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Extended Chandrasekhar Recursions

Ali H. Sayed and Thomas Kailath

Abstract—We extend the discrete-time Chandrasekhar recursions for
least-squares estimation in constant parameter state-space models to
a class of structured time-variant state-space models, special cases of
which often arise in adaptive filtering. It can be shown that the much
studied exponentially weighted. recursive least-squares filtering problem
can be reformulated as an estimation problem for a state-space model
having this special time-variant structure. Other applications arise in the
multichannel and multidimensional adaptive filtering context.

1. INTRODUCTION

The discrete-time Chandrasekhar recursions for linear least-squares
estimation in constant-parameter systems were first presented nearly
two decades ago [1]-[4]. The point was that the celebrated Kalman fil-
tering algorithm based on the discrete-time Riccati recursion applied
equally to time-invariant, i.e., constant parameter, and time-variant
state-space models. This is a strength, but on the other hand one
might expect some computational reductions when the model is
time-invariant. Replacing the Riccati recursion by the Chandrasekhar
recursions does allow such a reduction, from O(n®) to O(n?)
elementary computations per step, where n is the state dimension.
The computational reduction can be very significant in applications
where n is quite large (see e.g., [S]-[7]).

There have been some efforts over the years to obtain extensions
to time-variant state-space models, and progress in this area has
come about through a particular application. In the last few years,
there has been a great interest (see e.g., [8]-[12]) in fast versions
of recursive least-squares (RLS) algorithms for adaptive filtering
and control. These fast RLS algorithms are rather complicated to
describe and derive, involving a large number (10-20) of variables
and subscripts. In independent work, Houacine et al. [13], [14], and
Slock [15] showed that some of these rather complicated fast RLS
algorithms could be described and derived much more compactly and
simply by recasting the problem in a form to which the Chandrasekhar
recursions could be applied. Some manipulation was required to be
able to do this because the “natural” model for the problem is not
time-invariant; in adaptive filtering the output system matrix is a
function of the data, which of course changes with time.

Motivated by this and related problems, we have shown that the
Chandrasekhar recursions can be extended to a certain class of time-
variant systems in which the time-variation takes place in a certain
structured manner. The extended Chandrasekhar recursions are easy
to verify, once they have been discovered. This short note is devoted
to describing and establishing these extended recursions. Structured
time-variations of this sort arise, as mentioned above, in various
adaptive filtering problems (and their dual control versions), and may
be encountered in other areas as well.
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We first give a brief review of the Riccati-based Kalman filter.
Consider a p X 1 process {y:} with an n-dimensional state-space
model

zit1 = Fizi + Giu;

Yy, = H.z, +v; fori >0 [¢))
where {F;, G:, H;} are known matrices with dimensions n X n, n X
m, and p X n, respectively. We assume that zo, #;, and v; are
stochastic variables that satisfy

Ezo =To, E(zo —Zo)(0 —To)" = Io,

Eu;xy = Eviz; =0, Ev; = Eu; =0,

S i Gy
E[:i}[u,- vj]z[g: Rﬁ]é.‘j.

The symbol &;; is the Kronecker delta function, * denotes Hermitian
conjugation (complex conjugation for scalars), and E denotes ex-
pected value. Let &;;_; and §;,_, denote the linear least-squares
estimates of z; and y, given {yo,--+,¥;_,}, respectively. The
Kalman filter [16] computes these quantities via the recursions

!75|1_1 = Hii'ili—x

Zip1)i = Fiyjio1 + KiR e @

where €; = y; — Hiiji—1, Re,i = E(e:€l), and K; = E(ziy1€]).
Kalman showed that K; and R.,; can be computed via the expres-
sions: K; = F,Py;_1H! + GiCi and R.,; = H;P;;—.H] + R,
where P;j;_, is the error covariance in the one-step prediction.of
zi, Piji1 = E(@i — &1)i-1)(®i — &;,—1)", and satisfies the Riccati
difference recursion: Pp_; = Ilo

Purii = FPyi Fr K,y K, i +GiQiGE, Ky = KR,
3
We shall define the square root (factor) of a matrix A as a lower
triangular matrix, denoted A'/2, such that A = AY2A7/2. We
shall also denote (41/2)* = A™/? and (4'/?)™* = A™'/% so that
AT = AT AT
We can check that the number of operations, i.e., multiplications
and additions, needed in going from index i to index (i + 1) in the
Riccati recursion (3) is O(n®), and this is true whether or not the
state-space model has constant parameters. However, one expects a
computationally more efficient procedure in the case of time-invariant
(also called constant-parameter) systems {F, G, H, Q, R, C}. In-
deed, it has been shown [1]-[4], {17], [18] that in the constant-
parameter case the complexity can be reduced to O(n%a) per
iteration, where the so-called displacement rank o is given by

@ = l'aIlk(FHoF* + GQG* - ?P’OF;: o Ho)
= ra.nk(P1|0 et PD]—I)-
This is achieved by using the so-called Chandrasekhar recursions to
compute {K;, R.,:} for use in the formulas (2). There are many

forms for the Chandrasekhar recursions [1]-[3], but we shall give
here perhaps the simplest (so-called square-root) version [4].

0018-9375/94$04.00 © 1994 IEEE




620 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 39, NO. 3, MARCH 19%4

II. THE SQUARE-ROOT CHANDRASEKHAR FILTER

Let 6P; = P;y1)i — P;)i—1. It turns out that for constant-parameter
systems, the quantity 6 F; often has low rank (examples are given later
in this section), much less than n, and this fact can be exploited to find
a lower complexity algorithm. Observe that 6 P; is a Hermitian matrix,
so that it has only real eigenvalues. We can factor it (nonuniquely) as

8P, = Py — Pyji—y = LiS:L] @

where S; is an a X « signature matrix viz. a diagonal matrix with
as many *1's on the diagonal as §P; has positive and negative
eigenvalues. In fact, it turns out, as shown ahead, that S; is the same
for all 4, that is S; = S, Vi. We now form the prearray

1/2
A= [Rm'

HL;

FL;
Let ©; be any J = (I & S;)—unitary matrix (©;JO] = J) that

triangularizes A;. That is,

X o
so=[X 0]

Comparing the entries on both sides of the equality A;,JA] =
A;©;JO] A} we get

XX = R ; +HL,'S,‘L:H*
x =R, ; + H(Piyy)i — Py H"
=R i+ Re, it1 — Re,i = R, it1-

1
So we can choose X = R, / 2 +1- Moreover,

YX*=K,+FL;S;L'H"
=Ki+ F(Piy1; — Pi-))H = Kipa

and hence, we can identify Y = K, ;+1. Finally,

YY" +28.2" = K:RDIK; + FLSL{F*
= K:R;\K] + F(Pip1): — Py F*.

Therefore,
ZS;Z" = Pigsgjigr — Piy1ji = LivaSiv1 Liyy

where we have used definition (4). Hence, we can choose Sit1 =
Si = § =signature matrix and identify Z as L;+;. So we are led to
the following so-called square-root Chandrasekhar recursions

R!? 0 ]
ei — | Zhe, a4l 6
[Kp, i+1 Lina ©

€,

Rl/z
%

HL;
FL;

where ©; is any J = (I & S)—unitary matrix that produces the
block zero entry on the right-hand side of (6). We can verify that
each iteration takes only O(n?«) computations when n > p, as is
often the case.

This particular approach to the Chandrasekhar recursions is of
course not the way they were originally derived. For more motivation,
not necessary here, as to the particular choice of the prearray (5), see

[3] and also [19], [22]. Let us consider two special cases [2]:

e IIo = 0: In this case, Pijp = GQG" (assuming C; = 0) and
we can choose Lo = GQ'/? and S = I. Moreover, ©; is any
usual unitary matrix.

« Iy =TI, that is II, is the unique nonnegative-definite solution
of (F assumed stable) I = FHF* 4+ GQG". In this case, we

get Pig—Poj—y = —Kp,0Kp, 0. So we can choose Lo = Kp,0
and § = —I. Now the matrix ©; is a J = (I & —I)—unitary
matrix.

III. STRUCTURED TIME-VARIANT MODELS

The derivation of the Chandrasekhar recursions (6) is based on
the fact that §P; has low rank for constant-parameter systems, as
expressed in (4). We now show that these recursions can be extended
to a class of time-variant state-space models that exhibit a certain
structure in their time-variation.

The computational advantage of the Chandrasekhar recursions
stems from the fact that they propagate the low rank factor L; instead
of P,y1):, where L; is defined via relation (4). A direct generalization
would be to consider differenices of the form Py ~ VP ¥y,
where the ¥; are convenient time-variant matrices that result in a
low rank difference, say of rank «. That is

Pi1i — ¥ Py ¥] = L;S;L] Q

for some n X a matrix L; (we shall also show that for the special
time-variant models to be introduced here we shall have S; = S, V7).

We consider again the state-space model given by (1), and we
shall say that it is a structured time-variant model if there exist n X n
matrices ¥; such that F;, G;, and H; vary according to the following
rules:

H =HinV,, Fina¥%=YnFi, Gigi=%:4G:. (8)
It is clear that constant-parameter systems satisfy (8) with ¥; = I.
Other special cases of (8) also arise in adaptive filtering as noticed
in [20]-{22] and in Section V. We first assume that the covariance
matrices R:, Q:, and C; are time-invariant whereas F;, H;, and G;
vary in time according to (8). We shall verify in the next section that
these restrictions can be relaxed in order to allow for time-variant
R,‘, Qi and Ci.

The reason for imposing the conditions specified in (8) will become
clear as soon as we give a simple algebraic verification of the
proposed recursion (they can also be justified by noting that under
these constraints the covariance matrix of the output process viz.
R = [cov(y;, ¥;)157j=0, possesses a time-invariant displacement
structure as detailed in [19]-[22]).

IV. EXTENDED CHANDRASEKHAR RECURSIONS

We derive here the extended Chandrasekhar recursions associated
with time-variant models as above, in both the normalized and
unnormalized (square-root or array) forms.

A. Square-Root Form
We form the prearray (which should be compared with (5))

A= R/} HinLi
Vi1 Kp,: FipaLs
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and let ©; be any J = (I & S;)—unitary inatrix that triangularizes
A;. That is

p X 0
A.@i—[y Z]'

Comparing the entries on both sides of the equality A;JA] =
A;0,J0! A, we get (here we use the condition H;+1¥; = H;)

XX = R. i+ H1'+1L,'S,‘L:H,-*+1
=Re i + Hip1(Piyaji — CiPi 1 ) Hi
= Re,i + Hip1 Py i HYy — HiPoi 1 B = Re, i1,

1/2 oy
So we can choose X = R, / f+1- Moreover (we now use the conditions
on F; and G;),

YX* = ¥ K + Fi+1LiSiL:H:+1
= Wip1 Ki + Fipa (Pigri — P W) Hiyy
=01 Ki + Fopa Py Hiyy — Y PPy HY
=K+ Kiy1 — Gi1C - ¥ K + ¥,.1G,C=Kin

and hence Y = Kp, ;+1. Finally (we now use the condition on G;),

YY* 4 282" = Uiy KiRDAKT Wy + Fin LiS: LI Fiyy
= Wi KiRK U
+ Fip1 (P — O P ) Fipy
=0, K;RIK] Wiy + Fipa P Fi
- ‘I’i+1Fz’13i|z—1Fi“I’:"+1-

Therefore,
28:Z" = Piygjip1 = Yir1 Py 03 = Liq1SisrLin

and we see that we can choose Si+1 = Si and identify Z as
Li+1. Therefore, we are led to the following (square-root) extended
Chandrasekhar recursions -

Hi+1Li]

R/% O ‘
Fipi L = [_ ] ®

RY?

[‘I!m?p,i Kp i1 Lin

where ©; is any J = (I & S)—unitary matrix that produces the
block zero entry on the right-hand side of the last expression. These
equations should be compared with the Chandrasekhar recursions
derived in Section II. The differences are that Fi41, Hiy1, and ¥,
appear on the left-hand side of the above expression instead of F,
H, and I, respectively.

B. Unnormalized Form

It is sometimes convenient to express the extended Chandrasekhar
recursions (9) in an unnormalized form. For this, we consider the
following alternative factorization (compare with (7))

Poyji = WiPyu W7 = —L{ R AL

T, 1 (10)
wheré R, ; is an @ X o matrix that is not necessarily a signature
matrix. However, comparing with (7) we see that if we factor R, :
as —R,; = R:/ ?S,-R:f ,2 , where S; is a signature matrix, then
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Li=LM™ R:':/‘z and we are back to the same form given in (7). If
we instead continue with (10), then we can check that the following
array transformation holds

R. . Hi L(('u) Re, i1 0
Vi Ki  FoL™ |Si= | K L 11
|L:“H:y R 0 R it
where a particular form for ¥; is
I —R7\Hi L™ ]
T = q B 12
' [—RIIZ‘L:(")HIH I (12)

It can be verified that the above ¥; satisfies the generalized unitarity

relation
R 0 . |RY o .
R R R

Combining (11) and (12) will give us the Chandrasekhar recursiors
in equation form rather than as an array transformation—see [4] for

related discussions, where the array form was obtained starting with

(11), (12).

C. Time-Variant C;, Qi, R:

We now drop some of the earlier restrictions and consider time-
variant models that obey the following rule (which is a relaxatiori of
(8) and includes the cross term C;—see the model (1)):

H = Hi ¥, Fu¥% =% F, GitCit1=¥inGiCi

(4
If we define 7; = G:Q:G?, then time-variant R; and @ can be
handled in much the same manner as before by introducing the
differences (as in [3]):

6R; = Ri+1 - R;, 6‘1’.;+1Ti = T,‘+1 - ‘1’1‘+1:R“I’r+1

and factoring them as 6R; = ViMiV{", bw,,, Ti = XiE: X[, wheie
M; and E; are signature matrices. If we now define the (time-variant)
signature matrix J; = (I & S: & M; @ E;), then following the same
reasoning as in Section IV-A, we get the following recursive array

[ Ri/? ;L'+1£i Vi 0]91,:[13;/{24-1 0 0]
i+1L;

Vi1 Kp i o X; Kpit1 Liy1 O
where ©; is any J;—unitary matrix that produces the block zero
entries on the right-hand side of the last expression. Unlike the case
of constant R, Q:, and C;, the rank of L1 can increase or decrease
with i [3] (that is, the signature matrix S; now varies with 7).

Py — WP, ¥ = L;S:L}, S; is @i X ;.

V. AN APPLICATION TO THE RLS PROBLEM

We now illustrate a particular application of the extended Chan-
drasekhar recursions by considering an important special case of
(8) that arises in the recursive least-squares problem in adaptive
filtering, The basic problem reads as follows: given pairs of data
points {u:, d(3)}, i = 0,1,--+,N, where u; is a 1 X M row
vector that consists of the values of M input channels at time ¢,
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ui = [ui(i) w2(i) - war(d)], (d(i) and u;(3), j = 1,---, M,
are assumed scalar for simplicity), we are required to determine
the linear least-squares estimate of an M x 1 column vector of
unknown tap weights, w = [w; wp ---

the exponentially weighted error sum

w M]T, SO as to minimize

N
E=(w-0)I (w-@)+ Y A\ 7d(E) - ww>  (15)

i=0
where w = Ew, E(w — )(w — w)* = Iy, and the parameter ) is
often called the forgetting factor, since past inputs are (exponentially)
weighted less than the more recent values. In several applications, the
input channels exhibit the shift structure: «;(s) = uj—; (i — 1). That
is, if we denote the value of the first channel at time i by w(i),
then this corresponds to having an input row vector u; of the form
u; = [u(i) w(@—1) --- u(i — M + 1)]. It can be shown (see eg.
[20]-[22] for details—see also [13]-[15] for an alternative and related
discussion) that this is equivalent to a state-space estimation problem
by considering the following (N +1)-—dimensional state-space model

Tipr = A2, gy = [wTU]T

y(@) = hizi + v(i), Ev(i)v™(j) = 6 (16)
where h: = [u(f) u(i—1) --- u(0) On—;]isalx (N +1) row
vector, y(i) = d(s)/(vA)', and =; is an (N + 1) x 1 state-vector
with trailing zeros, (VX)'z; = [wT O]T. An initial state covariance
matrix (with trailing zeros) is assumed viz. E(xo —%p)(zo —Zo)* =
o & 0, where Ty is an M x M positive-definite matrix. The
corresponding Kalman equations can now be written as

Biprp = AP0+ ke i y() — hiz;); 1]
rei =1+hiP_ih], ki=A""2Py_ b}
Piyifi = A [Pijicy = Py bl v 5hi Py (17
2 also has

€,

with Fo|—; = Ilo ® 0. The gain vector k, ; = kir
trailing zeros viz. kp,; = [c,-T O]T, However, though time-variant,
the special structure of h; viz. h; = h,+1Z, where Z is the lower
triangular shift matrix, can be further exploited to reduce the operation
count to O(M). Observe that the above relation shows (along with
Fiy1Z = ZF;, since F; = A™Y/2]) that the state-space model (16)
is a special structured time-variant model. The reduction in operation
count can now be achieved by using a special case of the extended
Chandrasekhar recursions (9) with ¥; = Z, F; = A~!/2]. To apply
these recursions, we first introduce the (nonunique) factorization
LoSLy = Pijo — ZPy-1Z*, where Lo and S are (N + 1) x a
and o X @ matrices, respectively. The factor Lo is clearly of the form
Ly = [i? O]T, where Lo is (M 4 1) x a. Let h; be the row vector
of the first M + 1 coefficients of k;. Writing down the extended
Chandrasekhar recursions (9), we obtain

7‘51’/22 il.i+1 j.:/l 7‘61’/1-2_*_1 0
0 1727 |©i= | e = (18)
M ATH2L, [ﬂ Lips

where ©; is any J = (1 @ S)—unitary matrix that produces the
zero entry on the right hand-side of the above expression. The
computational complexity of each step is O(aM) where the value
of a depends on the choice of Ilo. This recursion is a square-root
version of fast RLS algorithms discussed in the literature [11], [12].

We should remark that the connection between the Chandrasekhar
recursions and fast RLS algorithms has been pointed out earlier by
Houacine et al. [13], [14] by constructing a time-invariant state-space

model and by using the time-invariant Chandrasekhar recursions (Sec-
tion II). Slock [15] also discussed, in greater details, the connection
between t}g;.(unnormalized) Chandrasekhar recursions and the fast
transversal filter (FTF) algorithm of Cioffi and Kailath [12] by using
an infinite dimensional time-invariant state-space model and showing
the relation of the involved quantities to those in the FTF algorithm.

We addressed here the same connection within the framework of
structured time-variant models, which includes: as a special case,
the particular time-invariant models of Houacine and Slock. We
then showed that the square-root version of the fast RLS algorithm
followed by choosing a convenient ¥; in the extended Chandrasekhar
recursions (9) (which happens to be ¥, = Z). However, the extended
formulation in (9) allows us to readily consider more general cases.
The point is that though we assumed that the channel inputs obey
a shift structure viz. u;(i) = u;—1(¢ — 1), our derivation makes it
clear that we can also obtain fast algorithms for other cases where the
input channels exhibit a generalized shift structure. For example, if the
input vector u; satisfies a relation of the form u; = u;; ¥, for some
constant matrix ¥, then the associated state-space estimation problem
reduces to that of a time-variant structured model, and we can write
down the corresponding extended Chandrasekhar recursions. For
matrices ¥ that are relatively sparse, in the sense that ¥%,, ; requires
O(M) operations, and for appropriate choices of IIo, we are also led
to a fast RLS algorithm. Furthermore, the state-space model for the
(scalar) RLS problem has a row H matrix, whereas our derivation
(see state-space model (1)) allows for models with more general
matrices H. Such models arise for example, in the multichannel,
multidimensional, and/or nonlinear adaptive problems [23], where in
many instances, choice of ¥ with a block shift structure is convenient,
suchas: ¥ =Z@ Z @ --- @ Z. Finally, the above framework also
allows us to derive the so-called QR and lattice adaptive algorithms
as detailed in [21], [22].

VI. CONCLUSION

We have extended the Chandrasekhar recursions to a class of
structured time-variant models and we have derived the corresponding
square-root (or array) forms in both the normalized and unnormalized
forms. An application to the much studied exponentially weighted
recursive least-squares filtering problem has been briefly discussed.
Further applications to multichannel and multidimensional adaptive
filtering, and extensions to alternative windowing schemes will be
discussed elsewhere.
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On the Computation of Upper Covariance
Bounds for Perturbed Linear Systems

P. Bolzern, P. Colaneri, and G. De Nicolao

Abstract—Motivated by previously published results, the computation
of upper covariance bounds for perturbed linear systems is considered. It
is shown that, for a wide choice of cost functions, the bound optimization
problem is convex with respect to a scalar parameter. The analysis hinges
on the properties of a Hoo-type Riccati equation.

I. INTRODUCTION

The present note is motivated by the paper [1] where the com-
putation of upper covariance bounds for perturbed linear systems is
addressed. Among other things, in [1] it was observed, without any
further consideration, that the bound optimization problem might not
be convex. The main contribution of the present note is to show
that convexity is actually guaranteed for a class of cost functions,
including the one considered in [1].

Consider the time-invariant continuous-time linear system

:L‘(t) = Aoz(t) + Dow(t)

where Ao is stable and w (%) is a white noise signal of unit intensity.
Then, the asymptotic state covariance Xo = X > 0 is the unique
solution of the algebraic Lyapunov equation

AoXo + XQAB +Wo=0

where Wy = Do Dj. As pointed out in [1], perturbations in the system
matrix Ao are inevitable in practice, so that the real system matrix
is Ao + AA, where AA keeps into account model uncertainties.
Correspondingly, as long as Aq + AA remains stable, the state
covariance X = X' of the perturbed system is the unique solution of

(Ao + AA)X + X (Ao + AA) + Wo = 0.

In [2] and [1], the problem of obtaining an upper bound for the
perturbed state covariance X was dealt with. In particular, it was
shown that upper covariance bounds are provided by the solutions of
a suitable Ho-type Riccati equation.

Theorem I [1]: Let the uncertainty set 2 be defined as
e {AA: AAAA' < A}, where 4 is a given nonnegative matrix.
Suppose Ap is stable and (Ao + AA, W) is stabilizable YA A € Q.
If there exist a real 3 > 0 and X > O satisfying the Riccati equation

AX + XA+ XX/B+BA+Wo =0 (1

then Ay + AA is asymptotically stable and X < X,VAAE€Q. m
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