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FromTheorem 1,we can then deduce that it is also inseparable. A direct
check of inseparability agrees with this conclusion. In fact, we have the
min–max function

F (X) =A
 (B �X)

= (�1 + �3 + x3; �2 + �1 + x1; �3 + �2 + x2)
0

:

The corresponding monotone Boolean equation X = F (X; 0)) is
X = (x3; x1; x2)

0, which has only trivial solutions.
Next, let us present an example of reducible min–max system.
Example 3: Consider the min–max system � defined by

X(k + 1) = F (X(k)) = (x1(k) _ x2(k); x1(k) ^ x2(k))
0

:

It is straightforward to verify that � is not inseparable since X =
(1; 0)0 is a nontrivial solution to the Boolean function F (X) = X .
Let us find a reducible pair for it along the line of the first half of the
proof of Theorem 1. Note F (X) is given in DNF form. Following the
construction of (13), we introduce a vectorY = (y1; y2; y3)

0 as the col-
lection of the minimal terms in the DNF of F , namely, (y1; y2; y3) =
(x1; x2; x1 ^ x2)

0 or in matrix form

Y = B �X =

0 +1

+1 0

0 0

�X:

As a result, F (X) can be expressed in terms of Y as

F (X) = A 
 Y =
0 0 �1

�1 �1 0

 Y:

ForX = (1; 0)0, we have in Y = (1; 0; 0)0 in (15). We can then decide
that n1 = jI1j = 1, n2 = jI0j = 1 andm1 = jJ1j = 1,m2 = jJ0j =
2. The first part of the proof claims that the pair (A;B) obtained in this
way is reducible with A21 = E being an n2 � m1 = 1 � 1 matrix,
B12 = J being anm1�n2 = 1� 1matrix, and both permutations �
and � being identity permutations over n = f1; 2g andm = f1; 2; 3g.
This agrees with the direct observations on A and B.

Remark: From computational point of view, Theorem 1 has the fol-
lowing implication. Whenever it is easy to find a structural eigenvalue
and the corresponding structural eigenvector in the (min, max,+)-al-
gebra sense, as shown in [7, Th. 2], we can decide the irreducibility
of a given min–max system and as a result establish the inseparability
property. This will save us from the work of solving Boolean equations.
On the other hand, if a min–max system is given directly in the general
form of (7), it might be difficult to decide the irreducibility by rewriting
the system in bipartite form and finding its structural eigenvalue. One
potential difficulty is that the conversion to bipartite form may intro-
duce an exponential many auxiliary variables, i.e., m = O(2n). For
some of such cases, it might be easier to test inseparability.

Example 1: (continued) According to Theorem 1 and the insepara-
bility we already established, we can deduce that the min–max system
in Example 1 is irreducible. Note, we establish the irreducibility of
this system without explicitly identifying a structural eigenvalue which
seems a nontrivial task for this example. It should be made clear that
the irreducibility means that there is no reducible pair (A;B) such that
F (X) = A 
 (B � X).
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Regularized Robust Filters for Time-Varying Uncertain
Discrete-Time Systems

Ananth Subramanian and Ali H. Sayed

Abstract—This note develops robust filters for time-varying uncertain
discrete-time systems. The developed filters are based on a data regulariza-
tion solution and they enforce a minimum state-error variance propoerty.
Simulation results confirm their superior performance over other robust
filter designs.

Index Terms—Convex optimization, least-squares, parametric uncer-
tainty, regularization, robust filter.

I. INTRODUCTION

The Kalman filter is the optimal linear least-mean squares estimator
for systems that are described by linear state-space models [1]. How-
ever, when the model is not accurately known, the performance of the
filter can deteriorate appreciably. This filter sensitivity to modeling
errors has led to several works in the literature on the development of
robust filters; robust in the sense that they limit the effect of model
uncertainties on filter performance. Some known approaches to robust
state-space estimation are H1 filtering, mixed H2=H1 filtering,
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set-valued estimation, guaranteed-cost designs, and minimum vari-
ance filtering (see [2]–[8]). In [9], a robust filter design framework
was proposed that performs data regularization as opposed to data
de-regularization; a property that is useful for real-time operation.
The design in [9] involved choosing a certain Ricatti variable so as
to enforce local optimality and robustness properties. In this note,
we pursue the design of such regularized robust filters further and
show how to enforce certain minimum error variance property. We
also consider two general classes of uncertain state-space models.
One class involves stochastic uncertainties and another class involves
polytopic uncertainties. For each class, we design robust filters that
bound the state error covariance matrix. The robustness criterion used
is different from prior robust designs (e.g., H1, guaranteed-cost, or
set-valued estimation) in that it is based on robust regularization [9].
Simulation results are included to illustrate the superior performance
of the proposed filters over other robust designs.

II. LEAST-SQUARES WITH UNCERTAINTIES

Let J(x; y) denote a cost function of the form J(x; y) = xT�x +
R(x; y) with

R(x; y)=((A+�A)x�(b+�b))T W ((A+�A)x�(b+�b)) (1)

where �A denotes an N � n perturbation matrix to A, �b denotes an
N � 1 perturbation vector to b, and f�A; �bg are assumed to satisfy a
model of the form

[�A �b] = H�[Ea Eb] (2)

where � is an arbitrary contraction, k�k � 1, and fH;Ea; Ebg are
known quantities of appropriate dimensions. Here, the notation k:k de-
notes the two-induced norm of its matrix argument. Moreover, � > 0
andW > 0. Consider then the constrained two-player game problem

x̂ = argmin
x

max
f�A;�bg

J(x; y) (3)

subject to (2). The following result is proven in [10].
Theorem 1: The problem (2), (3) has a unique solution x̂ that is

given by

x̂ = [� +A
T
WA]�1 A

T
Wb+ �E

T
a Eb (4)

where � andW are modifications to � andW

� = �+ �E
T
a Ea W =W +WH(�I �H

T
WH)yHT

W (5)

and where the positive scalar � is determined from the optimization

� = arg min
��kH WHk

G(�) (6)

where the function G(�) is defined as follows:

G(�) = x
T (�)�x(�) + � kEax(�)� Ebk

2

+ [Ax(�)� b]T W (�) [Ax(�)� b] (7)

with

W (�)=W+WH(�I�HT
WH)yHT

W �(�)=�+�ET
a Ea

and

x(�) = �(�) + A
T
W (�)A

�1

A
T
W (�)b+ �E

T
a Eb : (8)

[The notationXy denotes the pseudoinverse ofX .] }

It was shown in [10], [11] that the functionG(�) has a unique global
minimum (and no local minima) over the interval � � kHTWHk,
which means that the determination of � can be pursued via search
procedures without worrying about convergence to undesired local
minima. It was argued in [9] that a reasonable approximation for
�̂ is to choose it as �̂ = (1 + �)�l, for some � > 0 and where
�l = kHTWHk.

III. STATE-SPACE MODELS

We shall show how to use Theorem 1 to design robust filters. Each
filter will be applicable to a particular uncertainty model. Thus, con-
sider an n-dimensional state-space model of the form

xk+1=Fkxk+Gkuk yk=(Hk+�Hk)xk+vk k�0 (9)

where fuk; vkg are uncorrelated white zero-mean random processes
with covariance matrices

Euku
T
k = Qk Evkv

T
k = Rk

and x0 is a zero-mean random variable that is uncorrelated with
fuk; vkg for all k. Here, the symbol E denotes expectation. The
uncertainties �Hk are modeled as

�Hk =Mk�kEk (10)

whereMk and Ek are known matrices, while �k is an arbitrary con-
traction, k�kk < 1. We shall consider two types of uncertainty de-
scriptions for the state matrices Fk . One type is in terms of polytopic
uncertainties and the other is in terms of stochastic uncertainties. In the
first case, we assume that Fk lies inside a convex bounded polyhedral
domain Kk that is described bym vertices as follows:

Kk = Fk =

m

i=1

�i;kFi;k �i;k � 0

m

i=1

�i;k = 1

(Polytopic uncertainties) (11)

Observe that Kk is allowed to vary with k. In the second case, we
assume that Fk is instead described by

Fk =Fk;c +�Fk

�Fk =Nk
��kJk (Stochastic uncertainties) (12)

for some known fFk;c; Nk; Jkg and where ��k is a random matrix
whose entries are zero mean and uncorrelated with each other, and such
that

E ��k
��T
k � � ��I (13)

for some known positive scalar � ��.

IV. ROBUST STATE SPACE FILTERING

When uncertainties are not present in the model (9), it is known that
the optimal linear estimator for the state variable xk is given by the
Kalman filter [1]. This filter admits a deterministic interpretation as the
solution to a regularized least-squares problem as follows [12]. Let1

x̂kjk�1
�
= an estimate of xk given fy0; y1; . . . ; yk�1g

x̂kjk
�
= an estimate of xk given fy0; y1; . . . ; yk�1; ykg:

1When uncertainties are not present, the qualification “estimate” refers to the
linear-least-mean-squares estimate.
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Given the predicted estimate x̂kjk�1 and an observation yk, the fil-
tered estimate x̂kjk that is computed by the Kalman filter is the solution
of

min
x

kx� x̂kjk�1k
2

P
+ kyk �Hkxk

2

R
(14)

where Pk and Rk are the state error covariance and the
measurement noise covariance matrices, respectively, i.e.,
Pk = E(xk � x̂kjk�1)(xk � x̂kjk�1)

T and Rk = Evkv
T
k .

When uncertainties are present in fHk; Fkg, we could formulate a
robust version of (14) by solving instead a min–max problem of the
form

min
x

max
�H ;�F

kx� x̂kjk�1k
2

P
+ kyk � (Hk + �Hk)xk

2

T

(15)
for some matrices fPk; Tkg to be chosen. This formulation was pro-
posed in [9], where Tk was chosen as Tk = Rk while Pk was chosen
via a Ricatti recursion so as to enforce a local robustness property. In
this note, we shall determine Pk so as to minimize the state error co-
variance matrix as well. We do so by showing how to reparametrize the
problem in terms of a single parameterWk over which the global mini-
mization of the state error covariance matrix reduces to a linear convex
problem.

A. Polytopic Uncertainties in Fk Alone

We consider first the case of polytopic uncertainties in Fk alone as
in (11) with no uncertainties inHk . Our objective is to design a robust
linear estimator for the state variable xk of the form

x̂kjk = Fp;kx̂kjk�1 +Kp;kyk x̂k+1jk = Fk;cx̂kjk (16)

for somematricesFp;k andKp;k to be determined in order to minimize
the state error covariance matrix and where Fk;c denotes the centroid
of the polytope Kk

Fk;c =
1

m

m

i=1

Fi;k: (17)

Referring to problem (14), its solution x̂kjk is given by

x̂kjk = x̂kjk�1 + P
�1
k +H

T
k R

�1
k Hk

�1

� H
T
k R

�1
k (yk �Hkx̂kjk�1) : (18)

If we introduce the matrix

Wk
�
= P

�1
k +H

T
k R

�1
k Hk

�1

(19)

then (18) for x̂kjk becomes

x̂kjk = I �WkH
T
k R

�1
k Hk x̂kjk�1 +WkH

T
k R

�1
k yk (20)

in terms of the parameterWk . Note that, in the absence of uncertainties,
Wk would be the Ricatti variable Pkjk of the time and measurement
form of the Kalman filter [1]. Noting that uk is a zero-mean white
random process, we let the following be an estimate for xk+1:

x̂k+1jk
�
= Fk;cx̂kjk (21)

where Fk;c is given by (17). We then get

x̂k+1jk = Fp;kx̂kjk�1 +Kp;kyk (22)

where Fp;k and Kp;k are defined in terms ofWk as

Fp;k=Fk;c I�WkH
T
k R

�1
k Hk ; Kp;k=Fk;cWkH

T
k R

�1
k :

(23)
Denoting ~xk = xk � x̂kjk�1, we define the extended weight vector

�k
�
= x

~x
. Then, ignoring the uncertainties in Fk , we find that �k

satisfies

�k+1 = �Fk�k + �Gkwk (24)

where

wk =
uk

vk

�Fk =
Fk 0

Fk � Fp;k �Kp;kHk Fp;k

�Gk =
Gk 0

Gk �Kp;k

(25)

and the covariance matrix of �k satisfies

�k+1 = �Fk�k �F
T
k + �GkSk �G

T
k where Sk =

Qk 0

0 Rk
(26)

and �0 is the covariance matrix of �0. Now, observe that the expres-
sions for fFp;k;Kp;kg are parametrized linearly in terms of the param-
eterWk . We then chooseWk so as to minimize the covariance matrix
of �k . Specifically, we chooseWk > 0 so as to minimize �k+1. This
can be obtained by solving

min
W >0

Tr(�k+1) (27)

subject to

�k+1 � �Fk�k �F
T
k + �GkSk �G

T
k (28)

or, equivalently

��k+1 �Fk�k �GkSk

�k �F
T
k ��k 0

Sk
�GT
k 0 �I

� 0: (29)

So far we have ignored uncertainties in Fk . In order to incorporate
the polytopic uncertainties in the Fk , as defined by the sets Kk in
(11), we need to solve the above optimization problem with Fk taking
values at the m vertices of the convex polytope Kk , i.e., from the set
fF1;k; F2;k; . . . . . . ; Fm;kg. Since the inequality (29) is affine in Fk ,
the Wk thus found will ensure minimum error covariance �k over all
possible Fk in Kk . Therefore, the desired time-varying robust filter is
given by (22) and (23), where Wk is the positive definite solution of
(27)–(29) with Fk taking values on the vertices of the convex polytope
Kk , and initializing �0 = diagfPo; �Ig for some positive–definite Po
and scalar � > 0. The resulting filter is listed in Table I.

B. Polytopic Uncertainties in Fk and Bounded Uncertainties inHk

We now incorporate uncertainties in to Hk . That is, we consider
polytopic uncertainties in Fk as in (11) and bounded uncertainties in
Hk as in (10). Again, our objective is to design a robust linear estimator
for the state variable xk of the form

x̂kjk = Fp;kx̂kjk�1 +Kp;kyk x̂k+1jk = Fk;cx̂kjk (30)

for somematricesFp;k andKp;k to be determined.Wewill designFp;k
andKp;k by following a two-step procedure. Assume first that there are
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TABLE I
MINIMUM VARIANCE FILTER FOR POLYTOPIC UNCERTAINTIES IN F ALONE

no uncertainties inFk; we will incorporate the uncertainties inFk later.
With uncertainties in the output matrices Hk alone, we consider (15),
which becomes

min
x

max
�H

kx� x̂kjk�1k
2

P
+ kyk � (Hk + �Hk)xk

2

T
(31)

for some matrices Pk and Tk to be determined. Problem (31) can be
written more compactly in the form of (1)–(3) with the identifications

x �fxk�x̂kjk�1g b � yk�Hkx̂kjk�1

�A �Mk�kEk �b � �Mk�kEkx̂kjk�1

� �P�1
k W � T

�1
k H �Mk Ea � Ek

Eb � �Ekx̂kjk�1 � � �k A � Hk:

From Theorem 1, the solution x̂kjk of (31) is given by

x̂kjk = x̂kjk�1 + P
�1
k + �̂E

T
k Ek +H

T
k R̂

�1
k Hk

�1

� H
T
k R̂

�1
k (yk �Hkx̂kjk�1)� �̂E

T
k Ekx̂kjk�1 : (32)

We are going to select �̂ approximately as �̂ = (1 + �)�l;k where
�l;k = kMT

k T
�1
k Mkk. Moreover

R̂
�1
k = Tk � �̂

�1
MkM

T
k

�1

: (33)

With a new definition of Wk as

Wk
�
= P

�1
k + �̂E

T
k Ek +H

T
k R̂

�1
k Hk

�1

(34)

expression (32) for x̂kjk becomes

x̂kjk = I � �̂WkE
T
k Ek �WkH

T
k R̂

�1
k Hk x̂kjk�1

+WkH
T
k R̂

�1
k yk (35)

in terms of the parameter Wk. We again let

x̂k+1jk
�
= Fk;cx̂kjk (36)

where Fk;c is given by (17). We then get

x̂k+1jk = Fp;kx̂kjk�1 +Kp;kyk (37)

where Fp;k and Kp;k are now defined in terms ofWk as

Fp;k =Fk;c I � �̂WkE
T
k Ek �WkH

T
k R̂

�1
k Hk

Kp;k =Fk;cWkH
T
k R̂

�1
k

: (38)

These expressions for Fp;k and Kp;k have been determined by as-
suming uncertainties inHk alone.We nowmove on to select the param-
eter Wk by assuming uncertainties in Fk alone. By doing so, we will
arrive at a filter that minimizes a bound on the state error covariance
matrix when there are uncertainties in Fk alone and one that meets the
robustness criterion (31) when there are uncertainties in Hk . With no
uncertainties in Fk andHk , the covariance matrix of �k again satisfies

�k+1 = �Fk�k
�F T
k + �GkSk �G

T
k where Sk =

Qk 0

0 Rk

(39)

where �0 is the covariance matrix of �0. Now, observe again that the
expressions for fFp;k; Kp;kg are parametrized linearly in terms of the
parameterWk . We will then chooseWk so as to minimize the covari-
ance matrix of �k . Specifically, we shall again choose Wk > 0 so as
to minimize �k+1 of (39). This can be obtained by solving

min
W >0

Tr(�k+1) (40)

subject to

�k+1 � �Fk�k
�F T
k + �GkSk �G

T
k (41)

or, equivalently

��k+1
�Fk�k

�GkSk

�k
�F T
k ��k 0

Sk
�GT
k 0 �I

� 0: (42)

In order to incorporate the polytopic uncertainties in the Fk ,
as defined by the sets Kk in (11), we solve the aforementioned
optimization problem with Fk taking values at the m vertices of the
convex polytope Kk, i.e., from the set fF1;k; F2;k; . . . . . . ; Fm;kg.
Therefore, the desired time-varying robust filter is given by (37) and
(38), where Wk is the positive–definite solution of (40)–(42) with
Fk taking values on the vertices of the convex polytope Kk , and
initializing �0 = diagfPo; �Ig for some positive definite Po. Note
that there always exists a solution to (40)–(42). The resulting filter is
listed in Table II.
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TABLE II
REGULARIZED ROBUST FILTER FOR THE MODEL (9)–(11)

TABLE III
REGULARIZED ROBUST FILTER FOR STOCHASTIC UNCERTAINTIES IN F

C. Stochastic Uncertainties in Fk and Bounded Uncertainties inHk

We now consider the case of stochastic uncertainties in Fk as in (12)
as well as uncertainties inHk as in (10). Here again, our objective is to
design a robust linear estimator for the state variable xk of the form

x̂kjk = Fp;kx̂kjk�1 +Kp;kyk x̂k+1jk = Fk;cx̂kjk (43)

for some matrices Fp;k and Kp;k to be determined, and where Fk;c
denotes the nominal state matrix from (12). Proceeding in the same
manner as in the previous section from the robustness condition (31),
we know that the expressions for fFp;k; Kp;kg can be parametrized
linearly in terms of a parameter Wk . We shall choose Wk so as to
minimize an upper bound on the covariance of �k in the absence of
uncertainties in Hk . Here, �k satisfies

�k+1 = ( �Fk;c + �Nk
�� �Jk)�k + �Gkwk (44)

where

wk =
uk

vk
�Fk;c =

Fk;c 0

Fk;c � Fp;k �Kp;kHk Fp;k

�Nk =
Nk 0

Nk 0
�Jk =

Jk 0

0 0
(45)

and the covariance matrix of �k then satisfies

�k+1 = E ( �Fk;c+ �Nk
�� �Jk)�k( �Fk;c+ �Nk

�� �Jk)
T + �GkSk �G

T
k :

(46)
Let �̂k be a scalar such that �̂kI � �Jk�k �J

T
k > 0. Expanding (46), we

can see that the error covariance matrix is bounded by

�k+1 � �Fk;c�k �F
T
k;c + �GkSk �G

T
k + � ���̂k

�Nk
�NT
k :

Hence, we shall choose Wk > 0 by solving

min
W >0

Tr(�k+1) (47)

subject to

�k+1 � �Fk�k �F
T
k + �GkSk �G

T
k + � ���̂k

�Nk
�NT
k (48)

or, equivalently

��k+1 + � ���̂k
�Nk

�NT
k

�Fk�k �GkSk

�k �F
T
k ��k 0

Sk
�GT
k 0 �I

� 0: (49)

The resulting filter is listed in Table III. The only difference relative to
the filter of Table II is the term � ���̂k

�Nk
�NT
k . The filters of Tables I–III

have complexityO(n4) per iteration, where n is the state dimension. In
the appendix, we describe a filter that helps reduce the computational
complexity to O(n3) per iteration.

V. SIMULATIONS

To illustrate the filters developed in Sections IV-A and B for poly-
topic uncertainties in Fk , we choose an implementation of order 2. The
uncertain state matrices Fk are assumed to lie inside the convex poly-
tope

Fk 2
:68 �:5

1 :7 + :016�
(50)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 6, JUNE 2004 975

TABLE IV
MSE PERFORMANCE OF THE PROPOSED ROBUST FILTERS OF SECTIONS IV-A– IV-C AND APPENDIX IN COMPARISON TO OTHER ROBUST FILTERS FOR FOUR

CASES: (a) STOCHASTIC UNCERTAINTIES IN F FOR (� � 1) AND WITH NO UNCERTAINTIES IN H ; b) STOCHASTIC UNCERTAINTIES IN F FOR

(� � 0:0001) AND WITH BOUNDED UNCERTAINTIES IN H ; (c) POLYTOPIC UNCERTAINTIES IN F AND NO UNCERTAINTIES IN H ; AND (d)
POLYTOPIC UNCERTAINTIES IN F AND BOUNDED UNCERTAINTIES IN H

with j�j � 1. The vertices of the polytope are

F1 =
:68 �:5

1 :716
F2 =

:68 �:5

1 :684
:

We choose Hk = [10 1] and Gk = [6 3]T . Table IV shows
the steady-state mean square state-error (MSE) values i.e.,
Tr[E(xk � x̂kjk�1)(xk � x̂kjk�1)

T ], obtained by averaging
over 50 experiments for the proposed filters in comparison to other
filters. It is seen that the filters of Sections IV-A and IV-B result in
smaller MSE, albeit at increased computational cost O(n4) versus
O(n3) operations per iteration. The filter of [9] is also seen to result
in similar MSE values at the reduced computational cost of O(n3)
operations per iteration. To illustrate the filter developed for stochastic
uncertainties in Section IV-C, we choose an implementation of order
2 with Ek = [3:6 0:6],Mk = 1 for all k. The uncertain state matrices
Fk are assumed to be

Fk =
:68 �:5

1 :7 + 0:016 ��
(51)

for the choice of � �� = 1, Nk = 0:4I and Jk = 0:04
0 0

0 1
.

Table IV shows the resulting MSE values.

VI. CONCLUSION

In this note, we developed regularized robust filters for state-space
estimation. The design procedure is through the solution of a regular-
ized weighted recursive least squares problem and it enforces a min-
imum state error variance property.

APPENDIX

ANOTHER ROBUST FILTER

Consider again (46) in the absence of uncertainties in Hk . We now
show how to generate a sequence of matrices ~�k and �̂k such that
�k � ~�k � �̂k . We will seek matrices ~�k and �̂k of the special form

~�k+1=
~Yk+1 ~Xk+1

~XT
k+1

~Yk+1� ~Zk+1

�̂k=
Ŷk Ŷk�Ẑk

Ŷk�Ẑk Ŷk�Ẑk

;

(52)
This construction will enable us to avoid the solution of the optimiza-
tion problem (47) at each iteration thus reducing the computational
complexity of the algorithm from O(n4) to O(n3) per step. At every
iteration, we will find a suboptimal Wk that minimizes the bound ~�k

on �k . At time instant k+1, assuming we have �k � ~�k � �̂k , then

the state error covariance matrix is bounded by the (2,2) block element
of the matrix ~�k+1 defined by

~�k+1 = �Fk;c�̂k
�F T
k;c + �GkSk �G

T
k + � ���̂k �Nk

�NT
k � �k+1 (53)

where �̂k is also such that �̂kI � �Jk�̂k
�JT
k > 0. Using (52) and (53),

we get the relations

~Yk+1 =Fk;cŶkF
T
k;c + � ���̂kNkN

T
k +GkQkG

T
k

~Zk+1 =Fk;cẐkF
T
k;c � Fk;cWkH

T
k R̂

�1
k RkR̂

�1
k HkWkF

T
k;c

+ Fk;c(Ŷk � Ẑk)H
T
k R̂

�1
k HkWkF

T
k;c

+ Fk;cWkH
T
k R̂

�1
k Hk(Ŷk � Ẑk)F

T
k;c

� Fk;cWkH
T
k R̂

�1
k Hk(Ŷk � Ẑk)H

T
k R̂

�1
k HkWkF

T
k;c

~Xk+1 =Fk;c(Ŷk � Ẑk)F
T
p;k + � ���̂kNkN

T
k +GkQkG

T
k :

Also, the (2,2) block element of ~�k+1 is given by ~�2;2

k+1 = ~Yk+1 �
~Zk+1 = C1;k where

C1;k =Fk;c(Ŷk � Ẑk)F
T
k;c + � ���̂kNkN

T
k +GkQkG

T
k

+ Fk;cWkH
T
k R̂

�1
k RkR̂

�1
k HkWkF

T
k;c

� Fk;c(Ŷk � Ẑk)H
T
k R̂

�1
k HkWkF

T
k;c

� Fk;cWkH
T
k R̂

�1
k Hk(Ŷk � Ẑk)F

T
k;c

+ Fk;cWkH
T
k R̂

�1
k Hk(Ŷk � Ẑk)H

T
k R̂

�1
k HkWkF

T
k;c:

We will choose the weighing matrix Tk such that R̂k = Rk . We now
find a lower bound for C1;k. After some algebra, we can show that for

Wk;opt = (Ŷk � Ẑk)� (Ŷk � Ẑk)H
T
k
�R�1e;kHk(Ŷk � Ẑk)

and �Re;k = Rk +Hk(Ŷk � Ẑk)H
T
k , we have (@Tr(C1;k)=Wk) = 0.

That is,Wk;opt minimizes Tr(C1;k). It can be seen through the matrix
inversion lemma that Wk;opt is positive definite. Now, we will derive
an upper bound for ~�k+1 in the form [which is compatible with the
form we started with in (52)]

�̂k+1 =
Ŷk+1 Ŷk+1 � Ẑk+1

Ŷk+1 � Ẑk+1 Ŷk+1 � Ẑk+1

(54)

for some matrices Ŷk+1 and Ẑk+1. Choose  k as the maximum sin-
gular value of I + B where

B =Fk;cWkH
T
k R̂

�1
k Hk(Ŷk � Ẑk)H

T
k R̂

�1
k HkWkF

T
k;c

+ Fk;cWkH
T
k R̂

�1
k HkWkF

T
k;c

� Fk;cWkH
T
k R̂

�1
k Hk(Ŷk � Ẑk)F

T
k;c:
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Now, with Ŷk+1 =  2kI + ~Yk+1 and Ẑk+1 = ~Zk+1 + 2kI � I , �̂k+1

is an upper bound of ~�k+1. This is because

�̂k+1 �
~�k+1 =

 2kI I +B

(I +B)T I
> 0: (55)

Hence, the filter is given by x̂k+1jk = Fp;kx̂kjk�1 + Kp;kyk where
Fp;k and Kp;k are defined in terms ofWk as

Fp;k =Fk;c I � �̂WkE
T
k Ek �WkH

T
k R̂

�1
k Hk

Kp;k =Fk;cWkH
T
k R̂

�1
k (56)

and Wk is determined in terms of Ŷk and Ẑk at every k as explained
before.
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Pricing and Congestion Management in a Network With
Heterogeneous Users

Shaler Stidham, Jr.

Abstract—This note presents an economic model for a communication
network with utility-maximizing elastic users who adapt to congestion
by adjusting their flows. Users are heterogeneous with respect to both
the utility they attach to different levels of flow and their sensitivity to
delay. Following Kelly et al. (1998), we introduce dynamic rate-control
algorithms, based on the users’ utility functions and delay sensitivities,
as well as tolls charged by the system, and examine the behavior of these
algorithms. We show that allowing heterogeneity with respect to delay
sensitivity introduces a fundamental nonconvexity into the congestion-cost
functions. As a result, there are often multiple stationary points of the ag-
gregate net utility function. Hence, marginal-cost pricing—equating users’
marginal utilities to their marginal costs—may identify a local maximum
or even a saddle point, rather than a global maximum. Moreover, the
dynamic rate-control algorithm may converge to a local rather than global
maximum, depending on the starting point. We present examples with
different user utility functions, including some in which the only interior
stationary point is a saddlepoint which is dominated by all the single-user
optimal allocations. We also consider variants of the dynamic algorithm
and their performance in a network with heterogeneous users. Our results
suggest that applying a rate-control algorithm such as TCP (Transmission
Control Protocol), even when augmented by some form of implicit or
explicit pricing, may have unexpected and perhaps undesirable effects on
the allocation of flows among heterogeneous delay-sensitive users.

Index Terms—Communication network, congestion pricing, dynamic
rate-control algorithm, elastic users, heterogeneous users.

I. INTRODUCTION

We consider a variant of an economic model proposed by Kelly [2]
and elaborated by Kelly, Maulloo, and Tan [1] (hereafter referred to
as the KMT model) for a communication network with utility-maxi-
mizing elastic users who adapt to congestion by adjusting their flows.
A distinctive feature of our model is that users are explicitly sensitive
to delays as well as flows. Moreover, they not only differ in the utility
they attach to different levels of flow, but are also heterogeneous with
respect to the cost of delay. Following Kelly et al. [1], we introduce
dynamic rate-control algorithms, based on the users’ utility functions
and delay sensitivities as well as tolls charged by the system, and ex-
amine the behavior of these algorithms. Algorithms of this type have
been introduced as an aid to understanding the behavior of rate-con-
trol mechanisms such as TCP (Transmission Control Protocol) and its
variants, which have been proposed for the Internet (see [3]–[5]).

Heterogeneous delay sensitivities may arise, for example, in net-
works (such as the current and future Internet) that handle diverse types
of traffic, ranging from file transfers (with a low sensitivity to delay)
to real-time traffic such as streaming audio and video, which can tol-
erate only minor delays. Many authors have suggested that such diver-
sity of traffic will require differentiated services, in which some types
of traffic are given priority (see, for example, [6] and the references
therein). Others [7] have argued that a “self-managed Internet” may be
able provide a diverse set of services with low levels of loss or delay,
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