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we obtain

B2 =
0

1
C3 = [3 1] A3 = [1 4]:

A2 results from

1 4

3 1
A2 =

1

3

as

A2 =
1

0
:

The resulting periodic realization has state dimensions n1 = 1,
n2 = 1 and n3 = 2 and is minimal. In contrast, the realization ob-
tained in [7] has constant order n = 2 and is not minimal.

V. CONCLUSION

We proposed a numerically sound and computationally efficient ap-
proach to compute minimal periodic realizations of transfer-funtion
matrices. The resulting periodic representations have in general time-
varying dimensions. The proposed approach relies exclusively on nu-
merically stable algorithms, the key computations beingN�1 rank re-
vealing orthogonal decompositions. The proposed approach is straight-
forward to implement as robust numerical software. Numerical exam-
ples computed with a MATLAB-based implementation show the appli-
cability of this method to high order periodic systems.
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Multiobjective Filter Design for Uncertain Stochastic
Time-Delay Systems

Ananth Subramanian and Ali H. Sayed

Abstract—This note addresses the problem of robust mutliobjective fil-
tering for discrete time-delay systems with mixed stochastic and determin-
istic uncertainties, in addition to unmodeled nonlinearities. A procedure
is developed for the design of linear and exponentially stable filters with a
bounded error variance, exponential rate of decay, and robust performance
for the error system.

Index Terms—Exponential stability, Kalman filter, linear matrix
inequality, robust filter, stochastic uncertainties, time-delay systems.

I. INTRODUCTION

The Kalman filter is the optimal linear least-mean-squares-estimator
for systems that are described by linear state–space Markov models
(see, e.g., [1]). However, when the model is not accurately known, the
performance of the filter can deteriorate appreciably. This filter sensi-
tivity to modeling errors has led to several works in the literature on
the development of robust state–space filters; robust in the sense that
they attempt to limit, in certain ways, the effect of model uncertainties
on the overall filter performance. Some known approaches to robust
state–space estimation areH1 filtering, set-valued estimation, guaran-
teed-cost designs, minimum variance filtering and regularization-based
methods (see, e.g., [2]–[15]). In this note, we show how to design ro-
bust filters that ensure a minimum bounded error variance for models
with mixed stochastic and deterministic uncertainties, as well as with
time delays and nonlinearities. We also show how to design filters that
simultaneously guarantee an exponential rate of decay and meet a ro-
bust performance level. Thus, consider the following n-dimensional
state–space model:

xk+1 =(A+�Ak)xk + Adxk�� +Buk +Df(xk) (1)

yk =Cxk + vk

zk =Lxk; k � 0 (2)

where fuk; vkg are uncorrelated zero-mean random variables with
unknown but bounded covariance matrices, say EukuTk < �uI and
Evkv

T
k < �vI . The initial state x0 is also a zero-mean random

variable that is uncorrelated with fuk; vkg for all k. The state matrices
fA;Adg, and the output matrixC , are unknown but lie inside a convex
polytopic set. That is (A;Ad; C) 2 K,where K is a convex bounded
polyhedral domain described by p vertices as follows:

K= (A;Ad; C)=

i=p

i=1

�i(Ai; Adi; Ci); �i � 0;

i=p

i=1

�i=1 :

(3)
Note that although the matrices fA;Aig are constant, the coefficient

matrix in (1) is time variant due to the presence of the uncertainties
�Ak . These uncertainties are assumed to be random in nature and are
modeled as �Ak = E�kG, where E and G are known matrices,
while �k is a random matrix whose entries have zero mean and are
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uncorrelated with each other. The variances of the entries of �k are
assumed unknown but bounded by ��,E�k�

T
k � ��I . The function

f(�) in (1) accounts for unmodeled nonlinearities and it is assumed to
satisfy kf(xk)k � kUxkk, for some matrixU . Observe that model (1)
and (2) incorporates both stochastic uncertainties (due to the presence
of�Ak) and deterministic uncertainties (represented by the polyhedral
domain K). In this note, we investigate the design of a linear estimator
for fxk; zkg of the form

x̂k+1 = Af x̂k +Bfyk ẑk = Lf x̂k; k � 0 (4)

where the constant matrices fAf ; Bf ; Lfg are filter parameters to be
determined in order to meet certain performance criteria, including ro-
bustness, exponential stability, and bounded state error variance. In (4),
the notation x̂k and ẑk denote the estimates of xk and zk , respectively,
that are based on fy0; y1; . . . yk�1g. Let ~xk = xk � x̂k , denote the
state error vector. It follows from (1) and (4) that the extended state
vector �k = colfxk; ~xkg satisfies

�k+1 = ( �A+� �Ak)�k + �Bwk + �Ad�k�� + �Df(M�k) (5)

while the output error is given by ~zk = zk� ẑk = [L�Lf Lf ]�k and
where we are defining the extended quantities

�k =
xk

~xk

wk =
wk

vk

� �Ak = �E4k
�G

�E =
E

E

�G =(G 0)

M =(I 0)

�D =
D

D

�Ad =
Ad 0

Ad 0

�A =
A 0

A� Af �BfC Af

�B =
B 0

B �Bf
:

Definition 1 [Stability With Probability 1]: The stochastic process
�k of (5) will be said to be stable with probability 1 if and only if,
for any � > 0 and " > 0, there exists a �(�; ") > 0 such that if
k�0k � �(�; "), then P [sup k�kk � "] � �. If P [sup k�kk � "] � �

holds for all �0, then we say that the system is stable at large. }
Definition 2 [Asymptotic Stability]: The stochastic process �k of (5)

will be said to be asymptotically stable with probability 1 if and only if
it is stable at large and k�(k)k ! 0 with probability 1 as k ! 1 for
any �0. }

Definition 3 [Exponential Stability]: The stochastic process �k of
(5) will be said to be exponentially stable with level 0 < & < 1, if there
are real numbers � > 0, and � > 0 such thatEk�kk2 � �k�0k

2&k+�
for any �0. }

Our objective is to determine filter parameters fAf ; Bf ; Lfg in (4)
such that for all admissible uncertainties in the model (1), (2), the aug-
mented system (5) is asymptotically stable in the absence of noises
and, when noises are present, the state estimation error ~xk is exponen-
tially stable, independent of the unknown time-delay � . We shall also
minimize a bound onEk~xkk2 and simultaneously ensure a robust per-
formance level as will be explained in the sequel. We address first the
requirement of asymptotic stability.

II. ASYMPTOTIC STABILITY

Assume that the noise wk is absent from (5) so that

�k+1 = ( �A+� �Ak)�k + �Ad�k�� + �Df(M�k); k � 0: (6)

Introduce the vector �k = [�Tk ; �
T
k�1; . . . ; �

T
k�r]

T . We shall seek a
Lyapunov Krasovskii functional V (:) of the form V (�k) = �Tk P�k +

i=k�1

i=k�r
�Ti R�i for some positive-definite matrices P and R to be

chosen. Assume, for the moment, that the triplet (A, Ad, C) in (1) and
(2) is fixed, i.e, ignore the polytopic set (3).

Theorem 1 (Asymptotic Stability): Given scalars �1 > 0, �2 > 0,
and 0 < � < 1, if there exist matrices fAf ; Bf ; P > 0; R > 0g, and
a scalar � > 0, such that

�I �AT

�A I
> 0 (7)

and

W
�
=

H � �ATP �Ad

� �AT
d P �A R� ���12 I � �AT

d P �Ad

> �I (8)

where

H = P �R� �� �GT �ET
P �E �G� �AT

P �A � �max( �D
T
P �D) �UT �U

����11 I � (�1 + �2)�max( �D
T
P
2 �D) �UT �U

and �U = UM , then the process f�kg of (5), with fixed (A, Ad, C),
will be asymptotically stable in the absence of noise for this choice of
fAf ; Bfg.

Proof: Note that

E [V (�k+1)j�k; �k�1; . . .�0]� V (�k)

� �
T
k
�AP �A�k � �

T
k P�k

+ ���
T
k
�GT �ET

P �E �G�k + �
T
k
�AT
P �Ad�k��

+ �
T
k��

�AT
d P �A�k + �

T
k
�AT
P �Df(M�k)

+ f
T (M�k) �D

T
P �A�k + f

T (M�k) �D
T
P �Df(M�k)

+ �
T
k��

�AT
d P �Ad�k�� + �

T
k��

�AT
d P �Df(M�k)

+ f
T (M�k) �D

T
P �Ad�k�� + �

T
k R�k � �

T
k��R�k�� : (9)

Now, it is a well-known result [17] that for any real matrices
fX;Y; Jg with JJT � �I , it holds for any scalar " > 0 that
XJY + Y TJTXT � "�1�XXT + "Y TY . From (7), we have
�AT �A < �I . Choosing J = �AT , we can write

�
T
k
�AT
P �Df(M�k) + f

T (M�k) �D
T
P �A�k

� ��
�1
1 �

T
k �k + �1�max( �D

T
P
2 �D)�Tk �UT �U�k:

Similarly

�
T
k��

�AT
d P �Df(M�k) + f

T (M�k) �D
T
P �Ad�k��

� ��
�1
2 �

T
k���k�� + �2�max( �D

T
P
2 �D)�Tk �UT �U�k

for some �1, �2 > 0 and, moreover, fT (M�k) �D
TP �Df(M�k) �

�max( �D
TP �D)�Tk �UT �U�k . Then, we have

E [V (�k+1)j�k; �k�1; . . .�0]� V (�k)

� � �
T
k �

T
k�� W �

T
k �

T
k��

T

: (10)

From (8), we get

E [V (�k+1)j�k; �k�1; . . . ; �0]� V (�k) � ��k�kk
2
< 0

which implies that the process f�kg, and consequently f�kg, is asymp-
totically stable [16]. �
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Now, assume that we restrict our choice of P to block diagonal posi-
tive-definite matrices, and partition fP;Rg in conformity with �k , and
define Q1 and Q2, respectively, as

P =
P1 0

0 P2
R=

R1 R3

RT
3 R2

Q1=A
T
f P2; Q2=B

T
f P2:

We can then see that the requirement (8) is satisfied if

R1 R3

RT
3 R2

> 0

�1I DTP1 DTP2
P1D P1 0

P2D 0 P2

> 0 (11)

�2I DTP1 DTP2
P1D I 0

P2D 0 I

> 0 (12)

and (13)–(15), as shown at the bottom of the page, hold.
The second inequality in (11) guarantees �max( �DTP �D) < �1,

while (12) guarantees �max( �DTP 2 �D) < �2. These inequalities do
not require the �max(:) operations forH and S and, therefore, they are
linear inequalities in the unknowns.

III. EXPONENTIAL PERFORMANCE

We now show that the process �k is also exponentially mean
square-stable, as well as almost surely stable in norm. To begin
with, in the presence of measurement and process noises, and with
fAf ; Bfg chosen from the feasible solution of (7) and (11)–(13),
we obtain the following inequality by repeating the argument of
Theorem 1:

E [V (�k+1)j�k; �k�1; . . .�0]� V (�k) < ��k�kk
2

+�uTr BT (P1 + P2)B + �vTr BT
f P2Bf :

Now, note that V (�k) = �Tk ��k , where �
�
= diagfP;R; . . .Rg It

follows that

E [V (�k+1)j�k; �k�1; . . .�0]� V (�k) < � kV (�k)

+�uT r BT (P1 + P2)B + �vT r BT
f P2Bf (16)

where  k
�
= (�k�kk

2=�max(�)k�kk
2). If fP;Rg are further chosen

such that � > I , then 0 <  k < 1� �, for some � > 0.
Consequently

E [V (�k+1j�k; �k�1; . . . ; �0)]�
V (�k)

�

< �uT r BT (P1 + P2)B + �vT r BT
f P2Bf (17)

where � = infk(1=1�  k). Let  = supk  k . Then, 0 <  < 1 and

E [V (�k+1j�k; �k�1; . . . ; �0)]�V (�k)

� �uT r BT (P1 + P2)B + �vTr BT
f P2Bf � V (�k) : (18)

Inequality (18) allows us to establish that the process f�kg is expo-
nentially mean-square stable. In order to arrive at this conclusion, we
call upon the following auxiliary results.

Lemma 1: If there exist positive real numbers �, �, �, and 0 <  <
1 such that

�k�kk
2 � V (�k) � �k�kk

2 (19)

and

E [V (�k+1)j�k; �k�1; . . . ; �0]� V (�k) � ��  V (�k) (20)

then the process �k is exponentially stable. Moreover, it holds that

Ek�kk
2 �

�

�
Ek�0k

2(1�  )k +
�

� 
: (21)

Proof: This result is a combination of Lemma 3 and [19, Th. 2].�
Lemma 2: If V (�k) satisfies

E [V (�k+1)j�k; �k�1; . . . ; �0]�
V (�k)

�
� L < 0 a.s. (22)

for some � > 1,L > 0, then V (�k) is bounded with probability 1 and,
moreover, EV (�k) remains bounded for all k with

E [V (�k)] <
V (�0)

�k
+ L

�

� � 1
1�

1

�k+1
: (23)

Proof: See [20] �
Theorem 2 (Exponential Stability): Given scalars �1 > 0, �2 >

0, and 0 < � < 1, let fAf ; Bf ; P1; P2; R1; R2; R3; �1; �2g be a
solution to (7) and (11)–(13) with � > I . Then the resulting processes
f�k; �kg are exponentially stable in the presence of measurement and
process noises and for fixed (A,Ad, andC). Moreover, the variance of
�k is bounded as follows:

Ek�kk
2 < 1

� (�)
V (� )

�
+ L �

��1
1� 1

�
(24)

where

L
�
= �uTr BT (P1 + P2)B + �vTr BT

f P2Bf : (25)

Proof: The result follows from (17), (18), and Lemmas 1 and 2.�

S0 � �I �R3
~J 0 ATP1 Ĵ 0 0

�RT
3 P2 �R2 � ���11 I � �I �Q1Ad 0 0 Q1 0 0

~JT �AT
dQ

T
1 R1 � �I � ���12 I R3 0 0 AT

d P1 AT
d P2

0 0 RT
3 R2 � �I � ���12 I 0 0 0 0

P1A 0 0 0 P1 0 0 0

ĴT QT
1 0 0 0 P2 0 0

0 0 P1Ad 0 0 0 P1 0

0 0 P2Ad 0 0 0 0 P2

> 0 (13)

where

S0 =P1 � ��G
TET (P1 + P2)EG�R1

� (�1 + (�1 + �2)�2)U
TU � ���11 I

Ĵ
�
= � CTQ2 �Q1 + ATP2 (14)

~J
�
= � AT (P1 + P2)Ad + CTQ2Ad +Q1Ad: (15)
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Remark: Apart from the above result, we can also show almost sure
exponential stability of (5) in norm in the absence of noises. Using
Chebychev’s inequality [21], in the absence of noises, we have

P k�kk >
1

�min(�)�
� �min(�)�

2

E k�kk
2 : (26)

Summing over k, we get
1

k=0

P k�kk>
1

�min(�)�
� (�min(�))

2

1

k=0

� E k�kk
2

� (�min(�))
2

1

k=0

V (�0)

�

=
(�min(�))

2 V (�0)

1� 1

�

<1: (27)

Now, from the Borel Cantelli Lemma [21], we conclude that the
event k�kk � (1=�min(�)�

k=4) cannot occur infinitely often, i.e,

P

1

n=1

1

k=n

k�kk >
1

�min(�)�
= 0: (28)

Then, it holds that k�kk � (1=�min(�)�
k=4) as desired.

IV. POLYTOPIC UNCERTAINTIES

We can now incorporate the fact that the matrices fA;Ad; Cg are
not fixed but lie within the polytopic set K defined by (3).

Theorem 3 (Exponentially-Stable Filter): Given scalars �1 > 0,
�2 > 0, �3 > 0 and 0 < � < 1, any filter defined by the matrices

Af = Q1P
�1
2

T
Bf = Q2P

�1
2

T
(29)

where Q1, Q2, P2, and Lf are obtained from a feasible solution of
the matrix inequalities (7) and (11)–(13) for all A taking values in
[A1; . . . ; Ap],Ad taking values in [Ad1; . . . ; Adp], andC taking values
in [C1; . . . ; Cp], ensures the following:

i) Ek�kk2 is bounded as stated in Theorem 2;
ii) exponential and asymptotic stability of (5) for all admissible pa-

rameters A, Ad, and C .
Proof: These properties follow from the definition ofQ1 andQ2,

and from the fact that the inequalities (7), (11), and (12) are linear in
A, Ad, and C . �

The result (24) in Thm. 2 further suggests that we can minimize an
upper bound on the error variance, Ek~xkk2, by seeking filter coeffi-
cients fAf ; Bfg that minimize the following function over the vari-
ables fAf ; Bf ; P1; P2; R; �1; �2; �g:

�uTr BT (P1 + P2)B + �vTr BT
f P2Bf

subject to conditions (7) and (11)–(13) and I < �. The last term in
the previous cost function is nonlinear in (Bf , P2). We can instead

solve the following convex optimization problem over the variables
fAf ; Bf ; P1; P2; R;�; �1; �2; �g:

min Tr �uB
T (P1 + P2)B + �v� (30)

subject to conditions (7) and (11)–(13) and
� Q2

QT
2 P2

> 0, with

� > I . This last condition enforces a bound BT
f P2Bf < �. Note that

since P > I , (7) can be enforced by the inequality

�I 0 ATP1 Ĵ

0 �I 0 Q1

P1A 0 P1 0

ĴT QT
1 0 P2

> 0: (31)

V. ROBUST PERFORMANCE

In this section, we shall further assume that

E

1

k=0

uTk uk <1 E

1

k=0

vTk vk <1: (32)

We shall also rely on the following definition.
Definition 4 [Robust Performance]: The error system (5) will be

said to have a robust performance of level  > 0 if for all nonzero uk ,
vk as in (32), it holds for some � > 0 that

E

1

k=0

~zTk ~zk < �k�0k
2 + 2E

1

k=0

uTk uk + vTk vk :

}
Observe that contrary to a standardH1 formulation, we use the ex-

pectation operator on both sides of the above inequality in order to ac-
count for the presence of stochastic uncertainties. In addition to asymp-
totic and exponential stabilities, we can enforce a robust performance
level by requiring (P , R) to satisfy, along with the feasibility condi-
tions (7) and (11)–(13) with � > I , the following requirement:

EV (�k+1)�EV (�k)�2E uTk uk + vTk vk +E~zTk ~zk < 0 (33)

for some given  > 0. Indeed, if we sum (33) over k, and noting that
the error system is exponentially mean-square stable, we get

E

1

k=0

~zTk ~zk < EV (�0) + 2E

1

k=0

uTk uk + vTk vk (34)

which is consistent with criterion (33). Now, if � also satisfies

�I �BT

�B I
> 0 (35)

or, in other words, if �BT �B < �I , then using the same methodology as
in Section II, we can verify that (33) is satisfied if (36), as shown at the
bottom of page, holds true for any given �3 > 0, where

Ŝ
�
= P1 � ��G

TET (P1 + P2)EG�R1

����11 I � (�1 + (�1 + �2 + �3)�2)U
TU:

Ŝ �R3 0 0 0 0 ATP1 Ĵ LT�LT
f

�RT
3 P2�R2���

�1
1 I 0 0 0 0 0 Q1 LT

f

0 0 R1���
�1
2 I R3 0 0 AT

d P1 AT
d P2 0

0 0 RT
3 R2���

�1
2 I 0 0 0 0 0

0 0 0 0 2I����13 I 0 BTP1 BTP2 0

0 0 0 0 0 2I����13 I 0 �Q2 0

P1A 0 P1Ad 0 P1B 0 P1 0 0

ĴT QT
1 P2Ad 0 P2B �QT

2 0 P2 0

L�Lf Lf 0 0 0 0 0 0 I

>0 (36)
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Theorem 4 (Robust Performance): Given scalars �1 > 0, �2 > 0,
�3 > 0, and 0 < � < 1, let fAf ; Bf ; P1; P2; R1; R2; R3g be a
solution to the linear matrix inequalities (7), (11)–(13), (35), and (36),
with � > I . Then the error system in (5) is exponentially stable and
has a robust performance level of  for fixed (A, Ad, and C).

VI. DELAYLESS SYSTEMS

If we assume a delayless system, i.e., if we set Ad = 0 in (1), and
if we drop the robustness requirement of Section V, we can enforce a
tighter upper bound on the variance of the error, Ek~xkk2. Thus, con-
sider the system

xk+1 =(A+�Ak)xk +Buk +Df(xk) (37)

yk =Cxk + vk; k � 0: (38)

Then, we have the following result (see also [22]).
Theorem 5 (Exponential Stability): Given scalars �1 > 0, �2 > 0,

and 0 < � < 1, let fAf ; Bf ; P1; P2; �1; �2g be a solution to the
following inequalities:

�I �AT

�A I
> 0;

�1I DTP1 DTP2
P1D P1 0

P2D 0 P2

> 0 (39)

�2I DTP1 DTP2
P1D I 0

P2D 0 I

> 0 (40)

S0 0 ATP1 Ĵ

0 P2 � ��1�I � �I 0 Q1

P1A 0 P1 0

ĴT QT
1 0 P2

> 0 (41)

with P > I , where

S0
�
= P1 � �I � ��G

TET (P1 + P2)EG

�(�1 + ��2)U
TU � ��1�I:

Then, the resulting process f�kg is exponentially stable in the pres-
ence of measurement and process noises. Moreover, its variance is
bounded as follows:

Ek�kk
2 < 1

� (P )
V (� )

�
+ L �

��1
1� 1

�
(42)

where

L = �uTr BT (P1 + P2)B + �vTr BT
f P2Bf (43)

and � = (1)=(1�  ) with  = (�)=(�max(P )).

VII. SIMULATIONS

To illustrate the mutliobjective filter developed for state-delayed sys-
tems, we choose an implementation of order 2 for a nonlinear uncertain
stochastic system (1) as follows:

A1 =
0:62 0

0 0:61

A2 =
0:5 �1

0:2 0:5

A3 =
0:54 1

0 0:56

C1 =
1 0

0 1

C2 =
0:2 0

0 0

B =
0:2

0:2

D =
0:1 0

0 0:1

Ad =
0:1 21

0:31 0:1

G =
0:1 0:1

0:1 0:1

E =
0:01 0:02

0:01 0:02

x1;k+1
x2;k+1

=(A+�Ak)
x1;k
x2;k

+ Ad

x1;k��
x2;k��

+Bwk +D
0:1 sin(x1;k)

0:1 sin(x1;k)

yk =C
x1;k
x2;k

+ vk:

The delay � in the example is chosen as 4. The values of �1 and �2
are chosen as 1.1. The value of � is 1. The robustness level is  = 8.
The performance of the filter is illustrated in Fig. 1(a), which shows
its tracking capability. To illustrate the robust minimum variance filter
developed in Section VI for delayless systems, we choose the following
model:

A1 =
0:62 0

0 0:61

A2 =
0:5 �1

0:2 0:5

A3 =
0:54 1

0 0:56

E =
0:1 0:1

0:1 0:1

G =
0:1 0:1

0:1 0:1

C1 =
100 0

50 10

C2 =
90 0

50 10

D =
0:1 0

0 0:1

B =
�6

1

x1;k+1
x2;k+1

=(A+�Ak)
x1;k
x2;k

+Bwk

+D
0:1 sin(x1;k)

0:1 sin(x1;k)

yk =C
x1;k
x2;k

+ vk:

Fig. 1(b) compares the mean-square-error Ek~xkk2 in dB when the
actual state matrix is A3, for both the Kalman filter operating at the
centroid of the polytopic region and the robust filter. The noise vari-
ances are equal to 1.
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(a)

(b)

Fig. 1. Performance of the robust filters. (a) Tracking performance of the
mutliobjective robust filter of Theorem 3. (b) Mean square error behavior of
the Kalman filter and the robust filter for delayless systems of Theorem 5.

VIII. CONCLUSION

In this note, we developed a mutliobjective robust state estimator
for uncertain discrete time state-delay systems with mixed determin-
istic and stochastic uncertainties. The design guarantees almost-sure
bounded error variance with exponential stability and robust perfor-
mance.

REFERENCES

[1] T. Kailath, A.-H. Sayed, and B. Hassibi, Linear Estimation. Upper
Saddle River, NJ: Prentice-Hall, 2000.

[2] I. R. Petersen and A. V. Savkin, Robust Kalman Filtering for Signals and
Systems With Large Uncertainties. Boston, MA: Birkhaüser, 1999.

[3] L. Xie, Y. C. Soh, and C. E. de Souza, “Robust Kalman filtering for
uncertain discrete-time systems,” IEEE Trans. Automat. Contr., vol. 39,
pp. 1310–1314, June 1994.

[4] P. Bolzern, P. Colaneri, and G. De Nicolao, “Optimal design of robust
predictors for linear discrete-time systems,” Syst. Control Lett., vol. 26,
pp. 25–31, 1995.

[5] W. M. Haddad and D. S. Bernstein, “The optimal projection equations
for reduced-order, discrete-time state estimation for linear systems with
multiplicative white noise,” Syst. Control Lett., vol. 8, pp. 381–388,
1987.

[6] L. Xie, C. E. de Souza, and M. Fu, “H estimation for discrete-time
linear uncertain systems,” Int. J. Robust Nonlinear Control, vol. 1, pp.
111–123, 1991.

[7] D. P. Bertsekas and I. B. Rhodes, “Recursive state estimation for a set-
membership description of uncertainty,” IEEE Trans. Automat. Contr.,
vol. AC-16, pp. 117–128, Apr. 1971.

[8] A. Garulli, A. Vicino, and G. Zappa, “Conditional central algorithms
for worst case set-membership identification and filtering,” IEEE Trans.
Automat. Contr., vol. 45, pp. 14–23, Jan. 2000.

[9] F. Yang, Z. Wang, and Y. S. Hung, “Robust Kalman filtering for discrete
time-varying uncertain systems with multiplicative noises,” IEEE Trans.
Automat. Contr., vol. 47, pp. 179–183, July 2002.

[10] F. Wang and V. Balakrishnan, “Robust Kalman filtering for linear time
varying systems with stochastic parametric uncertainties,” IEEE Trans.
Signal Processing, vol. 50, pp. 803–813, Apr. 2002.

[11] J. C. Geromel, “Optimal linear filtering under parameter uncertainty,”
IEEE Trans. Signal Processing, vol. 47, pp. 168–175, Jan. 1999.

[12] U. Shaked and E. de Souza, “Robust minimum variance filtering,” IEEE
Trans. Signal Processing, vol. 43, pp. 2474–2483, Nov. 1995.

[13] A. H. Sayed, “A framework for state space estimation with uncertain
models,” IEEE Trans. Automat. Contr., vol. 46, pp. 998–1013, July 2001.

[14] C. T. Leondes and J. O. earson, “A minimax filter for systems with large
parametric uncertainties,” IEEE Trans. Automat. Contr., vol. AC-17, pp.
266–268, Apr. 1972.

[15] P. P. Khargonekar and K.M. Nagpal, “Filtering and smoothing in anH
setting,” IEEE Trans. Automat. Contr., vol. 36, pp. 151–166, Feb. 1991.

[16] H. Kushner, Stochastic Stability and Control. New York: Academic,
1967.

[17] P. P. Khargonekar, I. R. Petersen, and K. Zhou, “Robust stabilization of
uncertain linear systems: quadratic stability and H control theory,”
IEEE Trans. Automat. Contr., vol. 35, pp. 356–361, Mar. 1990.

[18] E. K. Boukas and Z. K. Liu, “RobustH control of discrete time Mar-
kovian jump linear systems with mode-dependent delays,” IEEE Trans.
Automat. Contr., vol. 46, pp. 1918–1924, Dec. 2001.

[19] T. J. Tarn and Y. Rasis, “Observers for nonlinear stochastic systems,”
IEEE Tran. Automat. Contr., vol. AC-21, pp. 441–447, June 1976.

[20] R. G. Agniel and E. I. Jury, “Almost sure boundedness of randomly
sampled systems,” SIAM J. Control, vol. 9, pp. 372–383, 1971.

[21] M. Loeve, Probability Theory. New York: Springer-Verlag, 1977, vol.
1.

[22] A. Subramanian and A. H. Sayed, “Robust exponential filtering for dis-
crete-time uncertain systems,” in Proc. Conf. Decision Control, vol. 1,
Las Vegas, NV, 2002, pp. 1023–1027.

[23] , “A robust power control algorithm for state-delayed wireless net-
works,” , 2004, submitted for publication.

[24] , “A minimum variance power update algorithm for wireless net-
works,” presented at the Proc. Vehicular Technology Conference, Or-
lando, FL, Oct. 2003.

[25] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory, ser. SIAMStudies in Applied
Mathematics. Philadelphia, PA: SIAM, 1994.


