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A Framework for State-Space Estimation with
Uncertain Models
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Abstract—This paper develops a framework for state-space es-
timation when the parameters of the underlying linear model are
subject to uncertainties. Compared with existing robust filters, the
proposed filters perform regularization rather than deregulariza-
tion. It is shown that, under certain stabilizability and detectability
conditions, the steady-state filters are stable and that, for quadrat-
ically-stable models, the filters guarantee a bounded error vari-
ance. Moreover, the resulting filter structures are similar to var-
ious (time- and measurement-update, prediction, and information)
forms of the Kalman filter, albeit ones that operate on corrected
parameters rather than on the given nominal parameters. Sim-
ulation results and comparisons with , guaranteed-cost, and
set-valued state estimation filters are provided.

Index Terms—Estimation, guaranteed-cost design, -fil-
tering, Kalman filtering, parametric uncertainty, quadratic
stability, regularized least-squares, set-valued estimation,
steady-state filter.

I. INTRODUCTION

T HE Kalman filter is the optimal linear least-mean-squares
estimator for systems that are described by linear state-

space Markov models (see, e.g., [1], [2]). Since its inception
in the early 1960s, it has played a significant role in numerous
fields ranging from orbit determination, to finance, to commu-
nications, to control, and other fields.

A central premise in the Kalman filter theory is that the un-
derlying state-space model is accurate. When this assumption
is violated, the performance of the filter can deteriorate appre-
ciably. (See, e.g., the edited volumes [3], [4], as well as [5],
which contain several discussions and articles on practical is-
sues in Kalman filtering design. See also the simulation exam-
ples further ahead in Section VII.) This filter sensitivity to mod-
eling errors has led to several works in the literature on the de-
velopment of robust state-space filters; robust in the sense that
they attempt to limit, in certain ways, the effect of model un-
certainties on the overall filter performance. Three distinctive
approaches to state-space estimation in this regard arefil-
tering, set-valued estimation, and guaranteed-cost designs.

The approach attempts to construct filters that bound the
2-induced norm of the operator that maps the disturbances to
the estimation errors (see, e.g., [6]–[14]). One limitation of
designs for online (i.e., recursive) filter operation is that they re-
quire continuous testing of a certain existence condition. When
the condition fails at any particular iteration, the desired
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performance is lost and the filter can diverge. This is a conse-
quence of the fact that filters minimize certain indefinite
quadratic forms and, as a result, they perform de-regularization
(see, e.g., [15]). One method to ameliorate this difficulty is to
increase the value of the robustness parameter; this however
comes at the expense of decreasing the robustness of the filter
(see again the simulations in Section VII). This issue is of such
concern for on-line filtering operations that several tools and
tuning methods have been studied in the literature, especially
for linear time-invariant models, with the objective of enabling
the designer to checka priori whether a prescribed robustness
level can be guaranteed by an filter over intervals of ar-
bitrary lengths (see, e.g., the works [16], [17]).

A second useful approach to robust estimation is the set-
valued estimation approach. In this design, one attempts to con-
struct ellipsoids around state estimates that are consistent with
the observations and subject to certain norm constraints on the
noise disturbances (see, e.g., [18]–[20] and the many references
in the latter edited volume). Some extensions to handle model
uncertainties are described in [14], [21], [22], with the reference
[22] considering a class of model uncertainties that can be de-
scribed by integral (or sum) quadratic constraints. Here again
one is faced with the requirement of checking for certain ex-
istence conditions, which can be an impediment to on-line fil-
tering—see the simulation results in Section VII.

A third well-studied approach to robust estimation is the
guaranteed-cost paradigm. Here one attempts to construct
state-space estimators that guarantee that the steady-state
variance of the state estimation error is upper bounded by a
certain constant value for all admissible uncertainties in the
model (see, e.g., [14], [23]–[25] and also [26], [27]). The
solution usually involves some design parameters that need
to be selected adequately (or tuned) in order to guarantee the
existence of a positive-definite stabilizing solution of a certain
discrete algebraic Riccati equation—see Section VI-D. The
arguments and the derivations in most cases (see, e.g., [14],
[23], [25]) are limited to time-invariant and quadratically-stable
nominal models in steady-state operation. Extensions of the
results to finite-horizon time-variant models are considered
in [28], [29]. The solution in [28], however, leads to a more
involved filter structure and suffers from instability problems,
as acknowledged by the authors [28, p. 185] and also observed
in simulations. The solution in [29] is one that is consistent
with the steady-state filters developed in [14], [23], [25]. It
again requires testing of certain existence conditions, which
can be a limitation for on-line operation. The discussion in
[29] further elaborates on sufficient conditions for guaranteed
operation over arbitrarily long intervals of time.
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In this paper, we develop a robust procedure for state-space
estimation in the presence of modeling uncertainties. Compared
with the standard Kalman filter, which is known to minimize
the regularized residual norm at each iteration, the new filters
are designed to minimize the worst-possible regularized residual
norm over the class of admissible uncertainties at each iteration.
In addition, compared with the aforementioned robust formula-
tions, the resulting filters perform data regularization rather than
deregularization; a property that circumvents existence condi-
tions and is convenient for online operation. The new filters are
also shown to lead to stable steady-state performance and, for
quadratically stable models, they are further shown to guarantee
bounded error variances. Moreover, the proposed framework ap-
plies to a general class of parametric uncertainties, specified
through the selection of a modeling function —see the re-
mark in the paragraph following (7).

We start our exposition in the next section by formulating a
generic regularized least-squares problem for models with data
uncertainties. Once this is done, we shall then focus on the state-
space estimation problem in some detail.

Notation: For a column vector and a positive-definite ma-
trix , we write and to denote the Euclidean norm
and its weighted version, namely, and , respectively.
Also, for brevity, we may sometimes write instead of

especially when the factor admits a long expression
(see, e.g., the last expression in the statement of Theorem 3).

II. REGULARIZED LEAST-SQUARES WITHUNCERTAINTIES

As is well known (see, e.g., [2]), many estimation techniques
rely on solving regularized least-squares problems of the form

(1)

where is a regularization term with and
is a weighting matrix.1 The unknown vector

is -dimensional, while is and is . Both and
are assumed known, and the solution of (1) is

(2)

In practice, the nominal data are often subject to dis-
turbances and/or uncertainties. Such errors can degrade the per-
formance of the estimator (2). For example, if the actual data
matrix were , for some unknown perturbation , then
the estimator (2) that is designed based onalone, and without
accounting for the existence of , can perform poorly.

This motivated us to introduce in [30] a robustified version
of (1) that can account for a general class of uncertainties in
the data . Thus let denote a two-variable cost
function of the form

1WhenQ is sign-indefinite, as is common inH formulations (e.g., [11],
[15]), we say that the solution performs deregularization. In such situations, the
least-squares problem need not always have a minimum; the Hessian matrix
with respect tox needs to be positive–definite.

where the residual is defined by

Here, is an known matrix and is an unknown
perturbation vector. Comparing the expression for with
the term that appears in (1), we see that
we are representing possible sources of uncertainties inand
by the additional term . The matrix provides the designer
with the freedom of restricting the uncertaintyto certain range
spaces. While itself is not known, we assume that what is
known is a bound on its Euclidean norm, say , for
some known (linear or nonlinear) nonnegative function .
Observe that the bound onis allowed to depend on.

Consider now the problem of solving

(3)

Problem (3) can be interpreted as a constrained two-player game
problem, with the designer trying to pick an estimatethat min-
imizes the cost while the opponent tries to maximize the
cost. The game problem is constrained since it imposes a bound
[through ] on how large (or how damaging) the opponent
can be. Observe further that the strength of the opponent can
vary with the choice of . We shall assume in the sequel that
and are not identically zero

and (4)

since if either is zero, the game problem (3) trivializes to (1).
A special case of (3) was studied in [31]–[34] with the choices

, , , and . It turns out,
however, that for treating the state-space estimation problem of
this paper one has to allow for nontrivial choices of ,
as well as for more general choices of . The problem in
this general case is richer in structure and its solution requires
some care to avoid the introduction of multiple regularization
parameters, as was shown in [30].

In this paper, we focus on the following specialization of (3)

(5)

where
perturbation matrix to the nominal ma-

trix ,
denotes an perturbation vector to the
nominal vector ;
assumed to satisfy a model of the form

(6)

where is an arbitrary contraction, ,
and are known quantities of
appropriate dimensions ( is a column
vector). Perturbation models of the form (6)
are common in robust filtering and control
and can arise from tolerance specifications on
physical parameters (see [35] for an example).
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In order to see how (5) is a special case of (3), we rewrite the
cost in (5) as

so that with defined as

and as , problem (5) can be verified to be
equivalent to the following:

which is a special case of (3) for the particular choice
. One can also handle the case in which the uncer-

tainties in (5) are unrelated yet bounded, say

(7)

for some nonnegative scalars , instead of (6). In this
case, problem (5) reduces to a special case of (3) for the choice

—see [36].
The formulation (3) is more general than (6) and (7) in that it

allows for other classes of perturbations through the choice of
the function . The solution of (3) in this general case is dis-
cussed in [30], [37]. In this paper, we focus on perturbations of
the form (6). Our arguments are such that they can be extended
to other classes of perturbations. The following result is proven
in [30] and [37].

Theorem 1 (Solution):The problem (5) and (6) has a unique
solution that is given by [compare with (2)]

(8)

where the modified weighting matrices are obtained
from via

(9)

(10)

and the nonnegative scalar parameteris determined from the
optimization

(11)

where the function is defined as

(12)

Here

(13)

(14)

and

(15)

[The notation denotes the pseudoinverse of.]

Moreover, the value of the resulting optimal cost of (5) is
equal to , and is given by

A. Structure of the Solution

We thus see that the solution of (5) and (6) requires that
we first determine an optimal nonnegative scalar parameter,,
which corresponds to the minimizing argument of the function

over the semi-open interval . For conve-
nience of notation, we shall denote the lower bound onby ,
i.e.,

(16)

Compared with the solution (2) of the standard regularized least-
squares problem (1), we see that the expression forin (8) is
distinct in two important ways.

1) First, the weighting matrices need to be replaced
by corrected versions . These corrections are de-
fined in terms of the optimal parameterand they are also
dependent on the uncertainty model.

2) Second, the right-hand side of (8) contains an additional
term that is equal to . This means that, with
given, the in (8) can be interpreted as the solution to
a regularized least-squares problem of the form

with across-couplingterm between and unity. Observe
further from (8) that satisfies an orthogonality relation
of the form

(17)

which is typical of regularized least-squares problems
with coupling.

B. The Minimization of

For any value of in the interval , the matrix
in (13) is nonnegative-definite so that for (it
may become negative for ). In addition, it can be proven
that the function has auniqueminimum in the interval

; and hence that it has a unique global minimum and no
local minima [37]. This indicates that the determination ofcan
be sought via optimization routines that need not be concerned
with the possibilities of local minima.

In addition, a useful observation from many simulations that
we have performed is that the function tends to reach am-
plitudes close to its minimum value at argumentsthat are gen-



SAYED: A FRAMEWORK FOR STATE-SPACE ESTIMATION WITH UNCERTAIN MODELS 1001

erally close to the lower bound (see, e.g., [38]). We shall use
this observation in a future section to suggest a practical approx-
imation for the optimal without the need to explicitly mini-
mize . In particular, we shall later set , for
some , i.e., we shall set at a multiple of the lower bound.
More on this issue later. For now, we continue with the optimal
choice for .

C. Invertibility Condition

In the state-space context that we study in Section IV, the ma-
trix will be positive–definite (and, hence, invertible) so that

itself will always be positive-definite (and, hence, also
invertible). Therefore, if we restrict the minimization in (11) to
the open interval (i.e., if we only exclude the boundary
point ), then the pseudoinverse operation in (13) can be re-
placed by normal matrix inversion, so that by using the matrix
inversion lemma we arrive at the compact expression

(18)

This expression will be useful in the sequel; we shall henceforth
assume that the boundary pointis excluded and use this sim-
pler expression.

III. STANDARD STATE-SPACE ESTIMATION

We now discuss how to incorporate the earlier discussions
into a state-space context. We first review the standard Kalman
filtering solution for accurate state-space models.

A. The Kalman Filter

Thus consider a state-space description of the form

(19)

(20)

where are uncorrelated zero-mean random vari-
ables with variances

(21)

that satisfy

(22)

Here, is the Kronecker delta function that is equal to unity
when and zero otherwise.

The well-known Kalman filter provides the optimal linear
least-mean-squares (l.l.m.s.) estimate of the state variable given
prior observations. More specifically, introduce the following
predicted and filtered estimates:

l.l.m.s. estimate of given

l.l.m.s. estimate of given

and the corresponding error variances

Then the can be constructed recursively as follows
(see, e.g., [2]):

(23)

(24)

(25)

where

(26)

(27)

(28)

and with initial conditions

(29)

(30)

It also holds, when the required inverses exist, that

Equations (23)–(28) are known collectively as the time- and
measurement-update form of the Kalman filter. It can be further
seen from these equations that the following prediction forms
of the Kalman filter also hold:

(31)

(32)

where satisfies the Riccati recursion

(33)

(34)

with initial conditions and .

B. A Deterministic Interpretation

Each step (23)–(28) of the time- and measurement-update
form of the Kalman filter admits a deterministic interpretation as
the solution to a regularized least-squares problem, as we shall
now explain (see also [39, pp. 390–391]). We will use this in-
terpretation to motivate a procedure for robust state-space esti-
mation that is based on the result of Theorem 1.

Thus, fix a time instantand assume that the filtered estimate
has already been computed with the corresponding error

variance matrix (assumed positive–definite).2 Given a new

2The final filter recursions are independent ofP so that the requirement
of an invertibleP can be relaxed.
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measurement , we then pose the problem of estimating
again, along with , by solving

(35)

This problem can be interpreted as follows. Given an initial es-
timate for , one seeks to improve upon it by incorporating
the additional information that is provided by the new mea-
surement . The design criterion is one that minimizes the
(regularized) squared residual norm. Now the solution of (35)
is known to lead to the filter equations (23)–(28). Indeed, we
can rewrite (35) more compactly in the regularized least-squares
form (1) with the identifications

Here, the notation denotes a column vector with en-
tries and , and denotes a block diagonal matrix with
entries and .

We shall denote the minimizing arguments of (35) by
and . From the solution (2) of any such regularized least-
squares problem, we find that

(36)

(37)

where we introduced the quantity [in agreement with the state-
space constraint (19)]:

(38)

If we further introduce

and substitute (36) and (37) for into the defini-
tion (38), we re-establish after some straightforward algebra the
time- and measurement-update form (23)–(28) of the Kalman
filter.

IV. ROBUST STATE-SPACE ESTIMATION

Referring again to the state-space model (19) and (20),
we shall first study the case of uncertainties in the matrices

alone. The matrix will be initially assumed
known exactly. Later we shall address the general case (see
Section IV-F). Thus, consider the uncertain model

(39)

(40)

where the perturbations in are modeled as

(41)

for some known matrices and for an arbitrary
contraction , . Observe that for generality we are
allowing the quantities to vary with time. The
case of uncertainties in only can be handled by setting
. Likewise, the case of uncertainties in only can be handled

by setting . Finally, the case of accurate models is
obtained by setting , , and .

Now assume that at stepwe are given ana priori estimate
for the state . We shall denote this initial estimate by . As-
sume further that we are also given a positive-definite weighting
matrix , along with the observation at time , i.e., .
Using this initial information, one can seek to update the esti-
mate of from to by solving

(42)

subject to (39), (40), and (41). Here, the weighting matrices
can be regarded as covariance matrices [as in (22)]

with modeled as random variables, or simply as
weighting matrices in a purely deterministic context.

Problem (42) can be seen to be the robust version of (35) in
the same way that (5) and (6) is the robust version of (1). It
can be interpreted as attempting to improve the estimate
of by incorporating the additional information that is pro-
vided by and by minimizing the worst-possible (regular-
ized) squared residual norm.

Once the solutions have been found, we
can use them to construct an estimate for the future state
as in (38). We shall also use the nominal data ,
the uncertainty model parameters , and the
weighting matrices to determine a weighting
matrix for the next step. With
so determined we proceed to solve a similar problem at the
next iteration and determine , and so on.

Let us now exhibit the recursions that characterize this
construction. To begin with, we note that problem (42) can
be written more compactly in the form (5) and (6) with the
identifications

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

According to Theorem 1, the solution is then
found by solving the system of equations

(54)
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where

(55)

and

(56)

Moreover, is the minimizing argument in the interval

(57)

of the corresponding scalar-valued function in (12)
constructed with the identifications (43)–(53). The expression
for is of course time-dependent and should be
minimized over at each iteration. The time-de-
pendency exists even for models with constant parameters

. This is because depends on
both and . However, for simplicity of notation here, we
have not indicated this time-dependence explicitly.

A. Time and Measurement-Update Form

Now substituting (55) and (56) into (54), we can solve for
. Substituting the resulting expressions into (38)

we can establish, after some considerable algebra, the time- and
measurement-update robust algorithm listed in Table I.

The major step in the algorithm is step 3, which consists of re-
cursions that are very similar in nature to the time- and measure-
ment-update form of the Kalman filter [cf. (23)–(28)]. The main
difference is that the new recursions operate on modified pa-
rameters rather than on the given nominal values. This is where
steps 1 and 2 in the algorithm are needed: they correct the pa-
rameters to the values necessary for the robust estimation step.3

In the absence of any modeling uncertainties (i.e., with ,
, and ), the recursions can be seen to collapse

to those of the Kalman filter, as expected. Note further from the
listing in Table I that and .

B. The Prediction Form

The recursions of Table I can be manipulated into an alterna-
tive so-called prediction form, which propagates the quantities

directly. Thus note that by combining the equations for
and from Table I we obtain

Now, a simple algebra will show that
so that we also have

The recursion for is obtained as follows. Using the equation
for from Table I we get

3Recall from (4) that we are assumingH M 6= 0 since otherwise problem
(42) reduces to the standard Kalman filtering step (35). If at any particular iter-
ation we encounterH M = 0, then we simply set̂� = 0 and replacê�
by �̂ (and hence also by zero), so that all the terms involving�̂ or its inverse
disappear from the recursions of Table I and they reduce, at that iteration, to the
Kalman filter recursions.

TABLE I
LISTING OF THE ROBUST FILTERING ALGORITHM IN TIME- AND

MEASUREMENT-UPDATE FORM

which in view of the equality

becomes

Define the extended matrix

where the notation denotes a square-root factor of a pos-
itive-definite matrix . Then by applying the matrix inversion
lemma to the term we arrive
at the following recursion for :

(58)

where

and with initial conditions and .
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TABLE II
LISTING OF THEROBUSTFILTERING ALGORITHM IN PREDICTION FORM

We should remark that (58) is not a standard Riccati recur-
sion since the product is dependent on (through its
dependence on ). In Section IV-E, we shall see that (58) col-
lapses to the standard form of a discrete-time Riccati recursion
in some useful special cases. Table II summarizes the prediction
form of the robust algorithm.

C. The Information Form

The algorithm can also be rewritten in an alternative so-called
information form that propagates the inverses of the matrices

rather than the matrices themselves. This form requires the
invertibility of . Thus, note that it follows from the time and
measurement-update form of Table I that

so that if we multiply both sides of the above equation by
from the left we obtain the first recursion in Step 3

of Table III, which propagates the normalized state estimate
. In addition, by inverting the equations for

and from Table I we obtain the algorithm listed in
Table III.

D. Special Cases

The recursions in all forms can be simplified in some useful
special cases: (i.e., no uncertainty in ),

(i.e., the uncertainty in is orthogonal to that in ), and
(i.e., no uncertainty in ).

In the first case ( ), it is easy to see that the expres-
sions for simplify to the following

That is, only and are corrected to and , respec-
tively.

TABLE III
LISTING OF THEROBUSTFILTERING ALGORITHM IN INFORMATION FORM

In the second case ( ), it also follows that the
expressions for simplify to the same values as above
while the expression for can be seen to become

(59)

In the third case ( ), it follows that ,
and as in (59).

E. The Correction Parameter

The algorithms of Tables I–III require, at each iteration,
the minimization of a cost function over the interval

, with the lower bound as defined in Table I. As re-
marked earlier in Section II-B, a reasonable approximation for

is to set it equal to a multiple of the lower bound, say

if
otherwise

(60)

for some tuning parameter (that could be chosen to be time-
variant as well); see Fig. 4 for an example comparing a filter im-
plementation that is based on the optimalwith an implemen-
tation that is based on the above approximation for the choice

.
Using the approximation (60), it is easy to see that the recur-

sion (58) now becomes a standard Riccati recursion in the three
special cases considered in the previous section (viz., ,

, or ).

F. Uncertainties in the Measurement Equation

The discussions in the earlier subsections can be extended to
the case of uncertainties in all matrices , i.e.,
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An examination of the derivation following (42) will reveal
that it is the uncertainties in the products and
that are of interest rather than the individual uncertainties in

. Hence, we shall assume that the uncertainties
are such that the resulting uncertainties in the

products and can be modeled as

for some known and for an arbitrary contrac-
tion . The identifications (43)–(53) remain valid except for
the following three entries:

In other words, whenever the product appears in any of
the previous recursions it should be replaced by. This affects
only two entries in any of the listings of Tables I–III. First, the
lower bound on now becomes

And, second, the definition of is modified to

All other recursions remain unchanged. We shall therefore ig-
nore this extension in the sequel due to its similarity with the
cases studied so far.

V. STEADY-STATE RESULTS

We now examine the steady-state performance of the pro-
posed filters when the model parameters are constant, say

Only the contraction is
allowed to vary with time. In particular we shall establish that
under certain detectability and stabilizability assumptions the
steady-state filters are stable and that, in addition, for quadrati-
cally stable models they guarantee bounded error variances.

A. Stability

We consider first the case that involves uncertainties in the
system dynamics only. That is, we consider an uncertain model
of the form

(61)

(62)

(63)

where only (and, hence, ) is allowed to change with time.
This model is often studied in the literature of robust filtering.

We further assume that the correction parameteris set to a
constant value that is equal to a multiple of the admissible lower
bound, i.e.,

(64)

for some chosen by the designer, and for all.
The prediction form of the robust filter in this case becomes

(cf. Table II):

where

and

where the last form is independent of .
Note that even though the coefficient matrixis constant,

the matrix that appears multiplying is time-variant and equal
to . This is in contrast to a Kalman filtering implementation.

Lemma 1 (Two Useful Identities):Let

Then and .
Proof: The algebra is omitted.

Using the second identity in the lemma, we can rewrite the
recursion for the state estimate as

(65)

We are now in a position to establish the main result of this
section concerning the convergence of the robust filter to a stable
steady-state filter.

Theorem 2 (Stable Steady-State Filter):Consider the un-
certain state-space model (61)–(63) with the corresponding
robust filter (65). Assume further that is detectable
and is stabilizable. Then, for any initial condition

and for any in (64), the Riccati variable
tends to the unique stabilizing and positive semi-definite

solution of the DARE

The solution is stabilizing in the sense that the steady-state
closed-loop matrix

is stable, where

Proof: The condition guarantees a positive-definite
matrix so that its Cholesky factor, and hence, are well
defined. Now the detectability of and the stabilizability
of are known to guarantee the convergence ofto
the unique positive semi-definite solutionof the DARE that
stabilizes the following matrix (see, e.g., [2])
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However, we know from the first identity in the previous lemma
that this matrix coincides with , and the result is therefore
established.

A similar conclusion can be obtained for the uncertain model

(66)

(67)

(68)

(69)

with uncertainties in both and that satisfy . In
this case, the same recursions as above will hold with the only
exception that the term in the recursion for should
be replaced by where

The identities of Lemma 1 will continue to hold, as well as the
conclusion of Theorem 2.

B. Bounded Steady-State Error Variances

We continue with the model (61)–(63) and further assume that
it is quadratically stable, i.e., that there exists a positive–definite
matrix such that

for all contractions . By the small gain theorem of [44]
and [45], the quadratic stability requirement is equivalent to
the combined conditions of a stable and a bounded norm

.4

For such systems we can show that the steady-state robust
filter of the previous section guarantees a bounded error vari-
ance. To see this, we introduce the estimation error .
Then, subtracting the equations

we arrive at the following extended state equation:

(70)

where

and

Lemma 2 (Stability of Extended System):The extended
model (70) is quadratically stable.

Proof: Introduce the similarity transformation

4Here,k � k denotes the peak singular value of its argument over values of
z on the unit circle.

The system matrices then reduce to

The stability of and now guarantees that the nominal ma-
trix

is stable. Moreover, the equality

shows that the matrix function on the left-hand side has
-norm strictly less than one. We thus conclude that the

extended system (70) is quadratically stable.
By the result of the above lemma, we conclude that there ex-

ists a positive–definite matrix such that

for any . Now let denote the covariance matrix of the
extended vector

It follows from (70) that satisfies the Lyapunov recursion

Using arguments that are common in guaranteed-cost designs
(e.g., as in [14], [24]), it is now immediate to establish the fol-
lowing conclusion.

Theorem 3 (Bounded Error-Variance):Under the conditions
of Theorem 2, and for a quadratically stable model (61)–(63),
the variance of the estimation error of the steady-state robust
filter satisfies

where is the (1, 1)block entry with the smallest trace among
all (1, 1) block entries of positive–definite matricesthat sat-
isfy the inequality

for all contractive matrices .
Proof: We use an argument similar to the one in [5, pp.

39, 40]. The existence of guarantees the existence of a
positive scaling parametersuch that

so that a exists ( ) satisfying

Subtracting this inequality from the recursion for we get
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or, equivalently

for some . The quadratic stability of then implies
that in the limit, as , or .

VI. COMPARISONS WITHOTHER ROBUSTFILTERS

In this section, we compare the proposed recursions with
other robust filters and in the next section we provide some sim-
ulation results. We focus on the following uncertain state-space
model

(71)

(72)

(73)

since it is often studied in the literature on robust filtering.

A. Kalman Filtering

We already explained before the differences and similarities
between the proposed recursions and those of the Kalman filter.
For instance, while both solutions do not require existence con-
ditions, the new recursions operate on modified parameters that
take into account the model uncertainties.

B. Filtering

Thea-priori central filter of level for estimating
the combination of the state vector is given by (see,
e.g., [8], [11])

This filter guarantees the following bound:

for all , if and only if, the following conditions are
satisfied:

for (74)

In general, there is no guarantee beforehand that these condi-
tions will be satisfied for all iterations. In addition, even if the
conditions are satisfied over a horizon of length, there is no
guarantee that they will be satisfied over a horizon of longer du-
ration. This is an inconvenience for online operation since when
condition (74) fails at any particular iteration, the perfor-
mance is lost and divergence can occur (see the simulations in
Section VII. Note also that the larger the value ofthe easier it
is to satisfy (74). However, larger values ofreduce the robust-
ness of the filter.

C. Set-Valued Estimation

The set-valued approach to state-estimation [18] is based
on determining ellipsoids around the state estimates that are
consistent with the measured data. The centers of the ellipsoids
are taken as estimates for the states. There have been numerous
works in the literature on extending this approach to deal
with uncertain models, e.g., of the form (71)–(73)—see [20],
[21]–[46]. In particular, the following recursions are from
[46] (we are intentionally using notation that is similar to ours
although the variables below have of course
different meanings from the ones we introduced in Table III for
our recursions):

Some straightforward algebra will show that the recursion for
the state estimate given above is equivalent to

The above equations can now be compared with those in
Table III and the differences will become evident.

One issue here is that the above recursions will constitute a
robust set-valued estimation solution only under certain condi-
tions on the data. For example, it is necessary that, for all,

and (75)

where denotes the nullspace of its argument. These two
conditions may sometimes be difficult to satisfy in practice.
Note, for example, that a negative term is sub-
tracted from the right-hand side of the recursion for
above. This term can be large and it can lead to indefinite initial
values for that ultimately cause filter breakdown, as can be
seen from the simulations of Fig. 1.

D. Guaranteed-Cost Designs

The idea of guaranteed-cost designs is to develop filters that
guarantee an upper bound on the variance of the estimation
error. Such designs have been studied mostly for quadrati-
cally-stable time-invariant models in steady-state operation
(e.g., [14], [23], [24]), though, as mentioned in the introduction,
extensions exist to time-variant and finite-horizon scenarios.
The guaranteed-cost filters in [14], [24] have different forms,
which is expected since each tries to enforce an upper bound in
a particular manner.
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Fig. 1. The top plots show three trajectories: actual state (solid line), state estimate by robust set-valued algorithm (dashed line in the leftmost plot), and state
estimate by the new filter (dashed line in rightmost plot).

The filter equations from [14, p. 44] require and they
can be summarized as follows. First, the designer selects a small
positive parameter (as explained below). Then uses

(76)

where is taken as the positive–definite stabilizing solution of
the following Riccati equation:

(77)

The value of is picked from within an open interval ,
where is chosen such that the following additional Ric-
cati equation

has a positive–definite stabilizing solution satisfying

This condition guarantees since it can be
shown that . [Such an is always guaranteed to exist
for quadratically stable models.]

In order to compare our steady-state filter with the above
equations, we shall show first how to rewrite our prediction filter
in a form that is close to the above. Thus refer to Section V and
note first the easily verifiable identity

so that our steady-state filter can be written in the alternative
form

(78)

where is the stabilizing solution of the Riccati equation

(79)

and
Comparing the recursions (76) and (78) for the state esti-

mates, as well as the Riccati equations (77) and (79), we see that
there are essentially four differences between a guaranteed-cost
design and the proposed steady-state filter.

1) The negative scalar is replaced by a positive scalar
. The appearance of a negative scalarin the guaran-

teed-cost DARE (77) imposes a constraint on the selec-
tion of : its value has to be properly selected so as to guar-
antee a positive–definite difference .

2) The matrix is replaced by its corrected version.
3) The locations of the factor in the Riccati equations

are different: in (77) it appears added towhile in (79) it
is incorporated into . In this sense, a guaranteed-cost
design can be interpreted as increasing the value of
while our filter can be interpreted as decreasing the value
of .

4) The parameters are selected differently.

The guaranteed-cost filter equations from [24] have a dif-
ferent form that relies on two Riccati equations; they are omitted
for brevity.

VII. SIMULATION RESULTS

For comparison purposes, we employ the following numer-
ical values of a two-dimensional (2-D) time-invariant model
used in [14]:
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Fig. 2. Error variance curves for different filters with� selected uniformly from within the interval [�1, 1].

Fig. 3. Error variance curves with� selected uniformly from within the interval [�1, 1] and withM = colf0:1980; 0g.

We also use and . The above parameters corre-
spond to a quadratically stable time-invariant model of the form

Observe that is a scalar in this case and that the product
is strictly upper triangular so that the eigenvalues of

always coincide with those of . In particular
observe that the actual matrix has the form

with the uncertainty affecting only its (1, 2) entry.

A. Set-Valued Estimation

The two top plots in Fig. 1 show a simulation for which
for all . Two curves are shown in each

plot and they refer to: the actual trajectory of the top entry of
the state vector (solid line), the trajectory that is produced by the
robust set-valued estimation algorithm (dashed line in leftmost
plot), and the trajectory that is produced by the new robust filter
(dashed line in rightmost plot). We see that the set-valued esti-
mates diverge around iteration 64 (the overshoot reaches a peak
of approximately 28) and then stay at a constant level thereafter.
This behavior was observed repeatedly for random choices of

. This occurs because of the violation of the existence condi-
tions (75); the smallest eigenvalue of becomes negative fast
and stays negative for an extended period of time. Due to this
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Fig. 4. Comparison of the variance curves for optimal and for approximate�̂ s for the new filter. In this case, the curves are indistinguishable.

Fig. 5. Error variance curves for different filters with� selected uniformly from within the interval [�1, 0].

effect, we are excluding the robust set-valued algorithm from
our additional simulations below.

B. Ensemble-Average Error Variance Curves

In Fig. 2 we generated more elaborate performance curves as
follows. Each point in each curve is the average over 500 ex-
periments. Each experimentfixes at a value that is selected
randomly between 1 and 1 and generates 1000-long random
measurements . The data is then filtered by a particular al-
gorithm leading to an estimated trajectory for the exper-
iment . At the end of the 500 experiments, we have 500 such
trajectories (of length 1000 points each) for each algorithm and

we can use them to approximate the actual error variance curve
by computing the ensemble-average

The top part of the figure highlights the degradation in
performance by the Kalman filter due to modeling errors
(approximately 4 dB for this example). More specifically,
the smooth lower curve (termed optimal) refers to the error
variance that is obtained when the actual model is used (about
18 dB in steady-state). The highest curve is the error variance
by a Kalman filter using the nominal model (about 22 dB in
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Fig. 6. Error variance curves for different filters with� selected uniformly from within the interval [0, 1].

steady-state). The curve below it indicates the performance
of the new filter (about 20 dB in steady-state). It is of course
not hard to find other examples where the performance of
the Kalman filter is significantly worse. For instance, if we
change the value of to we obtain the
performance shown in Fig. 3, where the Kalman filter exhibits
a degradation of approx. 23 dB in performance.

The plots in the middle row of Fig. 2 compare the
performance of the new robust filter to that of optimized guar-
anteed-cost designs. These designs chooseby minimizing
an upper bound on the error variance. The value ofused for
(76) is . We see that in this example, by averaging
the performance over all experiments (which corresponds to
averaging over random selections ofin the interval [ 1, 1]),
the filters tend to exhibit a similar steady-state performance
(recall that the proposed filter achieves this performance via
regularization).

The plots in the last row of Fig. 2 compare the performance
of the new robust filter with that of an filter. While the left-
most plot suggests a good performance by the filter, this
result can be deceiving. First, we had to employ a large value of

, , in order to guarantee that the existence conditions
(74) are not violated over the first 1000 iterations. Second, if
we extend the filter operation beyond , we find that
the conditions (74) are violated starting at iteration 1441. This
degrades the performance of the filter considerably. To see
this, the resulting error variance is shown in the bottom right-
most plot of Fig. 2, with a peak error variance of about 90 dB.
All other filters maintain their performance over the extended

operation period. We should say that we employed
in the recursions, since with an even larger value of

is needed. Moreover, for this filter, it turns out that the
value guarantees filter performance over arbitrarily long
perdios of time (since it meets the sufficient conditions for feasi-
bility and convergence from [17]). Still, it is clear that the choice
of represents an important design tradeoff: while large values
of can guarantee filter operation, this is usually achieved at
the expense of robustness.

In the above simulations, we employed the approximation
(60) by choosing . Fig. 4 shows that this approxima-
tion provides a good alternative for this example over the im-
plementation that is based on computing the optimalat each
iteration (the curves were obtained in this case by averaging over
200 experiments). (We may remark that we have omitted from
our comparisons the robust minimum-variance filter of [28] due
to divergence problems.)

There are some interesting distinctions in performance be-
tween all filters. Fig. 5 shows the variance curves that corre-
spond to the case in which is selected uniformly from within
the interval [ 1, 0], while Fig. 6 corresponds to the case inis
selected uniformly from within the interval [0, 1]. In the former
case we see that the performance of the Kalman filter is compa-
rable to, or even better than, the other filters, while it is notice-
ably worse in the latter case. The performance of the proposed
filter in the latter case can also be improved by increasing the
value of .

Finally, Fig. 7 demonstrates the case in whichis allowed
to vary randomly during each experiment.
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Fig. 7. Error variance curves for all filters with� allowed to vary randomly at each iteration.

VIII. C ONCLUDING REMARKS

In this paper, we proposed a framework for robust state-space
estimation that is based on minimizing, at each filter iteration,
the worst-possible (regularized) squared residual norm. The
resulting recursions were presented in three equivalent forms:
a time- and measurement-update form, a prediction form, and
an information form. All forms share similar characteristics
with the corresponding forms in Kalman filtering with the
distinction that in the robust context, the recursions rely on
corrected parameters rather than nominal parameters. The
filters were also shown, under certain detectability and stabi-
lizability assumptions, to tend to stable steady-state estimators.
In addition, for models that are quadratically stable, the filters
were further shown to guarantee bounded error variances.

The new recursions were also compared with other robust fil-
ters, namely, filters, guaranteed-cost filters, and set-valued
estimation filters. In particular, it was shown that the new fil-
ters do not require existence conditions and that they apply to
time-variant as well as time-invariant models. They also apply
to finite-horizon and infinite-horizon scenarios.

There are several issues that deserve further investigation.
One issue is extension of the results to other classes of model
uncertainties, such as replacing (41) with conditions of the form

and for some known bounds
. This corresponds to a different choice of the func-

tion in (3). Other issues include a closer examination of
the stochastic properties of the developed filters, a more explicit
characterization of the error variance, and a more detailed study
of the optimality properties of the filters over extended intervals,

rather than locally. Another issue is the development of array
variants, in addition to fast algorithms. The former would tend
to exhibit better numerical properties while the latter would be
more appropriate for large-scale problems.
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