998

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 7, JULY 2001

A Framework for State-Space Estimation with
Uncertain Models

Ali H. Sayed Fellow, IEEE

Abstract—This paper develops a framework for state-space es-

timation when the parameters of the underlying linear model are
subject to uncertainties. Compared with existing robust filters, the
proposed filters perform regularization rather than deregulariza-
tion. Itis shown that, under certain stabilizability and detectability
conditions, the steady-state filters are stable and that, for quadrat-
ically-stable models, the filters guarantee a bounded error vari-
ance. Moreover, the resulting filter structures are similar to var-
ious (time- and measurement-update, prediction, and information)
forms of the Kalman filter, albeit ones that operate on corrected
parameters rather than on the given nominal parameters. Sim-
ulation results and comparisons with’H ., guaranteed-cost, and
set-valued state estimation filters are provided.

Index Terms—Estimation, guaranteed-cost design,H ..-fil-
tering, Kalman filtering, parametric uncertainty, quadratic
stability, regularized least-squares, set-valued estimation,
steady-state filter.

|I. INTRODUCTION

T

performance is lost and the filter can diverge. This is a conse-
guence of the fact thak{, filters minimize certain indefinite
guadratic forms and, as a result, they perform de-regularization
(see, e.g., [15]). One method to ameliorate this difficulty is to
increase the value of the robustness paramegtthis however
comes at the expense of decreasing the robustness of the filter
(see again the simulations in Section VII). This issue is of such
concern for on-line filtering operations that several tools and
tuning methods have been studied in the literature, especially
for linear time-invariant models, with the objective of enabling
the designer to check priori whether a prescribed robustness
level v can be guaranteed by &n., filter over intervals of ar-
bitrary lengths (see, e.g., the works [16], [17]).

A second useful approach to robust estimation is the set-
valued estimation approach. In this design, one attempts to con-
struct ellipsoids around state estimates that are consistent with
the observations and subject to certain norm constraints on the

HE Kalman filter is the optimal linear least-mean-squard¥iSe disturbances (see, e.g., [18]-{20] and the many references
estimator for systems that are described by linear statB-the latter edited volume). Some extensions to handle model

space Markov models (see, e.g., [1], [2]). Since its mceptid}pcertainties are described in [14], [21], [22], with the reference

in the early 1960s, it has played a significant role in numero

2] considering a class of model uncertainties that can be de-

fields ranging from orbit determination, to finance, to commuScribed by integral (or sum) quadratic constraints. Here again

nications, to control, and other fields.

one is faced with the requirement of checking for certain ex-

A central premise in the Kalman filter theory is that the uriSténce conditions, which can be an impediment to on-line fil-
derlying state-space model is accurate. When this assumpfigfing—see the simulation results in Section VII.
is violated, the performance of the filter can deteriorate appre-A third well-studied approach to robust estimation is the

ciably. (See, e.g., the edited volumes [3], [4], as well as [5juaranteed-cost paradigm. Here one attempts to construct
which contain several discussions and articles on practical &ate-space estimators that guarantee that the steady-state
sues in Kalman filtering design. See also the simulation exawariance of the state estimation error is upper bounded by a
ples further ahead in Section VII.) This filter sensitivity to modeertain constant value for all admissible uncertainties in the
eling errors has led to several works in the literature on the deodel (see, e.g., [14], [23]-[25] and also [26], [27]). The
velopment of robust state-space filters; robust in the sense thalution usually involves some design parameters that need
they attempt to limit, in certain ways, the effect of model unto be selected adequately (or tuned) in order to guarantee the
certainties on the overall filter performance. Three distinctivexistence of a positive-definite stabilizing solution of a certain
approaches to state-space estimation in this regart{aydil-  discrete algebraic Riccati equation—see Section VI-D. The
tering, set-valued estimation, and guaranteed-cost designs. arguments and the derivations in most cases (see, e.g., [14],
TheH., approach attempts to construct filters that bound th23], [25]) are limited to time-invariant and quadratically-stable
2-induced norm of the operator that maps the disturbancesntuminal models in steady-state operation. Extensions of the
the estimation errors (see, e.g., [6]-[14]). One limitatiofdef  results to finite-horizon time-variant models are considered
designs for online (i.e., recursive) filter operation is that they r@ [28], [29]. The solution in [28], however, leads to a more
quire continuous testing of a certain existence condition. Whewolved filter structure and suffers from instability problems,
the condition fails at any particular iteration, the desiféd, as acknowledged by the authors [28, p. 185] and also observed
in simulations. The solution in [29] is one that is consistent
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In this paper, we develop a robust procedure for state-spadeere the residuak(zx, y) is defined by
estimation in the presence of modeling uncertainties. Compared
with the standard Kalman filter, which is known to minimize R(z, y) 2 (Az — b+ Hy)"W(Azx — b+ Hy).
the regularized residual norm at each iteration, the new filters
are designed to minimize the worst-possible regularized residt#gre, H is aniV x m known matrix andy is anm x 1 unknown
norm over the class of admissible uncertainties at each iteratipgrturbation vector. Comparing the expression/or, ) with
In addition, compared with the aforementioned robust formulthe term(Az — b)Y W ( Az — b) that appears in (1), we see that
tions, the resulting filters perform data regularization rather thaye are representing possible sources of uncertaintidsandb
deregularization; a property that circumvents existence conBii the additional terni{y. The matrixH provides the designer
tions and is convenient for online operation. The new filters avéth the freedom of restricting the uncertaintyo certain range
also shown to lead to stable steady-state performance and,sleaces. Whilegy itself is not known, we assume that what is
quadratically stable models, they are further shown to guarantg®wn is a bound on its Euclidean norm, gy < ¢(x), for
bounded error variances. Moreover, the proposed framework &pme known (linear or nonlinear) nonnegative functign).
plies to a general class of parametric uncertainties, specifie@serve that the bound gnis allowed to depend on.
through the selection of a modeling functigf:)—see the re-  Consider now the problem of solving
mark in the paragraph following (7). . )
We start our exposition in the next section by formulating a L = argiin ”yﬁgﬁm) J(x, y). ®3)
generic regularized least-squares problem for models with data B
uncertainties. Once this is done, we shall then focus on the stdResblem (3) can be interpreted as a constrained two-player game
space estimation problem in some detail. problem, with the designer trying to pick an estimathat min-
Notation: For a column vector and a positive-definite ma- imizes the cost while the opponefi} tries to maximize the
trix W, we write||z||* and|| z||3- to denote the Euclidean normcost. The game problem is constrained since it imposes a bound
and its weighted version, nameby, z andz* W z, respectively. [through¢(x)] on how large (or how damaging) the opponent
Also, for brevity, we may sometimes writé? W (-) instead of can be. Observe further that the strength of the opponent can
ATW A especially when the factod admits a long expression vary with the choice of;. We shall assume in the sequel titat
(see, e.g., the last expression in the statement of Theorem 3and¢(x) are not identically zero

Il. REGULARIZED LEAST-SQUARES WITHUNCERTAINTIES H#0 and ¢()#0 (4)

As is well known (see, e.g., [2]), many estimation techniquesnce if either is zero, the game problem (3) trivializes to (1).
rely on solving regularized least-squares problems of the form A special case of (3) was studied in [31]-[34] with the choices
W =1,Q =0,H = I, and¢(z) = n]|=|. It turns out,
min [z7 Qx + (Azx — b)T W (Ax — b)] (1) however, that for treating the state-space estimation problem of
’ this paper one has to allow for nontrivial choiceq @f, @), H},
Whel’e.’L'TQ.’L' is a regu|arizati0n term witl)) = QT > 0and as well as for more general ChOiCGSdZ(f’L’). The problem in
W = WT > 0is a weighting matrix. The unknown vectog:  this general case is richer in structure and its solution requires
is n-dimensional, whiled is N x n andbis N x 1. BothA and Some care to avoid the introduction of multiple regularization
b are assumed known, and the solution of (1) is parameters, as was shown in [30].
In this paper, we focus on the following specialization of (3)

“ T =1 T
& =[Q+A"WA]T ATWb. ) minmax [[laf3 + [(A+84)z = b+ B)%] )
In practice, the nominal datp4, b} are often subject to dis- b
turbances and/or uncertainties. Such errors can degrade the pgfs o
formance of the estimator (2). For example, if the actual data{éA} N x n perturbation matrix to the nominal ma-
matrix were{ A48 A4), for some unknown perturbatiéi, then T trix A,
the estimator (2) that is designed basediomone, and without 5,
accounting for the existence 6fi, can perform poorly.
This motivated us to introduce in [30] a robustified version {64, 8b}
of (1) that can account for a general class of uncertainties in
the data{A, b}. Thus letJ(z, y) denote a two-variable cost [6A 6b]=HA[E, E] (6)
function of the form

denotes anV x 1 perturbation vector to the
nominal vectom;
assumed to satisfy a model of the form

whereA is an arbitrary contractiofA|| < 1,
J(z, y) = 27 Qx + R(x, y) and {H, E,, E,} are known quantities of

appropriate dimensions Ef, is a column

vector). Perturbation models of the form (6)

Iwhen@ is sign-indefinite, as is common i, formulations (e.g., [11], are common in robust filtering and control

[15]), we say that the solution performs deregularize_lti_on. In.such situa_tions, the_ and can arise from tolerance specifications on
least-squares problem need not always have a minimum; the Hessian matrix

with respect tor needs to be positive—definite. physical parameters (see [35] for an example).
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In order to see how (5) is a special case of (3), we rewrite theMoreover, the value of the resulting optimal cost of (5) is

H

costin (5) as equal toG(A), and is given by
27Qx + [Az — b+ (§ Az — 6D)|Y WAz — b + (6 Az — 6b)]

andy asy = A(E,z — E)), problem (5) can be verified to be ¢
equivalent to the following:

. ME2 —A\ETE,
G(A):[l 471 i K
-A\ETE,  Q

+ (A2 — b)TW(Az - b).

so that withHy defined as

Hy2 §Az — §b = HA(Eyo — Ey)

A. Structure of the Solution

: 2 2
o < gy [llllS + 1Az — b+ Hylliy ] We thus see that the solution of (5) and (6) requires that
o ) ) ] we first determine an optimal nonnegative scalar paramgter,
which is a special case of (3) for the particular chaite) = \hich corresponds to the minimizing argument of the function
||E.aa.c — B Ong can also handle the case in which the UNC&E \) over the semi-open intervl| HX W H|, oo). For conve-
tainties{é4, éb} in (5) are unrelated yet bounded, say nience of notation, we shall denote the lower bouncday \;,
I6Al<n,  [l6b] < m 7 e
A

for some nonnegative scalafs, 7, }, instead of (6). In this M E|HTWH|. (16)

case, problem (5) reduces to a special case of (3) for the Chodf:o(_'\mpared with the solution (2) of the standard regularized least-

¢(z) = nllz|| + m—see [36]. . ,
The formulation (3) is more general than (6) and (7) in that] ?l:s]rgsinp;\?vzl?ﬂ (olr)té\;]vteviaeesthat the expressior far(8) is
allows for other classes of perturbations through the choice of P yS-

the functiong(z). The solution of (3) in this general case is dis- 1) First, the weighting matricels), W'} need to be replaced
cussed in [30], [37]. In this paper, we focus on perturbations of ~ PY corrected versiong, W'}. These corrections are de-
the form (6). Our arguments are such that they can be extended fined in terms of the optimal parameteand they are also

to other classes of perturbations. The following result is proven _ dependent on the uncertainty model. -
in [30] and [37]. 2) Second, the right-hand side of (8) contains an additional

term that is equal td\Ef{Eb. This means that, with
given, thez in (8) can be interpreted as the solution to
a regularized least-squares problem of the form

Theorem 1 (Solution):The problem (5) and (6) has a unique
solutionz that is given by [compare with (2)]

—1
p=|Q+ATWA| |ATWb+ AETE 8 . .
T |:Q+ :| |: + a b:| ( ) in [1 T] )\HEbHQ _)\Ez“Ea |:1:|
where the modified weighting matricgs), W} are obtained _AETE, ) x
from {@Q, W} via
. A + (Az — b)TW(Az — b
Q2 Q+AELE, 9) e 0
A < t
W=W+WH ()\—7 - HTWH) HT'W (10) with across-couplingerm between: and unity. Observe
. further from (8) that satisfies an orthogonality relation
and the nonnegative scalar parametés determined from the of the form
optimization
. “AEYE, + Q2+ ATW (A2 — 1) =0 17)
A= arg min  G(\) (11)
HTWH
=l ! which is typical of regularized least-squares problems
where the functio7(\) is defined as with coupling.

GA) =lzMIG + Al Eaz(A) — Ebl|” 4 [[Az(A) — bll§y(r)-  B. The Minimization of3(\)
(12)  For any value of\ in the interval[\;, o), the matrix¥ ()
in (13) is nonnegative-definite so th&(\) > 0 for A > X (it
may become negative fdr < ;). In addition, it can be proven
W(\) 2w +WH ()\] — HTWH)T HTw (13) that the functionG(A) has auniqueminimum in the interval
[A1, 00); and hence that it has a unique global minimum and no

Here

A
Q) = Q+AE; E, (14) local minima [37]. This indicates that the determinatiodafn
and be sought via optimization routines that need not be concerned
z(N) 2 [Q()\) + ATW()\)A]*l [ATW()\)Z)JF )\EaTEb] . with the possibilities of local minima.
(15) In addition, a useful observation from many simulations that

we have performed is that the functiGif \) tends to reach am-
[The notationX ' denotes the pseudoinverse.of] plitudes close to its minimum value at argumekhtiat are gen-



SAYED: A FRAMEWORK FOR STATE-SPACE ESTIMATION WITH UNCERTAIN MODELS 1001

erally close to the lower bouny (see, e.g., [38]). We shall useand the corresponding error variances
this observation in a future section to suggest a practical approx-

imation for the optimal\ without the need to explicitly mini- P2 E(z; — &)z — &)
mize G(A). In particular, we shall later set = (1 + «)A;, for
somex > 0, i.e., we shall sek at a multiple of the lower bound.

More on this issue later. For now, we continue with the optimal o )
choice for. Then the{z;, Z;;} can be constructed recursively as follows

(see, e.g., [2]):

Py 2 Bz — Ty — &) "

C. Invertibility Condition

. . Zip1 = Bz, 20 (23)
In the state-space context that we study in Section IV, the ma- . A e

trix W will be positive—definite (and, hence, invertible) so that Tigrjits = Lipt + Lo Hig By eia (24)
W () itself will always be positive-definite (and, hence, also eit1 =Yit1 — Hip18i41 (25)
invertible). Therefore, if we restrict the minimization in (11) to
the open intervalX;, o) (i.e., if we only exclude the boundarywhere
point )\,;), then the pseudoinverse operation in (13) can be re-
placed by normal matrix inversion, so that by using the matrix P :FiPiﬁFiT + GiQ;GY (26)
inversion lemma we arrive at the compact expression Pip1jiz1 =Piy1 — B+1HZ—1R;11+1Hi+IB+1 27)

W_l()\) — W—l _ )\_IHHT. (18) Re, i+1 :Ri-l—l + Hi+1Pi+lH;1j|—1 (28)

. . . . and with initial conditions
This expression will be useful in the sequel; we shall henceforth

alssume that_the boundary poigtis excluded and use this sim- fojo = Po—lolH(f)Z“RalyO (29)
pler expression. =
Poo = (gt + HY Ry ' Ho) . (30)
I1l. STANDARD STATE-SPACE ESTIMATION

. . . . ._It also holds, when the required inverses exist, that
We now discuss how to incorporate the earlier discussions

into a state-space context. We first review the standard Kalman

-1 _ p—1 T p—1 7.
filtering solution for accurate state-space models. Pi+1|i+1 =P+ i B Higy,
A. The Kalman Filter Equations (23)—(28) are known coIIective.Iy as the time- and
. o measurement-update form of the Kalman filter. It can be further
Thus consider a state-space description of the form seen from these equations that the following prediction forms
of the Kalman filter also hold:
i1 =z + G, t 20, (19)
yi = Hywy + v; (20) $ip1 =Fa; + F Py HI R e, (31)
= Fi; + F;PH R_ e (32)
where {xg, u;, v;} are uncorrelated zero-mean random vari-
ables with variances whereP; satisfies the Riccati recursion
z0] [2o]" My 0 0 Py =FPFF + GiQiGF — K,R:AKT  (33)
El |wl||y =10 Qb 0 (21) K; =F,P,H" (34)
v; v; 0 0 R;6i;
with initial conditionszg = 0 and P, = Il,.
that satisfy
B. A Deterministic Interpretation
IIp >0, R; >0, Q;>0. (22)

Each step (23)—(28) of the time- and measurement-update
. . . .. form of the Kalman filter admits a deterministic interpretation as
Here,§;; is the Kronecker delta function that is equal to unlt¥he solution to a regularized least-squares problem, as we shall

wheni = j and zero otherW|§e. . . . now explain (see also [39, pp. 390-391]). We will use this in-
The well-known Kalman filter provides the optimal linear, . : .
: : .terpretation to motivate a procedure for robust state-space esti-
least-mean-squares (I.I.m.s.) estimate of the state variable given. :
. g o mation that is based on the result of Theorem 1.
prior observations. More specifically,

redicted and filtered estimates: introduce the following Thus, fix a time instant and assume that the filtered estimate
P ' #;; has already been computed with the corresponding error

A variance matrix?;; (assumed positive—definite)Given a new
Z; = |.I.m.s. estimate of; given{yo, y1, ..., ¥i—1}
A ) ) 2The final filter recursions are independent]@.ﬁ.1 so that the requirement

Z;; = |.L.m.s. estimate of; given{yo, y1, ..., ¥i—1, ¥} of an invertibleP; ; can be relaxed.
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measuremeny; 1, we then pose the problem of estimating for some known matrice§M;, E; ;, E, ;} and for an arbitrary
again, along withy;, by solving contractionA;, ||A;|] < 1. Observe that for generality we are
allowing the quantitie$M;, Es ;, E, ;} tovary withtime. The
case of uncertainties ifi; only can be handled by settidg, ; =
0. Likewise, the case of uncertainties@ only can be handled

by settingZ;; = 0. Finally, the case of accurate models is

+ llyie = H71+1a:7¢+1||§2;+11 ' (35) o}t;tainedgbyféetting/[i =0, éﬁi =0, andE, ; = 0.
Now assume that at stépve are given am priori estimate

This problem can be interpreted as follows. Given an initial egsr the stater;. We shall denote this initial estimate by . As-
timatez;; for ;, one seeks to improve upon it by incorporatingume further that we are also given a positive-definite weighting
the additional information that is provided by the new Me3natrix P;;;, along with the observation at tinfe+ 1), i.e.,yi41.

surementy; ;1. The design criterion is one that minimizes thgsing this initial information, one can seek to update the esti-
(regularized) squared residual norm. Now the solution of (3g)ate ofz; from &;;; 10 1,41 by solving

is known to lead to the filter equations (23)—(28). Indeed, we

i Rk 12
min [|a; = gill o o [l

. . . : - 2 2
can rewrite (35) more compactly in the regularized least-squares {;1?1151_} sPax, l|#; — ‘/Eiﬁ”p_‘*_l + ||Uz‘||Q;1
form (1) with the identificationdV «—— R;Z4 R

+ 1Yt — Hitaziga |- (42)
i1

v e—col{w —&yyi, wit, b vips — Hipa By subject to (39), (40), and (41). Here, the weighting matrices

A—H,[F G;i], Q— (Pi|_i1 ey Q;l) . {Q;, R;+1} can be regarded as covariance matrices [as in (22)]
with {u;, v;, zo} modeled as random variables, or simply as
Here, the notatiorol{a, b} denotes a column vector with en-weighting matrices in a purely deterministic context.
triesa andb, and(a @ b) denotes a block diagonal matrix with ~ Problem (42) can be seen to be the robust version of (35) in
entriesa andb. the same way that (5) and (6) is the robust version of (1). It
We shall denote the minimizing arguments of (35)iy,, can be interpreted as attempting to improve the estiragte
and1;}; ;. From the solution (2) of any such regularized leasef z; by incorporating the additional information that is pro-

squares problem, we find that vided byy; 1 and by minimizing the worst-possible (regular-
ized) squared residual norm.
Sijipr =& + Py HE A R, (i — Hig18i41)i41) Once the solutions{2;;+1. 4i;+1} have been found, we

(36) canuse them to construct an estimate for the future state

A ATHT p=l,. g e as in (38). We shall also use the nominal d&fg, G;, H;},
i = QG Higy By (i = Hipa@igi) B the uncertainty model parametefs/;, £, ;, E; ;}, and the
where we introduced the quantity [in agreement with the stat¥¢ighting matrices{Q;, £;, Fy;} to determine a weighting

space constraint (19)]: matrix Fiyy);41 for the next step. With{ ;4 1ji+1, Pig1jit1}
so determined we proceed to solve a similar problem at the

N A s N next iteration and determiniet;  o(; 12, Pi1opi42}, and so on.

i1l = Fidip Gitlifiq1- 38 o S22, L 2]t 2 . _

Filit Fifit + Cithili (38) "l et us now exhibit the recursions that characterize this

If we further introduce construction. To begin with, we note that problem (42) can

be written more compactly in the form (5) and (6) with the

#ip1 2 Fidii, Py = FiPFF +GiQGF identifications
and substitute (36) and (37) f6f:.4., .41} into the defini- v colfei =&y} (43)
tion (38), we re-establish after some straightforward algebra the be—Yir1 — Hip1 Fidy; (44)
time- and measurement-update form (23)—(28) of the Kalman A— H, 1[F, G;] (45)
filter. §A—H 1 M;AJ[E;; Eg ] (46)
IV. ROBUST STATE-SPACE ESTIMATION 00— —Hipi MiAi By, il (“7)
-1 -1

Referring again to the state-space model (19) and (20), Qe (Pili ®Q; ) (48)
we shall first study the case of uncertainties in the matrices W<——Rij:1 (49)
{F;, G;} alone. The matrixd; will be initially assumed He— Hj 1 M; (50)

known exactly. Later we shall address the general case (see

Section IV-F). Thus, consider the uncertain model Boe—1[Epi Byl (51)
By — —FE; 2y (52)
Tip1 = (I + 6F)x; + (G + 6Gi)us, i >0, (39) A A, (53)

yi = Hizi+ s (40) According to Theorem 1, the solutiof:iji 1, )41} iS then

where the perturbations ifi";, G, } are modeled as found by solving the system of equations

[6F, 6G;]= MiN[Es: E,l (41) (Q + ATWA) 2= (ATWb + X;EfEb) (54)
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where TABLE |
LISTING OF THE ROBUST FILTERING ALGORITHM IN TIME- AND

Pi|_il + )\iE;‘fF,iEf,i )\z‘E}?iEg,i (55) MEASUREMENT-UPDATE FORM
MNEL By Q;t+ AET Eg Assumed uncertain model: Egs. (39)~(41). Also, Ty > 0, R; > 0,
and Q; > 0 are given weighting matrices.
W2k =(R, SLH, MMIHT,) . (56 iti it 3 TR;!
A T AL T A i1y iy . (56) Initial conditions:  Set &5 = PyoHg Ry yo and Py =

. (i; + HT Ry Hp) ™!
Moreover,); is the minimizing argument in the interval
. A Step 1. If H; ;.1 M; = 0, then set J; = 0. Otherwise, construct G(A) of
i > || MPHE RN Hi M| = A\ (57)  |(12) with the identifications (43)~(53) and determine A; by minimizing
G(A) over the interval

of the corresponding scalar-valued functi@g®(}) in (12)
constructed with the identifications (43)—(53). The expressiol %> & \MTHTL RZL Hi M.
for G(A) is of course time-dependent ar@(\) should be

A ) o . Step 2. Replace {Q;, Ri+1, Py, Gi, F;} by:
minimized over\ € (\; ;, o) at each iteration. The time-de- Step 2. Replace {Qs, Riv1, Py G Fi} by

pendency exists even for_ mpdels with constant paramete 671 = Q'+ AET [I“"A\iEf,iPi\iE?i]_lEg’i
{F,G, H, M, E;, E;}. This is becauseZ()\) depends on - L o

both P;; andz,;;. However, for simplicity of notation here, we Riyp = R = Hi+1Mi]i41i i

have not indicated this time-dependence explicitly. By = (Pﬂ‘il + XiEfiEfO

= Py — PyE],(\ '+ By PyEL,) By Py
G;— xiF‘iﬁi\iE}“,iEg.i
= (F - MNGiQiET By )(I - M Py EY By )

A. Time and Measurement-Update Form

Now substituting (55) and (56) into (54), we can solve for
{@i)i+1, Bijiy1 ;- Substituting the resulting expressions into (38)
we can establish, after some considerable algebra, the time- a |1t i, = 0, then simply set §; = Q;, Riv1 = Ris1, By =Py, G =0,
measurement-update robust algorithm listed in Table I. and F, = F,.

The major step in the algorithm is step 3, which consists of re
cursions that are very similar in nature to the time- and measur: |Step 3. Update {&;;, P;j;} as follows:
ment-update form of the Kalman filter [cf. (23)—(28)]. The main
difference is that the new recursions operate on modified p¢ X
rameters rather than on the given nominal values. This is whe Fittli -
steps 1 and 2 in the algorithm are needed: they correct the p Gt ~ b1 IT{"“I’;“A o
rameters to the values necessary for the robust estimatiof ste Py = BERE + GQiG;

In the absence of any modeling uncertainties (i.e., With= 0, Fotpn = P = P HL Ry Hi P
E;;,=0,andE, ; = 0), the recursions can be seen to collapse Reiv1 = Rini+ HinPnHL,

to those of the Kalman filter, as expected. Note further from the

listing in Table I thatQ; ' > Q; ' andR, ;1 < Riy1.

o
I

)

i1 = Fidy

— . T p-1,
= &+ P Hia R e

which in view of the equality
B. The Prediction Form Pl=P 'L H R 'H,

ili
The recursions of Table | can be manipulated into an alterr}?-
. - ) ...becomes
tive so-called prediction form, which propagates the quantities .
{%,, P} directly. Thus note that by combining the equations for P =F, [pi—l + Hgg;IHi + giE?iEﬁ Z} T
#;41 andz;}, from Table | we obtain - ’
- ~ T A1 + GZQzG?
Ziy1 = Pz + F P Hy Ry [y — Hids), Zo = 0. ) )
+ ! L ] 0 Define the extended matrix

A~

RV?H,

\/S\_iEf,i

where the notatiomd'/? denotes a square-root factor of a pos-
The recursion fo; is obtained as follows. Using the equationtive-definite matrixA. Then by applying the matrix inversion
for £y, from Table | we get lemma to the ter®; " + HT R H; + ME¥ E; ; we arrive

at the following recursion foP;1:

Py =FPF - K;RSK] +GQiG (58)

Now, a simple algebra will showthﬂ|inR;1 = PiHiTRgli B
so that we also have H =

Fip1 = Bz + FZPZHZTR:%[UZ — H;z;).

“ -1 A A A
Py =15 [P”_Zl +)\iE}jiEf,i:| FF +G,Q,GY

3Recall from (4) that we are assumifly ., M; # 0 since otherwise problem
(42) reduces to the standard Kalman filtering step (35). If at any particular itsithere
ation we encountefl; | ; M; = 0, then we simply sek; = 0 and replace\; ' _ —T _ N
by /\T (and hence also by zero), so that all the terms invol\fin@r its inverse K, = -Fi-PiHi ) Re,i =1+ HiPiHi )
disappear from the recursions of Table | and they reduce, at that iteration, to the A
Kalman filter recursions. and with initial conditions’, = Il and Ry = Ry.
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TABLE I TABLE I
LISTING OF THEROBUST FILTERING ALGORITHM IN PREDICTION FORM LISTING OF THEROBUST FILTERING ALGORITHM IN INFORMATION FORM
Assumed uncertain model. Same as in Table 1. Assumed uncertain model. Same as in Table 1 with

N the additional assumption that F; is invertible.
Initial conditions: &y = 0, Py = [1y, and Ry = Ry.

R Initial conditions: Po_|015”0|0 = HIR;'v.
Step 1a. Using {R;, H;, P;} compute FPy;: Po—iol _ Hgl n HgRalHo.
- Tpn-1 -
Pi = (B '+ HIRTTH) T Steps 1 and 2. Same as in Table 1.

= P~ PH](Ri+ HRH]) 'HP
Step 3. Update {Pﬂ‘ilim, Py} as
Step 1b. Same as step 1 of Table 1.

o~ oA a P Eige = HL Ry +
Step 2. Determine {Q;, R;, F;, G;} as in step 2 of Table i+1ji+1 i1 i+1 Y1 Y
1.

+ (P — BRI Hin ) BPy Ptags

Step 3. Now update {&;, P;} to {&i41, Pi+1} as fol- e T U R
lows: where

¢i1 = Fai+ FPH]R e Plun = Fl-'TIBi!*ilFi“1 - K, RIKT, +

e = yi— Hi
Py = FEPRFT-RKER, K. +3Q.GT
K; = FPH', R.;=I+HPH'
" = [arE™? ViE], |

+ HEL RZN Hi
K, = FTPJFG

Ry = Q7'+GTFTRF'G,

: : . In the second cases{ ,E, ; = 0), it also follows that the
We should remark that (58) is not a standard Riccati recur- . &, i La, )

sion since the produ«fﬂiéiéf is dependent o, (through its expressions fofG;, E}gmpln‘y to the same values as above

dependence oﬁiﬁ). In Section IV-E, we shall see that (58) coI—Whlle the expression faR; can be seen to become

lapses to the standard form of a discrete-time Riccati recursion A 1% T
in some useful special cases. Table || summarizes the prediction Qi = (Qz‘ + Ay, zEﬂZ) : (59)
form of the robust algorithm.

In the third case&;,; = 0), it follows thatG; = G;, F, =
C. The Information Form F;, and@; as in (59).

The algorithm can also be rewritten in an alternative so-called
information form that propagates the inverses of the matricEs
P,; rather than the matrices themselves. This form requires theThe algorithms of Tables I-lIl require, at each iteration
invertibility of F;. Thus, note that it follows from the time andthe minimization of a cost functio(A) over the interval\ €
measurement-update form of Table | that (Ar,4, 00), with the lower bound as defined in Table I. As re-

. . . marked earlier in Section 1I-B, a reasonable approximation for
Zipripr = Fiiy + Py HE R [yz‘+1 - Hz‘+1Fz‘f7i|i} \; is to set it equal to a multiple of the lower bound, say

The Correction Paramet&i

so that if we multiply both sides of the above equation by 3= {(1 +a)A; ifA;#0 (60)
P:lliﬂ from the left we obtain the first recursion in Step 3 "7 lo otherwise

of Table lll, which propagates the normalized state estim
F)iTil‘%iﬁ' In addition, by inverting the equations @, ;11

and F;; from Table | we obtain the algorithm listed in
Table IlI.

aftc()er some tuning parameter (that could be chosen to be time-
variant as well); see Fig. 4 for an example comparing a filter im-
plementation that is based on the optirﬁaWith an implemen-
tation that is based on the above approximation for the choice
D. Special Cases a = 0.5. o o
, . o Using the approximation (60), it is easy to see that the recur-
The recursions in all forms can be simplified in some usefy|,, (58) now becomes a standard Riccati recursion in the three

- — 0 intv i) ET . E. . — _ _ : . .
special casest, ; = 0 (i.e., no uncertainty i), £ ; By i = = gpecial cases considered in the previous sectian €, ; = 0,
0 (i.e., the uncertainty ir7; is orthogonal to that ir¥;), and Es;=0,o0r ET E,; = 0) '

i =0, +ifg,e = V).

E; ; = 0 (i.e., no uncertainty irf?;).
In the first case &, ; = 0), it is easy to see that the expresg yncertainties in the Measurement Equation

sions for{Q;, G;, £} simplify to the followin
{Ci, Gy, Fi} simplify g The discussions in the earlier subsections can be extended to

0:=0Q; G;,=@G;, F,=F ([ — S\ime%Ef Z) . the case of uncertainties in all matrices;, G;, H;}, i.e.,
That s, onlyF; and R, , are corrected td; andR; ,, respec- Tip1 = (F; + 0F )z, + (G + 6Gi )

tively. y; =(H; + 6H;)x; + v;.
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An examination of the derivation following (42) will revealwhere
that it is the uncertainties in the produds,, £; and H; 1 G; R=R_A\HMMTHT
that are of interest rather than the individual uncertainties in

R g T
{H;+1, F;, G;}. Hence, we shall assume that the uncertainties Rei=R+HPH

{6H;. §F;, 6G;} are such that the resulting uncertainties in the Py =FPF' - K,R_JK| + GQGT
productsH; .1 F; andH, 1 G; can be modeled as K, =FP.HT

[6(Hiy1 Fi) 6(Hip1Gi)] = MiAi[ By Eg i R.,=I+HPH"
for some knowr{M;, E; ;, E, ;} and for an arbitrary contrac- HY =[gTR-T/? \/XEJ?]

tion A;. The identifications (43)—(53) remain valid except fog 4
the following three entries:

6b — —MZAZELZJA;”Z —F |:I_ 5‘(‘Pi_l +FTF)_1 E}“Ef:|
In other words, whenever the produ€t, ; M, appears in any of
the previous recursions it should be replacedhfy This affects where the last form is independent@fl.
only two entries in any of the listings of Tables I-ll. First, the Note that even though the coefficient matiiis constant,
lower bound on\; now becomes the matrix that appears multiplyirig is time-variant and equal
A > HMiTRi—lMi =i to £}. This is in contrast to a Kalman filtering implementation.

. Lemma 1 (Two Useful Identities):et
And, second, the definition a&,; is modified to A S —
. c1 T F(’,7:F|:I_‘P7H RG_ZH]

R7‘,+1 = R7‘,+1 — )‘z_ M7Mz . B

~ N N —1
F [I ~A(PTt+ HTRTH + AET By ) E}Ef}

=F[1-A(I+PH'H) " RE]E]

A r T p—1
All other recursions remain unchanged. We shall therefore ig- Fpi=h [I - hH Re:iH] )
nore this extension in the sequel due to its similarity with thEhent, ; = F}, ; andFiBHTR;Ii = priPiHszfl.
cases studied so far. Proof: The algebra is omitted. &
Using the second identity in the lemma, we can rewrite the
V. STEADY-STATE RESULTS recursion for the state estimate as
We now examine the steady-state performance of the pro- Fiy1 = Py id; + Py BHTR ;. (65)

posed filters when the model parameters are constant, §g¥ are now in a position to establish the main result of this
\F, G, H, M, Ey, E;, Q, R}. Only the contractionA; is  section concerning the convergence of the robustfilter to a stable
allowed to vary with time. In particular we shall establish thaéteady-state filter.
under certain detectability and stabilizability assumptions theTheorem 2 (Stable Steady-State FilteGonsider the un-
steady-state filters are stable and that, in addition, for quadradis iain state-space model (61)—(63) with the corresponding
cally stable models they guarantee bounded error variances,qpst filter (65). Assume further thdtt, H} is detectable
. and{F, GQ'/?} is stabilizable. Then, for any initial condition

A. Stability P, =1, > 0 and for anya > 0in (64), the Riccati variable

We consider first the case that involves uncertainties in the tends to the unique stabilizing and positive semi-definite
system dynamics only. That is, we consider an uncertain modelution P of the DARE

of the form P =FPFT - FPHT (1 + HPEY) " HPFT + GQGY.
iy1 = (F +8F)z; + Gug, 120 61 The solutionP is stabilizing in the sense that the steady-state
yi =Hz; +v; (62)  closed-loop matrix
§F; = MAE; (63)

F,2 F[I-PHTR'H]
where onlyA; (and, hencejF;) is allowed to change with time. is stable. where
This model is often studied in the literature of robust filtering. " . o

We further assume that the correction parametés set to a F=F [I —A(P- PH"R;'HP) EJ?Ef}
constant value that is equal to a multiple of the admissible lower R. =R+ HPHT. R, —I1+HPH".

bound, i.e.,
s _ T 1T 11 A Proof: The conditionx > 0 guarantees a positive-definite
A=+ =1+a) [MTHTRTHM|| =X (64) | avix B so that its Cholesky factor, and henég are well

for somea > 0 chosen by the designer, and for all defined. Now the detectability dfF’, H} and the stabilizability
The prediction form of the robust filter in this case becomesf { I/, GQ*/?} are known to guarantee the convergencg;db
(cf. Table I): the unique positive semi-definite solutidhof the DARE that
Fit =2 + ERHTRQE[M — Hi;] stabilizes the following matrix (see, e.g., [2])
. ’ . A — = T\~
:EI:I—RHTR;tH].’i'7+E.P7HTR;IZy7 FCIF[I—PHT(I+HPHT) H:|
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However, we know from the first identity in the previous lemm&he system matrice§* + §F;, G} then reduce to

that this matrix coincides witl¥},, and the result is therefore . F 0 MAE; 0
established. o TFHART = [F PHTR'H F, } [ 0 0}
A similar conclusion can be obtained for the uncertain model GP 0 o
tip = (F + 8F)z; + (G+8G)u;  (66) 19=\y ppari]
p
vi =Hzi +v; 67) The stability of#" and 7, now guarantees that the nominal ma-
[6F, §G;]=MA[E; E,] (68) trix
ETE,=0 (69) F 0
with uncertainties in botF” and G that satisfyE7 E, = 0. In [FPPHTR—lH FJ

this case, the same recursions as above will hold with the onsly .
exception that the ter QG in the recursion fo,1 should ' stable. Moreover, the equality
be replaced by?QG* where E(zI — F)™'M
- F 0 } - [ M}

~ N —1
Q=(Q ' +AEEl) . =[E; 0 [ R
( ! ”) Ly 0] ~FE,PHTR'H I -F, 0

The identities of Lemma 1 will continue to hold, as well as thghows that the matrix function on the left-hand side has
conclusion of Theorem 2.

1

H..-norm strictly less than one. We thus conclude that the
extended system (70) is quadratically stable. &

By the result of the above lemma, we conclude that there ex-
We continue with the model (61)—(63) and further assume thats a positive—definite matri¥ such that

itis quadratically stable, i.e., that there exists a positive—definite V= (F 4+ 6F)V(F +6F)T > 0

matrix V' such that
T for any A;. Now let M, denote the covariance matrix of the
V- [+ MAE;"V[F + MAE;] > 0 extended vectorol{;, &;}

for all contractionsA. By the small gain theorem of [44] A #1717
and [45], the quadratic stability requirement is equivalent to M;=F [;} [;} .
the combined conditions of a stahlé and a bounded norm ’ ’
|Ef(zI — F) tM|lo < 14

For such systems we can show that the steady-state robustMiH = (F46F)M(F+6F)T +G {Q 0} a7,
filter of the previous section guarantees a bounded error vari- 0 R
ance. To see this, we introduce the estimation efyes z; —2;. Using arguments that are common in guaranteed-cost designs
Then, subtracting the equations (e.g., asin [14], [24]), it is now immediate to establish the fol-

lowing conclusion.
i1 = (F+ MAE)z; + Gu; . .
iy = (4 £)xi + Gu Theorem 3 (Bounded Error-VariancelJnder the conditions

B. Bounded Steady-State Error Variances

It follows from (70) thatA; satisfies the Lyapunov recursion

i1 = Fpii + F,PHT R [Ha; + vi] of Theorem 2, and for a quadratically stable model (61)—(63),
we arrive at the following extended state equation: the variance of the estimation error of the steady-state robust
P i w filter satisfies
|:A7:+1:|=(.7:+5.7:71)|:A7::|+g|: } (70) . .
v T v; lim Ez;z; < P11
where ' e _
F_FPPHTRAH F_FP_FPPHTRle wherePy, is the (1, _1)b|ock er_lt_ry with t_h_e smallest trace among
F+6F = . R all (1, 1) block entries of positive—definite matricEsthat sat-
PH'R™'H I+ F,PH'R'H isfy the inequality
MMNE, MAE
+[ P f} P—<f+{]‘ﬂA[Ef Ef])p(-)T—g[ff g}gTzo
and for all contractive matrices.
G _F PHTR-! Proof: We use an argument similar to the one in [5, pp.
— b N . 39, 40]. The existence @f > 0 guarantees the existence of a
0 F,PHTR™! positive scaling parametersuch that
Lemma 2 (Stability of Extended Systenihe extended pV — (F+6F) () - ¢ [gg g} Gt >o0
model (70) is quadratically stable. :
Proof: Introduce the similarity transformation so that @P exists (P = pV) satisfying
o I I 1 _ I -1 P> (F+6FYP(F 6]:'7T |:Q 0:| T.
T_{OI},T_[O I}. 2 (F+8F)P(F+6F) +G | n|9

) ) Subtracting this inequality from the recursion fof; we get
4Here,|| - ||« denotes the peak singular value of its argument over values of

= on the unit circle. P — Mgy > (F+6F)(P — M)(F +6F)*F
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or, equivalently C. Set-Valued Estimation

P— M1 = (F+6F)P - MYF+6F)F +Q; The set-valued approach to state-estimation [18] is based
for someQ; > 0. The quadratic stability of +6F; thenimplies ©On determining ellipsoids around the state estimates that are
that in the limit, ag — oo, P — M1 > 00r M1 < P. ¢  consistentwith the measured data. The centers of the ellipsoids

are taken as estimates for the states. There have been numerous
VI. COMPARISONS WITHOTHER ROBUST FILTERS works in the literature on extending this approach to deal

) ] ] with uncertain models, e.g., of the form (71)-(73)—see [20],
In this section, we compare the proposed recursions Wi1_[46]. In particular, the following recursions are from

other robustfilters and in the next section we provide some sifag] (we are intentionally using notation that is similar to ours
ulation results. We focus on the following uncertain state—spagﬁhough the variable§P,;, K,,;, R, ;} below have of course
iy ,t0 Ay g

model different meanings from the ones we introduced in Table 11l for
Tig1 =(F; + 6F)x; + Giuy; (71) our recursions):
vi =Huwi 4 v (12) ot iBispi = HE R i
OF; =M;AEy ; (73) ar

L - . L -T i ~T\ p—14

since it is often studied in the literature on robust filtering. + <‘Fz —K, R} [MT } F; )Pi|i L
T -1 _ T p—-1p-1 pf T
A. Kalman Filtering P =8 P T — KRy K
We already explained before the differences and similarities + HiTJrlR;rllHiH — EJ? i1 By iv1

betvyeen the proposed recurs?ons and those o_f the Kalman filter. K, =F7" Pil_il FUG, M;]
For instance, while both solutions do not require existence con- L ’ -
ditions, the new recursions operate on modified parameters that R, ;= |:Qi } 1 { G; } FTPoUET.
take into account the model uncertainties. T I MEyTE T

A Some straightforward algebra will show that the recursion for
B. H.. Filtering . ) . .
o . ~ the state estimate given above is equivalent to
Thea-priori central., filter of level v > 0 for estimating .
the combinatiors; = L;x; of the state vector is given by (see, P7;+1|7;+1$i+1|i+1

eg. [8], [11]) = 7‘,T+1Ri_+11%+1

. . -1
Gy = Fidi+ BB HT (I T HZRHZT) [vi — Hii] + [(P7‘,:-11|71+1 — HY R\ Hip + B} i+1Ef,vi+1)
Pt =p7t - 47L] L ) F‘P‘I} Play,

itgli| £y Lile-

Py =F,PF' + GiQ,G] — K;R_IK[
I 0 H ’ The above equations can now be compared with those in

R. ;= [0 B QI} + [LZ} P [HI LY Table Il and the differences will become evident.
’YT e One issue here is that the above recursions will constitute a
Ki=FEP[H Lj] robust set-valued estimation solution only under certain condi-

§i = L;%;. tions on the data. For example, it is necessary that, far all
This filter guarantees the following bound: R,;>0 and N(Ry,) C N(K, ) (75)
N v, 1 v, v,
Z |5, — Liz;|? where N (-) denotes the nullspace of its argument. These two
i=0 2 conditions may sometimes be difficult to satisfy in practice.
sup - - < ; T ;
(2o, u;,v;) . N1 . N1 Note, for example, that a negative terak’ ; , Ey ;41 IS sub-
x§ 1y o + Z wl Q7 i + Z vf v; tracted from the right-hand side of the recursion f?ﬁptﬂ
=0 =0 above. This term can be large and it can lead to indefinite initial

forall 0 < i < N, if and only if, the following conditions are yajyes forg,, ; that ultimately cause filter breakdown, as can be
satisfied: seen from the simulations of Fig. 1.
Pt —~72LTL; >0 for0<i<N. (74)

In general, there is no guarantee beforehand that these colii-
tions will be satisfied for all iterations. In addition, even if the The idea of guaranteed-cost designs is to develop filters that
conditions are satisfied over a horizon of lengfh there is no guarantee an upper bound on the variance of the estimation
guarantee that they will be satisfied over a horizon of longer darror. Such designs have been studied mostly for quadrati-
ration. This is an inconvenience for online operation since wheally-stable time-invariant models in steady-state operation
condition (74) fails at any particular iteration, ti&,, perfor- (e.g., [14], [23], [24]), though, as mentioned in the introduction,
mance is lost and divergence can occur (see the simulationgxtensions exist to time-variant and finite-horizon scenarios.
Section VII. Note also that the larger the valueydhe easier it The guaranteed-cost filters in [14], [24] have different forms,
is to satisfy (74). However, larger values-pfeduce the robust- which is expected since each tries to enforce an upper bound in
ness of the filter. a particular manner.

Guaranteed-Cost Designs
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25

Set-valued estimate 20 State esfimate by

new filter
{/ Actual state 15 \

20

0] [
: / :
g0 £
? ]
] [}
] [
g 0 g
) ) )
-0}
Actual state
50 100 150 200 50 100 150 200

Fig. 1. The top plots show three trajectories: actual state (solid line), state estimate by robust set-valued algorithm (dashed line in thio{gfandsttate
estimate by the new filter (dashed line in rightmost plot).

The filter equations from [14, p. 44] requité = I and they whereP is the stabilizing solution of the Riccati equation
can be summarized as follows. First, the designer selects a small )
positive parameter (as explained below). Then uses P=F (P—l +HTR'H + XEfEf) FT 4+ Q (79)
B =F [I +e(P 1+ H'R'H - cEFE;)” EJ?Ef} & ) A
. andR = R— A\"'HMM?THT.
+F (P +H'"R™'H — ¢E} Ey) Comparing the recursions (76) and (78) for the state esti-
. HTR—l(yi — Hiy) (76) mates, as well as the Riccati equations (77) and (79), we see that

] N o o _ there are essentially four differences between a guaranteed-cost
whereP is taken as the positive—definite stabilizing solution Otﬁesign and the proposed steady-state filter.

the following Riccati equation: 1) The negative scalare is replaced by a positive scalar

P=F (p—l +HT'R'H - eE}FEf) “lpr A. The appearance of a negative scafarin the guaran-
teed-cost DARE (77) imposes a constraint on the selec-

—1 T
+QF T MM (77) tion of ¢: its value has to be properly selected so asto guar-
The value ofe is picked from within an open intervad, ¢°), antee a positive—definite differené&™! — ¢E7 E; > 0.
wheree® > 0 is chosen such that the following additional Ric- 2) The matrix® is replaced by its corrected versidh
cati equation 3) The locations of the facta¥/ A/ ' in the Riccati equations

are different: in (77) it appears addedovhile in (79) it

B _ p(p-1_ opT =1 7 —o T A
P=F (P <Ef Ef) Fo+Q+ MM is incorporated intdz L. In this sense, a guaranteed-cost

has a positive—definite stabilizing solution satisfying design can be interpreted as increasing the valu€ of
_ while our filter can be interpreted as decreasing the value
Pt —¢EYE; > 0. of R.

This condition guaranteeB—* — eET E; > 0 since it can be 4) The parameterge, A} are selected differently.

shown thatP S F [Such ane<® is always guaranteed to exist The guaranteed-COSt filter equatlonS from [24] have a dif-

for quadratically stable models.] ferent form that relies on two Riccati equations; they are omitted
In order to compare our steady-state filter with the aboJ@r brevity.

equations, we shall show first how to rewrite our prediction filter

in a form that is close to the above. Thus refer to Section V and VII. SIMULATION RESULTS

note first the easily verifiable identity
For comparison purposes, we employ the following numer-

. B . -1 B
EP; =F (Pi_1 + HTRi_lH + AEfEf) =FPy ical values of a two-dimensional (2-D) time-invariant model
_ ) _ _used in [14]:
so that our steady-state filter can be written in the alternative
form 0.9802 0.0196 10
F_[ 0 0.9802 |’ G= 0 1

. R R —1
Gig1=F [I - A(P—1 +H"R™'H + AE?Ef) E?Ef} i 0.0198

H=[1 -1], M:[ 0

R=1
A J
+F(P '+ H'R'H + AE Ey )

-HTR™'(y; — H#;) (78)

E; 1.9608 0.0190} '

[0 5] Q:{0.0195 1.9605
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Fig. 2. Error variance curves for different filters with selected uniformly from within the intervatH1, 1].
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Fig. 3. Error variance curves with selected uniformly from within the intervaH1, 1] and withM = c01{0.1980, 0}.

We also usély, = I andio = 0. The above parameters correA. Set-Valued Estimation
spond to a quadratically stable time-invariant model of the form t two top plots in Fig. 1 show a simulation for which

A; = —0.8508 = A for all <. Two curves are shown in each
Tip1 = (F'+ MAEf)z; +u; yi = Ha, + ;. plot and they refer to: the actual trajectory of the top entry of
the state vector (solid line), the trajectory that is produced by the
Observe thaty; is a scalar in this case and that the producobust set-valued estimation algorithm (dashed line in leftmost
M A Ey is strictly upper triangular so that the eigenvalues gflot), and the trajectory that is produced by the new robust filter
F + MA;E; always coincide with those af. In particular (dashed line in rightmost plot). We see that the set-valued esti-

observe that the actuaél matrix has the form mates diverge around iteration 64 (the overshoot reaches a peak
of approximately 28) and then stay at a constant level thereafter.
o 0.9802 0.0196 + 0.099A; This behavior was observed repeatedly for random choices of
ot 0 0.9802 A;. This occurs because of the violation of the existence condi-

tions (75); the smallest eigenvalue®f ; becomes negative fast
with the uncertainty\; affecting only its (1, 2) entry. and stays negative for an extended period of time. Due to this
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Fig. 4. Comparison of the variance curves for optimal and for approxiﬁ(&téor the new filter. In this case, the curves are indistinguishable.
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Fig. 5. Error variance curves for different filters with selected uniformly from within the intervaH1, 0].

effect, we are excluding the robust set-valued algorithm frome can use them to approximate the actual error variance curve
our additional simulations below. by computing the ensemble-average

500

Bllai — &l ~ 55 |
In Fig. 2 we generated more elaborate performance curves as J=t
follows. Each point in each curve is the average over 500 ex-The top part of the figure highlights the degradation in
periments. Each experimepfixes A at a value that is selectedperformance by the Kalman filter due to modeling errors
randomly between-1 and 1 and generates 1000-long randoigapproximately 4 dB for this example). More specifically,
measurementgy; }. The data is then filtered by a particular althe smooth lower curve (termed optimal) refers to the error
gorithm leading to an estimated trajectc{t@fij)} for the exper- variance that is obtained when the actual model is used (about
iment ;. At the end of the 500 experiments, we have 500 sudi8 dB in steady-state). The highest curve is the error variance
trajectories (of length 1000 points each) for each algorithm abgt a Kalman filter using the nominal model (about 22 dB in

2
B. Ensemble-Avage Error \ariance Curves ‘ .

X; — .’IAZEJ)
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Fig. 6. Error variance curves for different filters with selected uniformly from within the interval [0, 1].

steady-state). The curve below it indicates the performangperation period. We should say that we emplogeg [1 0]

of the new filter (about 20 dB in steady-state). It is of course theH ., recursions, since witth = I an even larger value of
not hard to find other examples where the performance ¢fis needed. Moreover, for thig,,, filter, it turns out that the
the Kalman filter is significantly worse. For instance, if wevaluey = 71 guarantees filter performance over arbitrarily long
change the value o¥/ to M = col{0.1980, 0} we obtain the perdios of time (since it meets the sufficient conditions for feasi-
performance shown in Fig. 3, where the Kalman filter exhibitsility and convergence from [17]). Still, itis clear that the choice
a degradation of approx. 23 dB in performance. of v represents an important design tradeoff: while large values

The plots in the middle row of Fig. 2 compare thef ~ can guarantee filter operation, this is usually achieved at
performance of the new robust filter to that of optimized guathe expense of robustness.
anteed-cost designs. These designs cheobg minimizing In the above simulations, we employed the approximation
an upper bound on the error variance. The value v$ed for (60) by choosingy = 0.5. Fig. 4 shows that this approxima-
(76) is5.98 x 10~°. We see that in this example, by averagintion provides a good alternative for this example over the im-
the performance over all experiments (which corresponds fitementation that is based on computing the optimait each
averaging over random selections®fin the interval [-1, 1]), iteration (the curves were obtained in this case by averaging over
the filters tend to exhibit a similar steady-state performan@90 experiments). (We may remark that we have omitted from
(recall that the proposed filter achieves this performance waar comparisons the robust minimum-variance filter of [28] due
regularization). to divergence problems.)

The plots in the last row of Fig. 2 compare the performance There are some interesting distinctions in performance be-
of the new robust filter with that of ai, filter. While the left- tween all filters. Fig. 5 shows the variance curves that corre-
most plot suggests a good performance by#he filter, this spond to the case in which is selected uniformly from within
result can be deceiving. First, we had to employ a large valuetbg interval [-1, 0], while Fig. 6 corresponds to the case\ris
~,~ = 70, in order to guarantee that the existence conditiosglected uniformly from within the interval [0, 1]. In the former
(74) are not violated over the first 1000 iterations. Second, dase we see that the performance of the Kalman filter is compa-
we extend the filter operation beyord = 1000, we find that rable to, or even better than, the other filters, while it is notice-
the conditions (74) are violated starting at iteration 1441. Thably worse in the latter case. The performance of the proposed
degrades the performance of the,, filter considerably. To see filter in the latter case can also be improved by increasing the
this, the resulting error variance is shown in the bottom rightalue of «.
most plot of Fig. 2, with a peak error variance of about 90 dB. Finally, Fig. 7 demonstrates the case in whithis allowed
All other filters maintain their performance over the extendet vary randomly during each experiment.
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VIIl. CONCLUDING REMARKS rather than locally. Another issue is the development of array

In this paper, we proposed a framework for robust state—spé’@éiams_’ in addition to .faSt algorithms. The former would tend
estimation that is based on minimizing, at each filter iteratioﬁc,) exhibit bettgr numerical properties while the latter would be
the worst-possible (regularized) squared residual norm. THiPre appropriate for large-scale problems.
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