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A Recursive Schur-Based Solution
of the Four-Block Problem

Tiberiu Constantinescu, Ali H. Sayed, and Thomas Kailath

Abstract— We describe a new solution to the four-block problem
using the method of generalized Schur analysis. We first reduce the
general problem to a simpler one by invoking a coprime factorization
with a block-diagonal inner matrix. Then, using convenient spectral
factorizations, we are able to parameterize the unknown entry in terms
of a Schur-type matrix function, which is shown to satisfy a finite number
of interpolation conditions of the Hermite—Féjer type. All possible inter-
polating functions are then determined via a simple recursive procedure
that constructs a transmission-line (or lattice) cascade of elementary J-
lossless sections. This also leads to a parameterization of all solutions of
the four-block problem in terms of a linear fractional transformation.

1. INTRODUCTION

A central problem in H > -optimal control is the design of stabiliz-
ing controllers that minimize or at least impose an upper bound on the
H®°-norm of the closed-loop transfer function. This problem has been
widely studied in the literature and we may refer to the monograph of
Francis [1] and the notes of Doyle [2] for more details and discussion.
The existing approaches cover a wide range of settings and contexts.
Doyle and Francis [2], [3] reduced the equivalent so-called model
matching problem to a one-block (or Nehari) problem, which was
then solved using the theory studied by Ball and Helton [4]. Foias and
Tannenbaum [5] approached the four-block distance problem within
the framework of skew Toeplitz operators and studied the associated
spectral properties. Ball and Cohen [6] gave a parameterization of all
suboptimal solutions based on J-spectral factorization theory, while
Kimura and Kawatani [7] employed the notion of conjugation. Doyle
et al. [8] provided state-space formulas for the stabilizing controllers
by employing a separation argument and replacing the four-block
problem by a pair of two-block problems. Most recently, Glover et
al. [9] (see also Limebeer et al. [11], [10]) described a state-space
procedure that yields an all-pass dilation of the original problem; part
of this all-pass matrix was shown to generate all solutions.

We present a new solution that approaches the four-block problem
within the framework of generalized Schur analysis and leads to a
transmission-line (or lattice) structure that parameterizes all possible
unknown entries. The derivation can be summarized as follows:
we use a special factorization, with a block-diagonal inner factor,
that reduces the original four-block problem with L functions
to an equivalent problem with H° functions. We then invoke
convenient spectral factorizations and an inner dilation to express all
possible choices of the unknown entry in terms of a Schur matrix
function, which is shown to be characterized by a finite number
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of interpolation conditions of the Hermite-Fejér type. The solution
of the interpolation problem is then determined through a recursive
(array) procedure recently proposed in[12}-[14], which exploits the

so-called displacement structure to efficiently factor a structured
matrix (implicitly defined by the interpolation data) via a generalized
Schur algorithm. The factorization defines a transmission-line cascade
of elementary J-lossless sections, which readily explains how the
interpolation conditions are satisfied.

We should remark that the study of interpolation problems has had
a renewed interest in control theory because of their role in H™-
control, as first noted by Zames [15], [16] and then followed up and
extended by several authors, especially Helton [17], [18], Kimura
[19], and Limebeer et al. [11], [20].

The following notational conventions will be useful to remember.
RL;%, will denote the space of p x ¢ matrices whose entries
are rational functions without poles on the unit circle and RHSS,,
will denote the space of p X ¢ rational matrix-valued functions
that are analytic and bounded inside the open unit disc. A matrix-
valued function K'(z) € RHS, that is strictly bounded by unity
(IKllo < 1) will be referred to as a function of Schur-type. We
shall write A.(z) to denote the para-Hermitian conjugate, A.(z) =
[A((1/2"))]", where * stands for Hermitian conjugation (complex
conjugation for scalars). We shall also use the notation H%(z) to
refer to the following block-Toeplitz upper-triangular matrix

A() 1AV 5AP(G) - At
A(Z) %A(l)(z) (kﬁlg)!A(kiz)(z)
HE(2)= :
0 LAW(2)
A(z)

where A(z) is a rational matrix function analytic at z, k > 1 is a
positive integer, and A*)(z) denotes the sth derivative of A(z) at z.
Throughout this note we use, for convenience, and unlike the usual
engineering convention, positive powers of = to denote time delays.

II. A GENERAL FOUR-BLOCK PROBLEM

We consider the following general four-block problem.
Problem 2.1: Given p; x ¢;, (i, j = 1,2) matrix functions
Lij(z) € RL3x,,, describe all Q(z) € RHSZ,,, such that

L Lio
5 wzall <
u

Notice that we have stated the problem in function domain and in
rather general terms. The entries {L;;(z)} are not assumed to have
any type of relation to each other, in contrast to standard statements
of the problem in the literature (see, e.g., [9, (1.5)]).

The first step in the solution is to reduce the original problem with
RL™ entries to an equivalent problem with RH™ entries. For this
purpose, we invoke a special factorization of the form

20 Bl W]l 2] e

(0]

where A11(2) and Az»(z) are, respectively, p; X p, and p2 X ps all-
pass rational matrix functions with poles inside the open unit disc,
and B;;(z) € RHq,, i, § =1, 2. 1t is clear that (2) consists of
two (decoupled) factorizations. Moreover, the block-diagonal inner
matrix, A(z) = A11(2)® Az2(2), can be chosen with an even simpler
structure. We can, for instance, choose A(z) to be diagonal or of the
form A(z) = a(z)Ip,4p,, where a(z) is a Blaschke factor and I,
denotes the p X p identity matrix. For the sake of generality, we
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shall assume throughout that A(z) is block diagonal. Using (2), and
the fact that (the para-Hermitian conjugate) A.(z) = A~!(z) for
the points z where the functions are defined, we conclude that (1)

is equivalent to
Bll B12
B21 Baa — Av22Q

Assume there exists a solution Q(z) to the four-block problem. It then
follows that we already have a necessary condition for its solvability,
viz.,

< 1. 3)

oo

Bgl (Z )
must be Schur-type matrix functions. (4)

[Bis(z) Buia(2)] and [Buu)]

Notice that, due to the block-diagonal structure of the inner matrix
A(z), the unknown matrix (=) appears only in the entry Bao(z) —
A.22(2)Q(z). Our next step is to parameterize Q(z) in terms of
a Schur-type matrix function K'(z). We shall derive the following
result in the next section.

Theorem 2.1 (All Possible Solutions Q)): All possible choices of
Q(z) can be expressed as

©(2)Ax22(2)Q(2) = @(2) Baz(2) — K21(2)P(2)K12(2)
-LK21(Z)IX’(Z)RK12(Z) (&)

where K'(z) is an arbitrary Schur function to be determined and all
other quantities are given in terms of the entries {B;;(z)} and the
spectral factors of Byi(z). [ ]

The above result thus allows us to reduce the problem of finding
Q(z) to that of finding a suitable K (), since all the other quantities
in (5) are known, as described ahead. We shall later show that K (z)
must satisfy interpolation conditions of the Hermite—Fejér type.

We should remark here that several earlier solutions of the four-
block problem (or the closely related model matching problem)
have been based on reducing the original problem to the so-called
Nehari problem (see, e.g., [1], [21]). Our approach does not assume
any a priori knowledge of the Nehari Problem or its solution. We
instead use insights from the study of Schur-type matrix functions to
parameterize all possible solutions (J(z) as given in expression (5)
and as detailed in the next section.

III. SCHUR FUNCTION PARAMETERIZATION OF THE SOLUTION

We first recall the notion of left and right spectral factors (see,
e.g., [22], [23]), as well as the notion of an inner dilation [24].
Consider a k x I Schur-type rational matrix function N (z). The right
spectral factor of N(z) is the ! x I outer matrix function Ry(z),
uniquely determined up to a left unitary constant factor, such that
I - N"(Q)N(¢) = Rx(¢)RN(C) for all |¢| = 1, where by outer
function we mean Ry (z) and Ry'(z) are both in RH,. The left
spectral factor of N(z) is the k X k *-outer matrix function Ly (z),
uniquely determined up to a right unitary constant factor, such that
I = N(ON(¢) = Ln({LX(C) for all [¢| = 1, where by *-outer
function we mean Ly (z) is outer, where Ly (z) = [Ly(z™)]".

Moreover, there exists [24] a unitary inner matrix function,
Wn(2) € RHT, 1)kt (called the inner dilation of N(z)), viz.,
Wr(QOWR({) = WH(OWNn(C) = Iy for all [¢| = 1, which has
the form (up to a unitary factor)

N(z) Ly(z)
on(2)Bn(2) Pn(z)
where Py(z) = on(2)Pn(2) with
Pn(¢) = =Rn(QN* (O = N(ON™ (O] Ln(€),

Wni(z) =

vidl=1
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and ¢n(z) is a rational inner function (Blaschke) chosen such
that Pn(z) € RHY, (ie., ¢n(z) guarantees the analyticity of
Pn(z)). We remark that the spectral factors Ln(z) and Ry(z) can
be computed, among other ways, by applying the celebrated Schur
algorithm to N(2) (see the Appendix for a brief discussion).

We now use the above definitions to further refine the structure of
the entries in (3) and to express (z) in terms of a rational Schur
matrix function. We first use (4) to express Bi2(z) and Ba:i(z) in
terms of the spectral factors of Bi;(z).

Lemma 3.1: There exist unique Schur-type rational matrix func-
tions K12(z) and K2:(z) such that B12(z) = Lp,,(z)K12(z) and
B21(2) = Ka1(2)Ray, (2).

Proof: It follows from (4) that I — B;1(¢)Bf;(¢) —
B12(¢)B12(¢) > 0 for all || = 1, or equivalently,
L5, (0L, (C) > Bia(Q)BL(C). But Lp,,(z) is “-outer.
This implies [22] that there exists a unique Schur-type rational
matrix function K2(z) such that B12(z) = Lg,, (2)K12(%) for all
|z| < 1. A similar argument holds for the existence of K2;(z).

Let Wg,,(z) be the inner dilation of B);(z). For notational
simplicity, we write ¢(z) and P(z) instead of ¢ B,, (¢) and Pg,, (z)

2) = Bi1(2) Lp,, (2)
Wa,,(2) = [%(Z)RBu(z) P(z) ]

Using the structures of Bzi(z) and Bi2(z), and the above inner
dilation of Bj1(z), we can easily compute the left spectral factor of
the rational matrix function

B 11 (Z )
[v(Z)Bm(Z) : ©
Lemma 3.2: The left spectral factor of the matrix function (6) is
given by

LBu (Z) 0 ] 0

¥(z) = [Kzl(z)P(z) Licy, (2)

where Lk,, (z) is the left spectral factor of the Schur-type rational
matrix function Ko21(2).

Proof: The proof is a direct verification based on the innerness
of Wg,,(2). ]

In other words, we have shown that the left spectral factor of the
2 x 1 block matrix (6) can be specified in terms of the spectral factors
of the smaller entry Bj;(z) and the Schur function K31 (z) (compare
with [21, pp. 215-219]).

We now use the results of Lemmas 3.1 and 3.2 and express all
the entries in (3) in terms of the spectral factors of Bi1(z) and a
Schur-type matrix function K (z). For this purpose, observe that due
to the innerness of ¢(z) we have that the matrix function

[ Bu(z) Blz(z) ]

9(2)Bai(2) 9(2)Baa(2) - p(5)Ama(0Q(2) ] ®

is also in Schur class. Using an argument similar to the proof of
Lemma 3.1, we readily verify that the second block-column of (8)
can be expressed in terms of the left spectral factor of the first
block-column of (8). That is
Blz(z) & d
=W¥(2)K
[e(Bae) S A1) = FER )

for some Schur matrix function K (z). It then follows from (7) that
the right-hand side of the above expression has to be of the form

[ Lp, (2)K1(2) ]
Ko1(2) P(2)K1(2) + Liy, (2)K2(2)
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where we partitioned K (z) as K (z) = [K (2) K3 (2)]7. Invoking
the uniqueness of Ki2(z) (as stated in Lemma 3.1) we conclude
that we must have K1(z) = K12(2). But K(2) is a Schur function
and hence (as in the proof of Lemma 3.1), K(z) can be expressed
in terms of the right spectral factor of K1(z) (= Ki2(2)), viz.,
K(z) = K(z)Rk,,(z), for some rational Schur-type matrix func-
tion K (z). Therefore, we conclude that the entries of (8) can be
written in the form as shown in (9) at the bottom of the page.
Comparing (8) and (9) we readily verify that (5) is indeed satisfied.

IV. THE HERMITE-FEJER INTERPOLATION PROBLEM

We first review the definition of transmission zeros of a k X k
matrix function 7(z) with detT(z) not vanishing identically (see
[25, ch. 1] and [26, pp. 446-451]). Let {z;, 0 < i < m — 1} denote
the zeros of detT(z) [T(z) is assumed analytic at the z{s]. A left-
null chain of order  at z; is a set of 7 row vectors {z;, 1 <i < T}
(of dimension 1 x k each), such that

[21 z2 zr|HTr(2:) =0

Each z;, however, can have more than one left-null chain and those
can be of different orders.

Definition 4.1 (Canonical Sets [25]): A canomcal set of left-null
chains at z; is a.n ordered set of left-null chams {y1 ) y( Y )}
( Dol )} where each y is composed of r( 2
1' t“ 1 }
are linearly independent and form a basis for the nullspace of T'(z:),
and r > {0 > - >r() ]

Hence, if z; is a zero w1th t; left-null chains, then it satisfies ¢;
conditions of the form

of orders {1'
row vectors, viz., [:z:(') . ( ) (,)] such that {z{?, z{,---

O
yOH (2)=0 forj=1,.t (10)

I . P t; i
and it is said to be a transmission zero of order m; = 3 it rg»’).

We shall also refer to the {rg-‘)} as the partial multiplicities of z;.

We now go back to (5) and consider the zero structure of the
inner matrix function ¢(2)Au22(2). Assume det (z) Axz2(z) has m
zeros {z;, |zi| < 1} and let {r(), yJ 1 < j < t;} designate
the corresponding partial multiplicities and canonical set of left-null
chains. It follows from (5) that

O
y; [HKJZ,PKH(ZJ

RO RO
+ (M7, i i ()

t)H&Pﬂzz (z’)

an

o)
Recall that Rk, (2) is outer and hence, Hy R\ (#:) is invertible. For

notational convenience, we mtroduce the row vectors a( ) and b( 2

defined by a- =y )’HLK (z:) and

r. T(,'.) —
B = ¥ () - H,éz,PKu(z»]{H,;m(zé)} L

Clearly, ag") and bgi) can be partitioned as

ag»i) = [“5"1) ”glz) ( ) (u)] and

1 2 @) |-
Jrs

b_(’-i) = [v(-') o O ]

Bu(Z)

Lg,,(2)K12(2)
@(2)K21(2)Rpy, (2) K (2)P(2)Ki2(2) + Lk, (2)K(2) Rk, (2)

] . )
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Equation (11) can then be compactly rewritten as

. o T(.i)
b =aHy (z), 0<i<m-1, 1<j<t, (2

which shows that K'(z) is indeed the solution of a tangential
Hermite-Fejér problem.

Several remarks are due here. To begin with, observe that to obtain
the interpolation problem we need to compute the transmission zeros
of a single matrix function, ¢ (z)A.22(z). More importantly, this is
an inner function, and its zeros are simply reflections of the poles.
Secondly, our derivation leads to one-sided interpolation conditions
only and avoids some technical difficulties that may arise in the
case of two-sided conditions at the same point (see, e.g., [11], [20]).
Finally, note from (11) that it is sufficient to compute the values of
the involved matrix functions at the interpolation points {z;}.

V. RECURSIVE SOLUTION OF THE INTERPOLATION PROBLEM

We now derive necessary and sufficient conditions for the solvabil-
ity of the four-block problem. We first follow [12]-[14] and describe
conditions for the solvability of the interpolation problem (12), as
well as a simple recursive array procedure for the construction of a
cascade (lattice) structure with the desired interpolation properties.
The first step in the solution consists of constructing three matrices
F, G, and J directly from the interpolation data: F contains the
information relative to the points {z;} and the dimensions {rg-i)},
G contains the information relative to the direction vectors {agi)}
and {b;z)}, and J = diagonal {I,,, —I,,} is a signature matrix.
The matrices F' and G are constructed as follows: we associate t;
Jordan blocks with each z;. That is, we define a block-diagonal matrix
F.,, = F,®&F& --®F, . where Fj; is an ri.l) x rﬁ-') Jordan block
with eigenvalue at z; and ones on the first subdiagonal. Then F is a
block-diagonal matrix of the form F = F. @ F., & --- & F.__,.
We also define ¢; matrices L’J(i) (rg-i) X p2) and V](’) (ri-i) X g2) that
are composed of the row vectors ag-i) and bgi) associated with z;

ug-? v;)
v = @ wd V)Y = o)
" o v o
If we write
u® v
U= 1} V., = :
v v
Then we construct
U., Vi
G=| i
Uit Ve

m—

Letn =" "m; and r = (p2 +¢2), then F and G are n x n and
n X r matrices respectively, and we consider the following so-called
displacement equation

R - FRF" =GJG" (13)

where F' and G are as defined above. Clearly, R is unique since F
is a stable matrix (i.e., |f;| < 1 Vi, where we denote the diagonal
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n—1

entries of F' by {f;}/2 ). Moreover, the tangential Hermite—Fejér
problem has a solution if, and only if, R is positive-definite (see,
e.g., [27, pp. 294-298] and [12]-[14]). This discussion leads to the
following result.

Theorem 5.1: The four-block problem is solvable if, and only if,
the two conditions in (4) are satisfied and R is positive-definite.

Proof: The discussion in the previous sections clearly shows

that if the four-block problem has a solution ()(z) then (4) is satisfied
and (12) is solvable. Conversely, assume that (4) holds true and that
(12) has a solution K (z). Then the matrix function (see (14) at the
bottom of the page) is in Schur class. Define the rational matrix
function (analytic in the unit disc)

H(2) = 9(2)Bu () — K21(2)P()K12(2)
— Ly (2)K(2)Ri 15 (2)

and observe that the left-null structure of ©(2)A.22(z) is a co-
restriction of the left-null structure of H(z) [25]. Using Proposition
12.1.1 and Theorem 12.3.1 in [25] (or even a more direct argument
if Ax22(2) is chosen to be diagonal), we deduce that there exists a
bounded rational matrix function Q(z) € RHy;y,, relating H(z)
and ©(2)Aw22(2), viz., H(z) = @(2)Aw2(2)Q(2) in |z] < 1. It
then follows from (14) that

B11(z) Bi2(2) ]
@(2)B21(2) @(2)Baz(2) — o(2)Ax22(2)Q(2)

is in Schur class and hence, the four-block problem has a solution

Q(2). u

A. A Recursive Solution

There is a vast literature on the solution of interpolation problems
of various kinds. We refer only to the books and monographs [25],
[27], [28] and the references therein. The Hermite-Fejér problem is
often not addressed, with most attention to the Nevanlinna—Pick and
Schur problems. While (different) recursive solutions are classical
for these special problems, for more general cases and to achieve
a unified solution, global expressions for the solution are given
involving the inverse of the matrix R (see expression (16) ahead).
In [12]-[14] we presented a new recursive solution procedure using
only the matrices F' and G. It is interesting that the procedure
is actually the so-called generalized Schur algorithm for the fast
triangular factorization of the matrix R implicitly defined by the
(less complex) matrices F' and G via (13). We now apply this
recursive algorithm to obtain a cascade (or a lattice) structure that
solves the desired interpolation problem. The algorithm is a recursive
procedure that uses only the data available in the matrices {F, G, J},
without explicitly computing the matrix R itself or its inverse. The
determination of an interpolating function A(z) in (12) then reduces
to the following recursive scheme: start with Go = G, Fy = F, and
apply the following procedure to compute G;, ¢ > 1 (the diagonal
entries of F* and the first rows of the successive G; will be used to
construct the solution):

1) Atstep ¢ we have G; and F;. Let g; denote the first row of G;.

2) Choose a J-unitary matrix ©; (ie., ©;JO] = J) such that

9:©; is reduced to the form ¢;©; = [6;0---0], where & is
a scalar. The matrix ©; can be implemented in a variety of
ways, e.g., as a sequence of elementary unitary and hyperbolic
rotations.

Bu(z)

w(2)RK21(2)RB,,(2) Ko1(2)P(2)K12(2) + Lky, (2)K(2)RK 5 (%)

L, (2)R12(2) (14)
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3) Compute Gy as

Oixr] _ gl O ~[o o
o] =scoft 3ol 2]

where Q,‘ = (Fi - fiIn_i)(I"_i - f:F;)—l.
4) Set Fi4; equal to the submatrix obtained after deleting the first
row and column of F;, and go back to the first step.
Expression (15) for G;+1 has a simple and interesting array interpre-
tation: multiply G; by ©; and keep the last r — 1 columns, and then
multiply the first column of G;©; by ®;. Notice that the (0, 0) entry
of &; is zero and that #; has the form of a “Blaschke” matrix.
We further associate with each recursive step an elementary
J-lossless section ©;(z), viz.,, ©;(z) is analytic in |z| < 1,
0©:(2)JO;(z) = J on |z| = 1, and is given by

0
Irfl ’

Let us introduce the overall transfer matrix

6(z) = 90(2)61(2)" 'en—l(z)

(15)

s,
0i(z) = 6; [l—éf:

and partition it accordingly with J. It can be shown (see [25] and
the references therein or {12]-[14]) that all solutions K(z) to the
Hermite—Fejér problem can be written as

K(2) = =[611(2)S(2) + 612(2)][021(2)S(2) + O22(2)]

where S(z) € RH5y,, is an arbitrary Schur-type matrix function.
Theorem 5.2: All solutions Q(z) to the four-block problem are
given by the linear fractional transformation
P(2) Ax22(2)Q(2) = [11(2)5(2) + P12(2)]
- [B21(2)S(2) + B22(2)] !

where S(z) € RH,? is an arbitrary Schur-type matrix function

2Xq2
and

[ﬁu(Z) ng(z)]
Do1(2) Paa(z)

[LK21(Z) @(2)B22(z) - Kzl(z)P(Z)Kn(Z)]
0 I

_ [I 0
0 R, ()

[[gues &) .

For completeness, we may present the previously mentioned global
expression for ©(z) [12], [14], [25], viz.,

6(z)={I-(1-2)JG - zF")"'R™\(I- F)"'G}© (16)

where O is an arbitrary J-unitary matrix. To use this global represen-
tation requires the knowledge of R~!, whereas the recursive solution
described before does not require R or R™!. We should also remark
that one does not need to explicitly determine the solution R of (13)
and check for its positive-definiteness. It can be shown that [13], [14}
R is positive-definite if, and only if, g;Jg} > 0 fori =0,---,n—1.
This test can clearly be performed during the recursive construction
since the rows g; are available at each step and g;J g = |6:|>.

VI. CONCLUDING REMARKS

In this note, we addressed a standard problem in H °°-control
from the viewpoint of Schur analysis. We stated the problem in the
function domain and in more general form than usual: the entries
L;;(z) in (2) were not assumed to have any relation to each other.
We then derived an expression that parameterizes the unknown
function Q(z) in terms of known quantities and a Schur function that
satisfies certain interpolation conditions of the Hermite-Fejér type.
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These known quantities were expressed in terms of certain RH
functions {B;;(z)} in (2) that were obtained via two decoupled
factorization problems. A recursive procedure was also described
for the determination of a cascade structure that parameterizes all
interpolants, and consequently, all Q(z).

Here we have assumed that the problem data is given via rational
(transfer) functions. More work is needed to translate our results to
the case where the initial data is in state-space form. Nevertheless
we might note that certain simplifications may be available in this
case. The spectral factorizations called for in our solution can then be
carried out via the solution of certain Riccati equations, which need to
be compared with the Riccati equations of the state-space theory. We
also note that the more efficient Chandrasekhar recursions can be used
to carry out spectral factorization (see [14], {29], [30]); the point is
that the Schur algorithm for spectral factorization can be simplified to
the Chandreasekhar recursions when state-space structure is present.

APPENDIX
THE SCHUR ALGORITHM AND INNER DILATIONS/FACTORIZATION

‘We now briefly describe the relation of the Schur algorithm to inner
dilations and spectral factorization. For more details and connections
the reader is referred to [31]-[33], [29]. Let N(z) be a Schur-type
matrix function in RHZY,; and consider its Taylor series expansion
around the origin, viz., N(z) = No 4+ Niz + N2z + ---, where
{N;, i > 0} are k x I matrices of norm less than one. We introduce
the displacement equation

R - 2ZRZ" =GIG"

where Z = (Ix ® —I;) is a signature matrix, Z is the (semi-
infinite) lower triangular block-shift matrix with identities Ix on the
first block-subdiagonal and zeros elsewhere, and G is the so-called
generator matrix constructed from the Taylor series coefficients of
N(z) as follows

(A1)

Ir. No
0o M

G=10 N,

We now apply the following array procedure to G (which is similar
to (15) with F; replaced by a shift matrix)

Okxk+i | _ o [k 0 .10 0 -

[ Gin ] = 2G:0; [0 0 +G:O; o I Go=G (A2
where O; is a (k+1) x (k+!) Z-unitary matrix chosen so as to reduce
the first k rows of G; (denoted by g;) to the form g,6; = [A:Oxx1].
That is, a k x I block zero is introduced in the second-block column
of g;. We can choose 6; as

I =% | [Ue —vvh)™? 0

-vi & 0 (I —yrv)™'/?
where ~y; are usually referred to as the Schur or reflection coefficients
of N(z). Assume we start with G and apply (A.2) m times. This
produces m reflection coefficients Yo, Y1, Ym—1, and m I-
lossless sections of the form (we use the superscript N to denote
that the section is associated with the matrix function N(z))

21y 0]

6; =

(N) - O:
o; (z)—G,[ 0 I
Consider the cascade ©")(2) of these m sections, oM (z) =
GgN)(z)G(lN)(z)--~65iv_)1(z), and partition 8 (z) accordingly
with Z. Let XV (2) be the associated scattering matrix

N N) = (N) oV N) go—(N
9(11) - 6(12)6 { )egl) ‘egz )6 ( )](z).

(N) — 2 2
= gffelh o7
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It is straightforward to verify that 3(™)(z) is an inner dilation
(since @Y )(z) is Z-lossless). The point to stress here is that, for
sufficiently large m, the Schur matrix function N(z) determined
by the first Schur coefficients {0, v1,"**,¥m-1, 0, 0, 0,---}, is a
good norm approximation of NV (z), uniformly on the compact subsets
of the unit disc. Moreover, Rx(z) is equally well approximated in
norm by Ry (z) (see [32, pp. 79-83] and [33] for more details).
More precisely, N(z) = —6\5°6,4")(2), Rgy(z) = 6V (2)
and 2" Lg(z) = 8 — 6576, 0{N) (2). That is, the entries
of Z™)(z) are good norm approximations of the spectral factors
of N(z) for sufficiently large m. The computational complexity
of the above procedure is O(m?) operations (multiplications and
additions). In case an underlying n-dimensional state-space model is
assumed for NV (z), then the Schur algorithm (A.2) reduces to the so-
called Chandrasekhar recursions [14], [29], which requires O(mn?)
operations. This represents great savings in computation since n < m
usually.
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