z and Q5 do not have a com- I,., 0 0
mon right eigenvector. Sinc®(z) is invertible onz ¢ +@0;l 0 0 o0
C/H{ao, 01, -, o0m—1},Nr(2z) and Dgr(z) cannot have a 0 0 I,
common right eigenvector over this set. On the other hand, by
(48), Dr(z) is invertible over{aw, a1, - - -, e —1 }. Therefore, \yhered, — (F; — fili_)T—i — aiF;)~L.
it cannot have a right eigenvector over this set either. It follows stage 11: Compute ©(¢,) = ©0(£)01(&) -+ On_1 (&)
that N r(z) and Dg(z) are right coprime. B and evaluatd’ (&) = ©12(£,)052 (&) for all £. -

Remarks:
VI. SOLUTION OF PROBLEM 1.1 1) The computational burden &tage lis O(rn?) flops.

The computational burden @tage llis O(n+?) flops
for each extraction poing,.

) Stage lof the algorithm can be looked at as a prepro-
cessing step. The generating system is synthesized as
the product of elementary first-order sections. This form
makes it possible to evaluate any rational interpolant at
any given point.

3) There are no break-downs in the algorithm. There is no
need to use higher order sections (look-ahead steps).

) It is not necessary to choose the arraysand B in
advance. It is enough tadynamically select the scalar

a; at the moment when it is needed in the algorithm.

In a triangular factorization problem, the matikis given
in advance and the main goal is to find lower triangular arrays
F and A such that the displacement ramk= rank {R —
FRA"} is as small as possible. R is strongly regular, its
triangular factors can be computed efficiently by using the
generalized Schur algorithm. In connection with interpola-
tion problems the situation is somewhat different. The triple
{F,QG,J} is constructed first from the interpolation data as
shown in (10). Next, the generator recursion is used to obtain
a rational matrix function©(z) that makes it possible to
parameterize the solution set. In fact, it is not necessary to
computeRR explicitly in order to proceed with the recursion. , )
The bottom line of the above discussions is that the generalized®) According to (50) the pivot elements are always chosen

Schur algorithm provides a fast recursive method for solving ~ Tom the first p positions of g;. This ensures that
Problem 1.1. det @55 # 0, sothatPr(z) = 0 andQ (=) = I, satisfy

(37). ThusY(2) = ©15(2)05,(2) gives a particular
solution to the unconstrained interpolation problem.

Algorithm 6.1 (Main Algorithm) 6) The additional degrees of freedoméh anda; can be

Stage I: From the interpolation data, form the arraysF, used to improve numerical accuracy or to impose ad-
andG as shown in (10). Sety = G, and Fo = F'. Repeat ditional constraints on the interpolants. Some particular
the following steps fork = 0,1,---,n — 1. examples include:

Step 1: Let g;o = (g7 /0] Where g}, denotes the a) ©; can be a unitary matrix (implemented as a
first p elements angy; , denotes the last elements ofy; ;. sequence of elementary Givens rotations and House-
s If g7o =0, but gao # 0, then the interpolation data is holder projections). This choice might be useful
contradictory. from a numerical point of view. In this case(z)

* If both g7, =0 andgf}0 = 0 then the interpolation data is obtained as the product of simple unitary and

is redundant. Se®; = I,., and go to Step 3. diagonal factors.
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p lines

6(2) 61(z)

g lines

Fig. 2. The feedforward lattice.

Fig. 3. The feedback lattice.

b) ©; can be chosen in upper triangular form forall are given by
In this case®(~) is upper triangular, and Proposi-
tions 5.1 and 5.2 provide aatffine parameterization O; 11— 60,120, 3,0; 01 —6; 1207,
for all rational interpolants (see Section VIII). i(2) = 0:15,6; ot |
c) If a; = 0 for all ¢ then ©(z) is a polynomial ic {8 . o1y i,
matrix. This feature can be used to solve polynomial 7 o

interpolation problems such as the general Hermite ) _ o
problem (see Section VIII) or the minimal interpo-N circuit theory, ¥;(z) is called thescattering matrixwhile

be used to preassign the poles@(z). the ith section. The global transfer function of the feedback

d) Suppose that the interpolation pointg lie in the lattice is given by
interior of the open unit disc. Under this assumption,
the special choice; = f; and aJ-unitary @; (sat- X(2) = Xo(2) % X1(2) % - % X 1(2)
isfying ©,J0; = J) lead to aJ-lossless generating 611 — 0126516, —61,05;
system and to a Schur-type interpolant (analytic and = 65,6, 055
uniformly bounded in the interior of the open unit

di(s]c); SUOCh a Ch50 ic%f@i :js %o_;,sible ifhand o?Iy_ i, dwhere* denotes the so-calleRledheffer star-producNow, the
:Qit 9i <| t.(see [ t])’l[ ], and [9] for such constraine rational interpolan®y’(z) is obtained as the negative transfer
interpolation problems). function from the top-left input lines to the bottom-left output

lines of the scattering cascade when the right-hand side is

Algorithm 6.1 corresponds to the synthesis ofpdnput In fact Y(z) is constructed recursively via the generalized
g-output feed-forward cascade system with= ro + 7, + Schur algorithm by attaching additional sections to the feed-
-~ 4+ rm_1 CONsecutive sections (see Fig. 2). The transféack cascade. The new sections are introduced in such a way
function ©(z) of the feed-forward cascade satisfies the hdbat they do not interfere with the interpolation properties
mogeneous interpolation conditions of Proposition 4.2. Ti¥ the preceding sections. The closed-loop transfer function
linear fractional map of Proposition 5.1 can be interpretedY(z) satisfies the prescribed interpolation conditions inde-
physically by reversing the signal flow of the bottanlines pendently of the load((z) (as long ask () is analytic at the
of the feed-forward lattice and by attaching a Iodi(z) = interpolation points).

—Pr(2)QRz'(2) to the right-hand side (see Fig. 3). The I/O There exists a strong analogy between the scattering rep-

description of the first-order sections in the feedback latti¢esentation of the generalized Schur algorithm and the dis-

. A , . cretized version of a physical transmission line; this analogy
S5If Qp(z) is not invertible, the load can be described by the implicit h hat th lized Sch | ith icel |
relation y(=)Q (=) + u(z)Pr(=) = 0, whereu(=) andy(=) denote the SHOWS that the generalized Schur algorithm nicely solves many

input and output variables, respectively. inverse scattering problems (see, e.g., [22] and [23]).
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VIIl. POLYNOMIAL INTERPOLATION ay. Moreover, the affine map (53) preserves analyticitg,,
The primary goal in this section is to parameterize thk(?) 1S analytic atz = zo if and only if, K(z) is analytic at

polynomialsolutions of Problem 1.1. In order to accomplisiy = Zo- This feature can be used to parameterize all rational

this task, we need to first obtain a polynomial generatirlgt€rPolants that arestablé in a certain region. _
system inupper triangularform. Corollary 8.3: All solutions of Problem 1.1 that are analytic

Proposition 8.1: In Step 3 of Algorithm 6.1, choosg = 0. 1N & prescribed regio are given by

Moreover, congtruo@i in upper triangular form. Thi_s can be Y(2) = H(z) + I()K(2) (54)
done by choosing the left-most nonzero elemeng,ig as a
pivot element. The above choices lead to where K(z) € CP*1(z) is some rational parameter that is
analytic inQ U {ao, a1, -+, @1 }- [ |
O(z) = {H(()Z) _HI(Z)} (51) In particular, note thal’(z) in (54) is a polynomial in-

1 terpolant if and only if, K(») is a polynomial parameter.
whereIl(z) € CP*?[z] and H(z) € C’*4[7] are polynomial Hence, the polynomial solutions of Problem 1.1 can be readily
matrices such that parameterized.

_— Example: Let C4[z] denote the space of scalar polynomials
det I(7) ~ H ( — o)™ and S{H(2)}<n-—1 with degree not exceeding and letC%*?[z] denote the space

o of p x ¢ matrices whose elements belong@g|-].
= M-1

(52) Problem 8.4 (Hermite Matrix Interpolation):et {o}1_,
be a set of distinct points. With each poin},, associate
m [, constant matrice$f;, }5, * € CP*“. Find a polynomial
Proof: Sincea; = 0 for all 4, it follows from Lemma 4.1 matrix H(z) € C];)iql[z](L = Lo+Li+ --- +Ly_1) that
that @(z) is a polynomial matrix. If we choose the left-moskatisfies

nonzero element iy, as a pivot element, the®,; can be

constructed in the following form: HY () = B (55)
i Problem 8.4 can be recast into a tangential framework by
[0 - 0 % x4 introducing
J
1. 000 o 0 Vi =l Oy Opl
. Co . and
0 1 0 0 Wi = [ﬂk,o Bri ﬂk,Lk—l]
0 0 1 * where bothV; andW,, contain exactlyL;, blocks. Now, (55)
o .-001 -0 can be written as
0 - 00 0 - 1 Vi3 (on) = Wi
Z Equation (55) imposegqL independent constraints di(z).
=0 - 0 x 0 . 0 Thus, (55) must have aniquesolution in thepgL dimensional

where the ¥’s denote nontrivial entries. In this case, the firstspaceC;{[z]. This solution is called theHermite matrix
order factors®;(z), as well as the transfer functig(z), are Polynomial The following special cases often occur in the
upper triangular. Since the pivot elements are chosen frdiigrature [24].

the firstp positions, the relatio®.2(z) = I, must hold. The ¢ Simple Hermite problen{or osculatory interpolation):

statement about the determinant M=) follows from (27). Lo=L1=--- =Ly =2
Note that the last step does not increase the McMillan degree Lagrange interpolation:Ly = L; = --- = Ly, =
of H(z). [ | 1 (with the Lagrange matrix polynomial as a unique
Corollary 8.2 (Affine Parameterizationissume tha(z) solution).

is an upper triangular polynomial matrix as shown in (51). « Taylor interpolation: M = 1 (Lo > 1) (with the Taylor
Then all solutions of Problem 1.1 are given by matrix polynomial as a unique solution).

. 1 Solution of Problem 8.4:Construct the array§F', G, J} as

Y(z) = H(z) + H(2)Pr(:)Qp (%) (53) shown in (10). In this special case Propositiff&l gi];/es rise
where Pr(z) € C¥1[z] and Qp(z) € C?%1[z] are right to an upper triangular generating system of the form
coprime polynomial parameters such thiat @ (cx) # O. w(z) I, —H(z)
In particular, H(z) is a polynomial solution of Problem 1.1. Oz =|"g " qu (56)
[

Let K(z) = Pr(2)Qz'(z) denote the rational parameteDue to the special structure of, the (1, 1) entry of
that appears in (53). It is evident that (53) establishes a orfe6) can be written adl(z) = #(z) - I, where n(z) =
to-one correspondence between the set of rational interpola]ﬂﬁéf:gl(z — ag)*. The pivot elements are chosen exackly
and the set of rational matrix functions that are analytic &tnes from each of the first, second,- pth positions, and



BOROSet al: SOLVING UNCONSTRAINED TANGENTIAL INTERPOLATION PROBLEMS 467

thereforeH (=) cannot have an element whose degree is larger M1 i
than L — 1. Thus, by uniquenes${(z) must be the Hermite .
matrix polynomial. [ | 1

In the Appendix two examples are presented for the scalar e 90 1 Wy e 0y
Hermite and the matrix Taylor problems. In [15] we thoroughly 1
discussed the scalar Lagrange problem.

IX. MINIMAL TANGENTIAL INTERPOLATION —[0 - 0 gf,o 0 .. 0 (58)

Assume that®(z) is a polynomial matrix. By definition, . _ o
the McMillan degree of the interpolating functiofi(z) = With 9¢ = —g;/g; o. The polynomial matrix®;(z)6; then

Ng(2)D3}(z) is equal to the McMillan degree of the poly-fémains column-reduced. _ u
nomial matrix Proof: Multiplication by ©; means adding the scaled
version of thejth column of@;(z) to the other columns. Since
[NR(Z)} — [911(75) 912(2)} [PR(Z)} the degree of thgth column is not larger than the degree of
Dr(7) 6:1(7) O2(7) | |Qr(%) any other column in the matrix, this operation does not change
In connection with Problem 1.2 one has to minimize thif'e column degrees @;(z). u

The following algorithm shows how to keep track of the

McMillan degree of [Nx(z) D%(2)]* over all possible \
t column degrees of the generating systéix).

polynomial matricesPr(z) and Qz(z) under the constrain
det {Qzl(ak)P(ak) + 922(ak)Q(ak)} 75 0. In [2], Antoulas . o .
et al. pointed out that this problem can be solved by construd!gorithm 9.2 (Minimal Interpolation):

ing the parameter®r(z) and Qz(z) in polynomial echelon  Stage I: Construct ¥, G, and J as shown in (10). Set

form, provided that®(z) is a column-reducedpolynomial Gy = G, Fy = F, andx; = w3 = -+ = s, = 0. Repeat
matrix. In what follows, we show how to modify Algorithm 6.1the following steps foi = 0,1,---,n — 1.
S0 as to obtain the generating system in column-reduced form. Step 1: Same as Step 1) in Algorithm 6.1.

Suppose the transfer matri®;(z) = Oy(z) 61(z) --- Step 2: Construct®; as shown in Lemma 9.1. Lef

©,_1(z) of the firsti sections is column-reduced (i.e., thelenote the position of the pivot element.
degree of the determinant is equal to the sum of the column Step 3: Choosea; = 0.
degrees). The question is how to construct the next section Step 4: Obtain ©;(z) as
©,(z) so that the multiplication
I, O 0

0,,1(2) = 0,(2)0,(2) (57) Oi(z)=6;| 0 z—fi 0
0 0 I
preserves column-reducedness. By setting- 0, the transfer

matrix ©;(») can be expressed as Step 5: Update the generatd®#; as shown in Step 5 of

Algorithm 6.1, and sek; :=r; + 1.

I, 0 0 Stage Il: Now O(z) = 6g(2)01(2)---O,_1(z) is
=0, 0 =2—f 0 |. column-reduced. with column degrees, - - -, x,.. The family
0 0 I._; of minimal interpolants can be parameterized by choosing
o ) ] P(z) and Q(z) in a special polynomial echelon form as
Multiplication by the diagonal factor obviously preservegnown in 2]. -

column-reducedness (it increases both the degree of the detefy, tne generic case, the pivot elements can be chosen
minant and the sum of the column degrees by one). Therefoggelically from the 1st, 2nd; - -,rth positions ofg,. This

we need to concentrate only on the constant fa@r |eads to a characteristic feedforward cascade where the delay

Multiplication by ©; does not change the degreedet ©;(z).  elements lie successively in the first, second, rth line (see

Thus, the objective is to desigf; in such a way that the Fig. 6 in the Appendix).

multiplication_in (57) leaves _the column_ degrees @f(z) Furthermore, the column degrees,, s, -, k. are

unaltered. This can be done in the following manner. identical to the controllability indices of the paifF’,G}.
Lemma 9.1 (Column-Reduced Transfer Matrixet €;(z) |n this manner Algorithm 9.2 can be used to compute

be a column-reduced ponnorlnlaI rr;atnx with cplumn degregge controllability indices of any paif{F,G} where F

K1, R, oo, iy @Nd letg; o = [9:0 90 -+ 9iol Choose s in jordan canonical form.

an indexj so that

: 14 .
;= min {ke: gfo # 0} X. CONCLUDING REMARKS

We have developed a fast recursive algorithm for solving

In other words, lets; be the smallest among the columrthe left-sided tangential interpolation problem. The basis of
degrees that correspond to a nonzero entry; i Determine the presented method is a generalized Schur-type algorithm

©; so that originally developed in the context of recursive factorization
L i1 i1 . of non-Hermitian matrices possessing displacement structure.
9i,0% i,0 4,0 i,0 95,0 ©,0 The advantage of this approach is multifold. First, the recursive
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z+1 z+1 o

O

Fig. 4. The Hermite lattice in the scalar case.

algorithm allows us to update the solution whenever a nddermite polynomial can be represented in the Newton basis
interpolation point is added to the input data set. Second, (z — 2),(z — 2)%,(z — 2)*(z + 1)} as h(z) = Yo +

the matrix R whose inverse appears in earlier solutions (se€g(z — 2) + ¥2(z — 2)? + ¥3(z — 2)?(» + 1). The set of all
Section I-B) does not have to be invertible or strongly regulanterpolating polynomials can be parameterizedyas(~) =
There are no break-downs and no singular minors in the alge-— 2)%(z + 1)2P(z) + h(z), where P(z) is an arbitrary
rithm. The generating system is constructed in cascade formgmlynomial. Note thatP(z) # 0 implies deg y(z) > 4.
using only first-order sections. Third, the inherent freedom iFhus the Hermite polynomial has minimal degree in the set of
©,; combined with certain characteristic pivoting schemes cg@olynomial interpolants. The set of all rational solutions can
be used to improve numerical accuracy, and impose additiobal parameterized as

constraints on the interpolants. In particular, we have obtained

a recursive solution for the minimal tangential interpolation

problem. y(z) = (2= 22(z + 1)? P(z)

Q%)

+ h(z)

APPENDIX where P(z) and Q(z) are polynomials such tha®(«;) # 0
for k = 0,1.
Example 1: Scalar Hermite Interpolation

Let a9 = 2 and oy = —1. Find a scalar polynomial Example 2: Matrix Taylor Interpolation:

h(z) € C(z) with degreedeg h(z) < 3 such that Let cg = 3 be a complex point. Find a polynomial matrix

2x3
h(Oéo) =2, h(l)(ao) =1, h(Oél) =3, h(l)(al) —9 T(Z) S Clx [Z] such that

The number of nodes s = 2. The associated multiplicities 1 =21 70 12 -1 3
arerg = 2,71 = 2. The input arrays of the generalized Schur (o) = -1 -1 2| (o) = -2 1 1}
algorithm are

- 1 9 In the matrix case each point, gives rise to two tangential
1 2 0 _1 constraints. Thereforep = 2,7 = 4, and
F = s G =
-1 1 3 3 10 1] -21
. - 0 2 13 00 2 ‘ -1 3
1 0] F= ;. G=
J=l5 ] 3 01—1‘—12
- - 1 3 0 0 -2 1 1

i.e., F' contains two Jordan blocks of size 2. Four consecutivg =1, ¢ —1I,.
steps of Algorithm 3.1 yields the generating system

O(z) = Oy(2)01(2)0:2(2)O3(z) Four iterations of Algorithm 3.1 yields the generating system
(= 220 + 172 L5 L T2 1, 1m shown at the bottom of the page.
=V 0 ¢ 277 9 “1 97 27 |, Thus, the Taylor matrix polynomial is given by
The Hermite interpolating polynomiai(z) = - 12— _ T(z) = 2% — ‘E —z+1 3z-8)
Sz + 1% can be physically implemented as the negative 2245 +z-4 z2-1

transfer function of the feedforward lattice from the top left
input to the bottom right output in Fig. 4. Note that théig. 5 depicts a physical implementation Bfz).

(z —3)? 0 2245 2z—1 —-3z+8

0 (=32 22-5 —z+4 -—z+1
O(z) = 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
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3 DW z—3 9T z—3 [=° o
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Fig. 5. The Taylor lattice in the matrix case.
o z—2 z—1p=°
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o
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Fig. 6. Feedforward lattice with a column-reduced transfer matrix.

Example 3: Minimal McMillan Degree Interpolation:

z+1
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