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Linear Estimation in Krein Spaces—
Part 1I: Applications

Babak Hassibi, Ali H. Sayed, Member, IEEE, and Thomas Kailath, Fellow, IEEE

Abstract—We show that several interesting problems in H°-
filtering, quadratic game theory, and risk sensitive control and
estimation follow as special cases of the Krein-space linear esti-
mation theory developed in [1]. We show that all these problems
can be cast into the problem of calculating the stationary point
of certain second-order forms, and that by considering the ap-
propriate state space models and error Gramians, we can use the
Krein-space estimation theory to calculate the stationary points
and study their properties. The approach discussed here allows
for interesting generalizations, such as finite memory adaptive
filtering with varying sliding patterns.

1. INTRODUCTION

LASSICAL results in linear least-squares estimation and

Kalman filtering are based on an Ls or Hs criterion
and require a priori knowledge of the statistical properties
of the noise signals. In some applications, however, one
is faced with model uncertainties and a lack of statistical
information on the exogenous signals which has led to an
increasing interest in minimax estimation (see, e.g., [2]-[9]
and the references therein) with the belief that the resulting so-
called H* algorithms will be more robust and less sensitive
to parameter variations.

Furthermore, while the statistical Kalman-filtering algorithm
can be viewed as a recursive procedure that minimizes a
certain quadratic cost function, there has also been increasing
interest in an alternative so-called exponential (LEQG) cost
function [13]-[16] which is risk-sensitive in the sense that it
depends on a real parameter that determines whether more
or less weight should be given to higher or smaller errors.
The corresponding filters have been termed risk-sensitive and
include the Kalman filter as a special case. We show in
this paper that the H°° and risk-sensitive filters can both
be obtained by using appropriate Krein space—Kalman filters,
based on the theory developed in Part I [1].

H*® and risk-sensitive estimation and control problems,
quadratic games, and finite memory adaptive filtering prob-
lems lead almost by inspection to indefinite deterministic
quadratic forms. Following [1], we solve these problems
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by constructing the corresponding Krein-space “stochastic”
problems for which the Kalman-filter solutions can be written
down immediately; moreover, the conditions for a minimum
can also be expressed in terms of quantities easily related to the
basic Riccati equations of the Kalman filter. This approach also
explains the many similarities between, say, the H° solutions
and the classical LQ solutions and in addition marks out their
key differences.

The paper is organized as follows. In Section II we introduce
the H® estimation problem, staté the conventional solution,
and discuss its similarities with and differences from the
conventional Kalman filter. In Section III we reduce the H™
estimation problem to guaranteeing the positivity of a certain
indefinite quadratic form. We then relate this quadratic: form
to a certain Krein state-space model which:allows us to'use
the results of the companion paper [1] to derive conditions for
its positivity and to show that projection in the Krein space
allows us to solve the H° estimation problem. In this context
we derive the H™ a posteriori, a priori, and smoothing filters,
and show that H estimation is essentially Kalman filtering
in Krein space; we also obtain a natural parameterization of
all H* estimators. One advantage of our approach is that
it suggests how well-known conventional : Kalman-filtering
algorithms, such as square root arrays and Chandrasekhar
recursions, can be extended to the H° setting.

In Section IV we describe the problem of risk-sensitive
estimation [13]-{15] and show that a risk-sensitive estima-
tor is one that computes the stationary point of a certain
second-order form, provided that this second-order form has
a minimum over a certain set of variables. By considering a
corresponding Krein state-space model, we use the results of
[1] to derive conditions for the existence of the minimum and
to show that the Krein-space projection also solves the risk-
sensitive estimation problem. We then derive risk-sensitive
a posteriori, a priori, and smoothing filters: parallel to what
was done in Section II. We also use this parallel to stress
the connection between H*° and risk-sensitive estimation that
was first discovered in [21], using different arguments. Before
concluding with Section VI, we describe the finite memory
adaptive filtering problem in Section V and use the Krein-
space approach to solve this problem and to connect it to
state-space approaches to adaptive filtering.

As was done in the companion paper [1], we shall use
bold letters for elements in a Krein space, and normal letters
for corresponding complex numbers. Also, we shall use Z to’
denote the estimate of z (according to some-criterion), and 2
to denote the Krein-space projection, thereby stressing the fact
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that they need not coincide. Many of the results discussed here
were obtained earlier by several other authors using different
methods and arguments. Our approach, we believe, provides
a powerful unification with immediate insights to various
extensions.

II. H*° ESTIMATION

Several H-filtering algorithms have been recently derived
by a variety of methods in both the continuous and discrete-
time cases (see, €.g., [2]-[9] and the references therein).

Many authors have noticed some formal similarities be-
tween the H filters and the conventional Kalman filter, how-
ever, we shall further clarify this connection by showing that
H filters are nothing more than certain Krein space—Kalman
filters. In other words, the H° filters can be viewed as
recursively performing a (Gram-Schmidt) orthogonalization
(or projection) procedure on a convenient set of observation
data that obey a state-space model whose state evolves in an
indefinite metric space. This is of significance since it yields a
geometric derivation of the H* filters, and because it unifies
H?- and H*-estimation in a simple framework. Moreover,
once this connection has been made explicit, many known
alternative and more efficient algorithms, such as square-root
arrays and Chandrasekhar equations [24], can be applied to
the H°-setting as well. Also our results deal directly with
the time-varying scenario. Finally, we note that although we
restrict ourselves here to the discrete-time case, the continuous
time analogs follow the same principles.

A. Formulation of the H*-Filtering Problem

Consider a time-variant state-space model of the form
Tiy1 = Fizi + Giui, %o 1)
y; = Hyx; + v, 1 2>0

where F; € C"*", G; € C"*™ and H; € CP*™ are known
matrices, zo, {u;}, and {v;} are unknown quantities, and y; is
the measured output. We can regard v; as a measurement noise
and u; as a process noise or driving disturbance. We make no
assumption on the nature of the disturbances (e.g., normally
distributed, uncorrelated, etc). In general, we would like to
estimate some arbitrary linear combination of the states, say

Zy = Lizi

where L; € C?%™ is given, using the observations {y;}.
Let Zy; = F¢(yo,y1,---,¥:) denote the estimate of z; given
observations {y;} from time O to, and including, time ¢, and
%Z = Fp(yo,¥1,- -, yi—1) denote the estimate of z; given
observations {y;} from time 0 to time ¢ — 1. We then have the
following two estimation errors: the filtered error

efi = Zijg — Liw; 2
and the predicted error
epyz- = Zi - Lim,-. (3)
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Transfer matrix from disturbances to filtered and predicted estimation

As depicted in Fig. 1, let T;(Fy) and T;(F,) denote
the transfer operators that map the unknown disturbances
{Ho_l/z(:co - :i:o),{u,-}j.=0,{vj}j=0} (where o denotes an
initial guess for xg, and Il is a given positive definite matrix)
to the filtered and predicted errors {e ;}:_o and {ep;}s_os
respectively. The problem is to choose the functionals Fy(-)
and F,(-) so as to respectively minimize the H°° norm of the
transfer operators T;(Fy) and T;(Fp).

Definition 1: The H*® norm of a transfer operator T is
defined as
1 Tull2

su
P o lulls

u€hg,u#0

1Tlloo =

where ||ul|2 is the Az-norm of the causal sequence {u}, ie.,
lul3 = 55 guius.

The H*° norm thus has the interpretation of being the
maximum energy gain from the input u to the output y. Our
problem may now be formally stated as follows.

Problem 1 (Optimal H> Problem): Find H*-optimal es-
timation strategies Z;j; = F s(yo,¥1,---, %) and % = F
(Y0, Y1, - -+, Yi—1) that respectively minimize ||T;(F¢)||oc and
IT3(#5)|lo and obtain the resulting

7o = inf I

= inf sup
Fi zo,ucha,vche

Ti=0 €} ¢80 ,
(o — d0)*Tlo ™" (w0 — F0) + X jmo Witk + 2 ¥} 0

@

and
2 _ . 2
’yp,o - ]}If “Tl(]:p)”oo
P
= inf sup
Fp zo,u€hy, vER2
Z;=o €p,i€p.i
(w0 ~ F0)*To ™ (w0 — o) + 5o uit; + Y=g U} 0;

(&)

where Iy is a positive definite matrix that reflects a priori

knowledge as to how close zy is to the initial guess Z.
Note that the infinum in (5) is taken over all strictly causal

estimators F,, whereas in (4) the estimators F are only causal
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since they have additional access to y;. This is relevant since
the solution to the H°° problem, as we shall see, depends on
the structure of the information available to the estimator.

The above problem formulation shows that H° optimal
estimators guarantee the smallest estimation error energy over
all possible disturbances of fixed energy. They are, therefore,
over-conservative, which results in a better robust behavior to
disturbance variation.

A closed form solution to the optimal H°° estimation
problem is available only in some special cases (see, e.g.,
[25]), and so it is common in the literature to setile for a
suboptimal solution.

Problem (Sub-Optimal H* Problem): Given scalars v; >
0 and v, > 0, find H* suboptimal estimation strategies
Zijs = Fr(yo, y1, -+, ¥:) (known as an a posteriori filter) and
% = Fp(yo,y1,- -, yi—1) (known as an a priori filter) that
respectively achieve || T3 (Ff)|loo < v and || T5i(Fp)lloo < Yp-
In other words, find strategies that respectively achieve

sup
zo,u€hy,v€ERy

E;‘=o 6;,]'6J_°,j '
(o — #0)*Ilo ™ (w0 — Fo) + 350 Wity + 2 5_g VIV

< ©)

and

sup
z0,u€h2,v€hy
Z; =0 ; jep,j
(.’L”D — Il:"o)*Ho (.270 — IL’o) + Z —a ’U,JU] + Z S UJ V5
<% O]
This clearly requires checking whether 5 > 5, and v, >
Vp,o-

Note that the solutions to Problem 1 can be obtained to
desired accuracy by iterating on the ¢ and -y, of Problem 2.
From here on we shall be only dealing with Problem 2.

Note that the problems defined above are finite-horizon
problems. So-called infinite-horizon problems can be consid-
ered if we define T(Fy) and T(F,) ds the transfer opera-
tors that map {zo — o, {1; 1520, {vj}520} to {ef,5}520 and
{ep,j} 320, respectively. Then by guaranteeing ||7;(F)]loo <
vy and |T;(Fp)|loo < 7vp for all 4, we can solve the infinite-
horizon problems ||T(Ff)llee < v and || T(Fp)llee < Yps
respectively. Direct solutions, however, are also possible.

B. Solution of the Suboptimal H®® Filtering Problem

We now present the-existing solutions (see, e.g., [4], [7])
to the suboptimal H* filtering problem and note that they
are intriguingly similar in several ways to the conventional
Kalman filter. It was this similarity in structure that led us to
extend Kalman filtering to Krein spaces (see [1]); in effect,
H< filters are just Kalman filters in Krein space.

Theorem 1 (An H™ A Posteriori Filter) [7]: For a given
v > 0, if the [F; G,] have full rank, then an estimator that
achieves ||T;(F¢)llco < v exists if, and only if

Pj‘lfH;-‘H YPLIL; >0, j=0,---,i (8

where Py = Ily and P; satisfies the Riccati recursion

Piy1 = FiBF} + GG
_1 | H; *
R P
J
with
I 0 H; L

If this is the case, then one possible level-y H filter is given
by

Zj); = Ljdy)

where Z;|; is recursively computed as

Eirain = Fidyly + Ko g1 (W1 — Hiva Fid5)5)
£_qy—1 = initial guess 11
and
K1 = P (T4 Hywa Py Hi )77 (12)

Theorem 2 (An H® A Priori Filter) [7]: For a given v >
0, if the [F; G;] have full rank, then an estimator that
achieves ||T3(Fp)lleo < 7y exists if, and only if

=Pl =PI >0, j=0,-00  (13)
where P; is the same as in Theorem 1. If this is the case, then
one possible level-y H filter is given by

% = L;i; (14)
Tip1 = Fydy + Ko j(y; — Hydy)
2o = initial guess ' (15)
where |
Koj = FyPiHY (I + Hy Py H;) ™ (16)
Comparisons with the Kalman Filter: The? Kalman-filter

algorithm for estimating the states in (1), assuming that the
{u;} and {v;} are uncorrelated unit variance white noise
processes, is

&j1 = Fyij + Fy P HI (I + Hy PHT) ™ (y; — Hjdy)
Tip1j1 = Fydj); + P B (I + Hyga P Hip )™
X (Ys+1 = Hjradj11)
where
Pjy1 = FyP,F} + GG

— F;Pi(I+ HJPjH;)*lij;, Py=Tl. (17

As several authors have noted, the H soiutions are very
similar to the conventional Kalman filter. The major differ-
ences are the following:

* The structure of the H™ estimators depends via the
Riccati recursion (9), on the linear combination of the
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states that we intend to estimate (i.e., the L;). This is
as opposed to the Kalman filter where the estimate of
any linear combination of the state is given by that linear
combination of the state estimate. Intuitively, this means
that the H® filters are specifically tuned toward the linear
combination L;z;.

* We have additional conditions, (8) or (13), that must be
satisfied for the filter to exist; in the Kalman filter problem
the L; would not appear, and the P; would be positive
definite so that (8) and (13) would be immediate.

¢ We have indefinite (covariance) matrices, e.g.,
I 5, | versus just I in the Kalman filter.
o —v°I

¢ As v — oo, the Riccati recursion (9) reduces to the
Kalman filter recursion (17). (This suggests that the H*°

" norm of the conventional Kalman filter may be quite
large, and that it may have poor robustness properties.
Note also that condition (13) is more stringent than
condition (8), indicating that the existence of an a priori
filter of level v implies the existence of an a posteriori
filter of level ~, but not necessarily vice versa.)

Despite these differences, we shall show by applying the
results of the companion paper [1] that the filters of Theorems
1 and 2 can in fact be obtained as certain Kalman filters, not
in an H? (Hilbert) space, but in a certain indefinite vector
space called a Krein space. The indefinite covariances and the
appearance of L; in the Riccati equation will be explained
easily in this framework. The additional condition (8) will be
seen to arise from the fact that in Krein space, unlike as in the
usual Hilbert space context, quadratic forms need not always
have minima or maxima unless certain additional conditions
are met. Moreover, our approach will provide a simpler and
more general alternative to the tests (8) and (13).

III. DERIVATION OF THE H°° FILTERS

As shown in the companion paper [1], the first step is to
associate an indefinite quadratic form with each of the (level )
a posteriori and a priori filtering problems. This will lead us to
construct an appropriate (so-called partially equivalent) Krein
space state-space model, the Kalman filter which will allow us
to compute the stationary points for the H°° quadratic forms;
conditions that these are actually minima will be deduced from
the general results of Part I and shown to be just (8) and (13).
Simpler equivalent conditions will also be noted.

Therefore we begin by examining the structure of the H*®
problem in more detail. The goal will be to relate the problem
to an indefinite quadratic form. We shall first consider the a
posteriori filtering problem.

A: The Suboptimal H™ Problem and Quadratic Forms

Referring to Problem 2, we first note that ||T;(F)|lco < 7Vss
implies that for all nonzero {xo, {u;}:_o, {v;}i=0}

im0 Zils — Lizj)?

(0 — #0)*TI5 ™ (wo — F0)+ 3= lus 2+ 250 195 —
< ’Y?’.

Hjz;|?
(18)
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Moreover, (18) implies that for all £ < 4, we must have
E ooy
Yi—0Zi1; — Liws)?
(w0 — &0)*TI5 (o — &)+ g [ |2+ 5o |y — Hiw[?
<. (19)

We remark that if the {y;}%_, are all zero, then it is easy to
see that the {Z;);} must all be zero as well. Therefore we need
only consider the case where {y]} ._o 1s @ nonzero sequence.
We shall then prove the following result relating the condition
I Ti(Ff)llo < 75 to the positivity of a certain indefinite
quadratic form. From now on, without loss of generality, we
assume £¢ = 0; a nonzero %o = 0 will only change the initial
condition of the filter.

Lemma 1 (Indefinite Quadratic Form): Given a  scalar
v¢ > 0, then ||T;(Fy)l|co < 7y if, and only if, there exists
Zeik = Fr(yo, -+, yx) (for all 0 < k < 4) such that for all
complex vectors zo, for all causal sequences {u]} o> and
for all nonzero causal sequences {y;}%_,, the scalar quadratic
form
) Uks Y0, 5 Yk)

k
= xanall‘o + Z u;fuj
§=0

J5 k20, uo, - - -

k N
+ 3 (y; — Hjzy)* (y; — Hjs;)
=0
k
52 (Fi — Liws) (%515 — Lixs)
i=0

(20)

satisfies

7uk7y07'”7yk) >0
forall 0<k<:.

Js k(@o, uo, -+ -
@D

Proof: Assume there exists a solution Zy,, (for all k<1
that achieves ||T;(Ff)llcc < ~vf. Then if we multiply both
sides of (19) by the positive denominator on the left-hand side
(LHS), we obtain (21).

Conversely, if there exists a solution Zg; (for all k<19
that achieves (21), we can divide both sides of (21) by the
positive quantity

zoly x0+Zu u]+Z

to obtain (19), and thereby ||T;(Ff)|lco < V5. O

Remark: Lemma 1 is a straightforward restatement of (19)
which is required of all suboptimal H a posteriori filters with
level 4. The statement of Lemma 2 given below, however,
is a key result, since it shows how-to check the conditions of
Lemma 1 by computing the stationary point of the indefinite
quadratic form Jy (o, uo, - -, Uk, Yo, - -, Yk) and checking
its condition for a minimum. This is in the spirit of the
approach taken in [1].

Note that since the Z) are functions of the {y;}5_,,
Jtk(zo, 0y, Uk, Yo, +,Yk) is really a function of

— H;z;)"(y; — Hjz;)
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only {zo,%o, ", Uk, Y0, "+, Yk} Moreover, since the
{y;} are fixed observations, the only free variables
in  Jgp(®o,uo, -, Uk, Yo, +,Yk) are the disturbances
{zo,up, -, ur}. We then have the following result.

Lemma 2 (Positivity Condition): The scalar  quadratic
forms J¢ (@0, uo, ", Uk, Yo, -+, Ys) satisfy the conditions
@2),.iff, for all 0 < k < 4

) Jrx(zo, uo, Uk, Yo, +, Yx) has a minimum with re-

spect to {zo, o, U1, - - ux}.

il) The {Zx};—o can be chosen such that the value of

J¢ x(Zo, vo, - -+, Uk, Yo, - - -, Yx) at this minimum is pos-
itive, viz.
min Jf,k(xO)UO)“'7uk)y0)”')yk)>0-

{wo,u0, +ur

Proof: Assume Jy x (2o, {u;}5_o, {;}7_o) > 0, then con-
dition 1) is clearly satisfied because if Jfk (zo, {uJ}] —a
{yj o) does not have a minimum over {zo, ug,---, Ug},
then 1t is always possible to choose {zp, ug,--+, ur} to
make Jy (2o, {u;}5_g, {y;}%_) arbitrarily small and neg-
ative. Moreover, the existence of a minimum, along with
Jer(zo, {u; }] _0: Y5} ‘~o) > 0, guarantees condition ii) since
the value at the minimum must be positive.

Conversely, if 1) and ii) hold, then it follows that Js,

(-770’{“3} =07 {yj}] 0) >0,

B. A Krein Space State-Space Model

To apply the methodology of Part I, we first identify the
indefinite quadratic form Jy 5 as a special case of the general
form studied in Theorem 6 of [1] by rewriting it as

Jf,k:(anUOa Uk, Yo, 7yk)
k
= 231l g + g uzU;
=0

(RS
bl (]-[5]=)

0 —Y5
Then by Lemmas 6 and 7 in [1], we can introduce the
following Krein-space system

22

{ Tjt1 = Fj;j + Gju; o)
Y; } - [ j}x.ﬂ,_
[zjlj Ly ™ 7
with
o -~ T, 0 0
. 15,
v; Vg 0 0 [0 —’szcf}éjk

Note that @; = I, S; = 0, Iy > 0, and that we must consider

a Krein space since
1 0
R R

is indefinite.

C. Proof of Theorem 1

To focus the discussion, we bneﬂy rev1ew the procedure of
the proof.

* Referring to Lemma 2, we first need to check the whether
J¢e(xo, o0, -+, Uk, Yo, -+, Yx) has a minimum with re-
spect to {g, ug, w1, -+ ug}. This is done via the Krein
space-Kalman filter corresponding to (23) and (24) and
yields the condition (8) along with several equivalent
conditions.

* Next we need to choose the {Z;}i_, such that the
value of Jy i (zo,u0,- -, uk, Yo, *, k) is positive at its
minimum. Now according to Theorem 6 in Part I, the
value at the minimum is Jy(min) = Zf o€iR:Tes
where e; is the innovation corresponding to (23) and
(24). We can then compute the {e;} using the Krein
space~Kalman filter, and thereby choose the appropriate
{Zk[k}zzo which yields the desired a posteriori filter.

A remark on the strong regularity of the model (23), (24): In
what follows, we would like to use the Krein space—Kalman
filter corresponding to the state-space model (23), (24). This
of course requires the strong regularity of its output Gramian
mairix which we denote by Rv (since the output of (23)
consists of both a y and a z corﬁponent).

If Rv is strongly regular, then the Krein space—Kalman
filter may be applied to check for the positivity of Jy; for
each 0 < k < 4. But what if Ry is not strongly regular? Then
it turns out that Jyj cannot be positive forall 0 < k < i
To see why, suppose that Js, > 0 for some arbitrary k.
Then Jg 1 must have a minimum, and according to Lemma
9 in [1], the leading k X %k block submatrices of Rv and
R — 8*QS = R must have the same inertia. Now due to
(25), all leading submatrices of R are nonsmgular and since
k was arbitrary, the same will be true of Rv. Therefore Ry
will be strongly regular.

To summarize, we may use the Krein space—Kalman filter
to check the positivity of Jy . If one of the R, 1 becomes
singular (so that Ry is no longer strongly regular), J £k will
lose its positivity by default. ;

Proof of Existence Condition (8): The R1ccat1 recursion
corresponding to (23) is the exact same Riccati recursion that
was given by (9) in Theorem 1..We can now apply any of the
conditions for a minimum developed in [1]:to check whether

a minimum exists for Jy i (zo, %o, -, Uk, Yo. - - -, yx) for all
0 <k <. If weassume that the [F}, G, | have full rank, then
according to Lemma 13 in [1], J¢ » (20, w0, -+, Uk, Yo+ , Yk )

will have a minimum for all 0 < k¢ < i, iff

0 17[H;]
ESAR

which yields the condition (8).

Since we still need to satisfy the second condition of Lemma
2, this, of course, only shows that (8) is a.necessary condition
for the existence of an H* a posteriori filter of level Y5 We
shall later show, however, that if the minimum condition is
satisfied, then the second condition of Lemma 2 can also be
satisfied. Therefore (8) is indeed necessary ‘and sufficient for
the existence of the filter.

p-t

ili =

—1> * * I
= Pt 4 [H; L]-][O
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Other Existence Conditions: Using the results of [1], we
can obtain alternative conditions for the existence of H*® a
posteriori filters of level . If we use Lemma 12 in [1], we
have the following condition.

Lemma 3 (Alternative Test for Existence): The
(8) can be replaced by the condition that

I 0
B = {0 73 ]

| 0 H; . "
el S [ 5

have the same inertia for all 0 < 7 < ¢. We no longer require
that [F; G;] have full rank, and the size of the matrices
involved is generally smaller than in (8).

Using a block triangular factorization of R, ; and the fact
that when we have a minimum, P; is positive definite, we can
show the following result.

Corollary 1 (Alternative Test for Existence): The condition
of Lemma 3 is equivalent to

I+ HijH; >0

condition

and

and

—v#I+L;j(P7' + HfH;)"'L; <0 (26)
forall 0 < j < 4.

The test of Lemma 3 has various advantages over (8) that
are mentioned in the discussions following Lemma 13 in [1].
In particular, Lemma 3 allows us to go to a square-root form of
the H*°-filtering algorithm, where there is no need to explicitly
check for the existence condition; these conditions are built
into the square-root recursions themselves so that a solution
exists iff the algorithm can be performed [24].

Many alternative existence conditions can also be obtained.
Here is one that follows Lemma 14 in [1].

Lemma 4 (Alternative Test for Existence): If the {F;} are
nonsingular, an H* a posteriori filter of level v exists, iff

P11 >0
and

I-GPhGi>0 j=0,1,--,i

Construction of the H* A Posteriori Filters: To complete
the proof of Theorem 1 we still need to show that if a
minimum over {zo,uo,---,ur} exists for all 0 < k < 4,
then we can find the estimates {2 }i_o such that the value
of Jgx(zo, w0, , Uk, Yo, -, Yk) at its minimum is positive.

According to Theorem 6 in [1], the minimum value of

Jf.k(m()auﬂ, ey Uky Yoyttt zyk) is
k
> les IR {Zw} [ y;lj : ]
= EN i= 33 3li-1
I:I-l- H]P]H; H; PJL; ] [yj — gj|j~—1 :|
LiPiH; =i+ LiPiLy | %) — 211

39

where 9,1 and Z;;_, are obtained from the Krein-space

- projections of y; and Z;; onto £{{y,}f=—é,{2”l}{;§}, re-

spectively. Thus 2;;_, is a linear function of {yl}{;é
Using the block triangular factotization of the R, ; we may
rewrite the above as

k N *
) [yj - ijj—1:|
=% LZii ~ Zild
y [I—l—HijH;-‘ 0 r
0 —v#I + Li(P;* + HyH;) ' L}
[ya yJiJ 1}
215 — 2|
where

1>

I 0
{—LijH;(I + HijH;)Al I:I

(B ]
Zjli — Z4li-1

Note that £;; is obtained from the Krein-space projection of

[ij - Qij—lJ
2513~ Z5li

X

@7

Zj; onto L{{y,}{ﬂ,{ém}{;}} and is, therefore, a linear

function of {;}7_,. Recall from Corollary 1 that

I+H-P-H* >0 and

T+ Lyt + HIH) LI < 0. (28)

Therefore all we must do is choose some 2, such that

i

k
D (w5 — 510 T+ H;PH;) ™ (g5 — 9515-1)

i=0

k
+ Y iy~ 2)" (=
i=0

2j3) > 0.

vH + Ly(P;t + H;Hy) ™ Ly)™
There are many such choices, but in view of (28), the simplest
is

% = %515 = LiZj; (G <k <)
where &;); is given by the Krein-space projection of the state
x; onto { {y;}_o, {2 }12s }- We may now utilize the filtered
form of the Krein space—Kalman filter corresponding to the

state-space model (23) to recursively compute £;; (see [1,
Corollary 4]) :

7 i . A e . *
Eip1)i+1 = Fidj + PigalH L]
y R—1+1[ Yi+1 — D1l ]
I Z 141 — 245
Using §;41); = Hj+1F;2;); and the above-mentioned trian-
gular factorization of R ji1, we have the equation shown at

the bottom of the next page. Choosing Z;y1)j41 = Zj41)5+1
yields the desired recursion of Theorem 1

&ja1i41 = Fjljly + P By (T4 Hia Py Hj )™

X (yj+1 — Hj1FiZj5).

(30
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D. Parameterization of All H> A Posteriori Filters
The filter -of Theorem 1 is one among many
possible *filters with level . All filters that guarantee
J¢k(%os w0, -+ -, ks Yo, - - -, Yr) > O are represented by (28)
and (29). We may use these expressions to obtain a more
explicit characterization of all possible estimators. Similar
results appear in [4], [7], and [11].
© Theorem 3 (All H*® A Posteriori Estimators): All H*® a
posteriori estimators that achieve a level vy (assuming they
exist) are given by

%15 = Lydj; + V21 = Ly + H Hy) LY
x Sj((I + H;jP;HY)2 (y; — Hidz),- -+,

(I + HoPoH3) % (yo — Hodopg)) GD

where £, satisfies the recursion

Eiprja = Fidg); + KoY — Hira FiZy)5)
— Kej(%15 — Li%j5) (32)
with K, ;41 the same as in Theorem 1
Kej= I+ Piy1Hp1Hy1) ™"

x Fy(P7' + H;H; —~7°LL}) 'L} (33)

and
80(0',0)
- 51((11, aO)
S(aj,"‘,ll.o): .
Si(a,--,a0)

is any (possibly nonlinear) contractive causal mapping, i.e.,

k
> ISi(as, -
j=0

Remark: Note that when the contraction of Theorem 3 is
chosen as S = 0, then we have Z;; = L;%;);, and (32) reduces
to the recursion of Theorem 1.

Proof of Theorem 3: Expression (29) may be rewritten as

K
>y — Hydy)*(I + H; P H; )" (y; — H;#5)
=0

k
- a0)]* < Z|aj|2 forall k=0,1,---,4.
j=0

-
> 7oA * - *)— 1
+ Z(zﬂj - L:Uj|j) (—-’V;I‘i— Lj(P]- ! + HjHj) 1Lj)
=0
X (23"9' — Lj.’fl’j{j) >0 (34)

where #; and Z;|; denote the Krein-space projections of z;

onto {{y;}/=5, {Z =0 } and {{yi}_, {Zui}iZs }, respec-
tively. Therefore £; and £(; are related through one additional
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projection onto ¥;, and we may write

£j1; = &; + PjH; (I + HiP;H;) " (y; — H;&5). - (35)

Therefore

Yy — Hjﬁfj‘j = (I— HijH;(I—I— HijH;)dl)(yj — Hj.f‘j)u
= (I + H;P;H;) " (y; — Hjk;)

so that

(y; — H;2;) = (I + H; PyH})(y; — Hjij5)-

Now (34) can be written as

X <
> (w5 — Hydjis)*" (1 + Hi P HF ) (y; — Hjd5)
j=0
k . ;
+ D (g = L) (v + Li(Py 7 + HiHS) ML)
=0 ,
X (2515 = Lj&;3) > 0
or equivalently
—_ o\ —1 7\ —2%/» A
(YT — L(P; ' + H;HY) 7' L3) 72 (35 — 21|13
1 A
< I + H P H;)* (y; — Hjty)5)l5-
Since %;); is a causal function of the observations y;, then

(%15 — 2;1;) will also be a causal function of (y; — H;i;;).
Therefore using the above expression, we can write

(Y — Lo(Py " + HoHy) ™ LE) ™% (Zop0 — Zojo)

(VH = L(P + HiHP) 71 L3) ™% (2 — 2ips)

(I + HoPoH3)% (yo — Hodopo)

=8 :
(I+ H;PH})% (i — Hidyy)

for some causal contractive mapping S. Equation (31) now
readily follows. :

Finally, we must show (32). To this end, recall from the
proof of Theorem 1 [see (30)] that the recursion for Z; is
given by '

Ejq1501 = Fi2y) + Pia[Hy . L]

J

Using (35) to replace £; by &;; vields, aftejr some algebra,
the desired recursion (32). ; ]
Note that although the filter obtained in Theorem 1 is linear, -
the full parameterization of all H* filters with level -y is
given by a nonlinear causal contractive mapping S. The filter

~1 Yi+1 — Yi+1|5
e+l | 5 5

X R {
Zj+1l41 T Zj1l5

R X . I
i1 = Fydjy + PralHipn il
I+ Hj1 P Hi
0 —’Y;I +lL]'_'|_1(Pj~+ll

0

+ H;+1Hj+1

-(I+ Hj+1Pj+1H;+1)_1Hj+1Pj+1L;+1}
I

—1 . N
: Yitr — Hjp1 F85)
N Zipili+1 — Zj+1)+1
1 j+1l5+1 j+17+1

|
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of Theorem 1 is known as the central filter, and as we have
seen, corresponds to S = 0. This central filter has a number
of other interesting properties. It corresponds, as we shall see
in the next section, to the risk-sensitive optimal filter and can
be shown to be the maximum entropy filter [10]. Moreover,
in the game theoretic formulation of the H* problem, the
central filter corresponds to the solution of the game [12].
In our context, the central filter is recognized as the Krein
space-Kalman filter corresponding to the state-space model
(23).

E. Derivation of the A Priori H* Filter

We shall now turn to the H* q priori filter of Problem 2,
and our main goal will be to prove the results of Theorem
2. Our approach will follow the one used for the a posteriori
case, namely we will relate an indefinite quadratic form to
the a priori problem, construct its corresponding Krein space
state-space model, and use the Krein space—Kalman filter to
obtain the solution. Since our derivations parallel the ones
given earlier, we shall omit several details.

The Suboptimal H* A Priori Problem and Quadratic
Forms: Referring to Problem 2, we first note that T (F )
llso < 7¥p implies that for all nonzero {zg, {u; }J —b {v izt

Z;‘=0 |2; — Ljz;|*
P -1 o1
ally wo + 305 g lusl? + 30520 lys —

where, without loss of generality, we have assumed %o = 0.

7=0

<’yz

Hjz;|?  F o

41

We can also readily obtain the analog of Lemma 2.
Lemma 6 (Positivity Condition): The scalar  quadratic
forms J, . (%o, w0, *++; Uk—1 Yo, ", Yk—1) satisfy the
conditions (39), iff, forall 0 < k£ < 3
i) Jpk(To, %0, Uk—1,Y0, > Yk—1) has a minimum
with respect to {zo, uo, U1, - Uk—1}-
ii) The {#}i_, can be chosen such that the value of

Jp.1(To,Ug, **+, Uk—1, Y0, * - - » Yr—1) at this minimum is
positive, viz.
min Jpk(To, %0, Uk-1,Y0, "+, Yr—1) > 0.
{zovuo"“xuk—l}

F. A Krein Space State-Space Model

Because the summations in Jp,  go up to both k and k — 1
[see (38)], it is slightly more difficult to come up with a Krein
state-space model whose corresponding quadratic form is J, .
With some effort, however, we see that the appropriate Krein
state-space model is

{62]-}—1 £2p £0 =%y
zj = Lj&y; + g5
{fzg+2 = Fi541 + Gjligj41 = Taigo
y; = Hi&y01 tvain
where I, > 0, sz = 0, Q2j+1 =1, sz = - g[,
Ryjy1 = I, and S; = 0. To see why, let us construct the
deterministic quadratic form corresponding to (40). Thus

J<0 (40

Jg)z]g— HO S—}-Z’E*Q uj—i—ZvR vy

Moreover, (36) implies that for all k¥ < ¢, we must have 3=0
K s Lo k=1
- Zkﬁo 1% - ]3;]_‘1 < 72' (37) =&l e+ Z ;4 T2j41
zlly w0 + 305 0 lusl? + 2250 1y — Hjzs|? §=0
k—1
As before, we may easily show the following result. + v Ry woing + vk Loy ;
Lemma 5 (Indefinite Quadratic Form): Given a  scalar g 2121 TR ]zjo % 2? !
~p > 0, then |T; (Fp) |loo < 7, if, and only if, there exists b1
2 = Fp (Yo, +,yr—1) (for all 0 < k < 4) such that for all = &I+ Zﬁ;j+1ﬁ2j+1
complex vectors- g, for all causal sequences {u; } = 0, and =0
for all nonzero causal sequences {y;}’ 9=0 the scalar quadratic k1
form +Z|yj H€2]+1| “'Yp2ZlZJ—L€2ﬂ
j=0
Jp,k(a)Ov Ugy * 5 Uk~1,Y0," "~ 7yk—1)
k-1 k1 From (40) we see that £5; = £2j4+1 = ;. Using this fact, and
=ailllee+ Y wiuj+ ) (yj — Hjz;)* (y; — Hyz;) defining ;41 = u;, we readily see that Jg op = Jp &
; Y ;0 ’ e i Note also that the Riccati recursion for the model (40) is
& (41) shown at the bottom of the page.
-2 Z( — Lz;)* (3, — Ljz;) (38) Existence Conditions: Using Lemma 12 from [1], the con-
i=0 dition for a minimum is that R, ; and R; should have the same
. inertia for all § = 0,1,---,2¢ (since each two time steps in
satisfies (40) correspond to one time step in Jp, ). Thus the condition
Jp 1o (20, U0y + s Uk—1,Y0, * *» Y—1) > 0 for all for a minimum is
0<k<. (39) —fypI-l- L;j%;L; <0 and I+ H Y41 H; > 0. (42)
Yoj1 = Xoj — gL ( ’YPI+L EQJL*) 'L 22 3o = L.
22j+2 =F; 22]+1F +G G - F; EZH—IH (I+H 223+1H ) 1q, 22]+1F*

(41)



42 . IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 41, NO..1, JANUARY: 1996

The second of the above conditions is obvious since when we
have a minimum X; is positive definite. If the [F; G ] have
full rank, then using Lemma 13 from [1], the condition for a
minimum is

Sof = 2LiL; >0 and B3l + HIH; >0 (43)

where once more the second of the above conditions is
redundant.

To connect with the results of Theorem 2, we may note
that by defining P; = X2; and combining the coupled pair of
Riccati recursions in (41), we can write the following Riccati
recursion for P;

Pjp1 = FjPjF} + G;G} — F;P;[L:  HY]
< R [L}PF*' B=T, @4
with
2
—v2I 0 L « "
Re; = { & ]] + {HJJPJ'[LJ' Hil. 45)

But this is the same Riccati as (9) in Theorem 2. Thus the
condition for a minimum (43) becomes

-1 —2 7%
Pl = L3 > 0

(46)

which is the condition (13) of Theorem 2.

To express the condition (42) in a form that is more similar
to that of Lemma 3, we introduce the Krein space state-space
model

C)

where IIp > 0, Q; =1, S; = 0 and

—2I 0
n=[F Y
Note that the only difference between the state-space models
(23) and (47) is that the order of the output equations has
been reversed.
We can now use the state-space model (47) to express the
condition (42) in the form of the following Lemma.
Lemma 7 (Alternative Test for Existence): The condition
(13) can be replaced by the condition that all leading
submatrices of

A2
Rj:!: ZPI ?:{ and

2
=T o L; *
[ 3]+

have the same inertia for all 0 < 7 < 4. In other words

— T?I-I-LijL; <0

and I+ H;P;H} >0

where 15]-_1 = P;* — 4, 2L L;. We no longer require that
[F; G ] have full rank, and the size of the matrices involved
is generally smaller than in (8).

Note that compared to Lemma 3, the condition in Lemma 7
is more stringent since it requires that all leading submatrices

of R; and R.; have the same inertia. This distinction is
espec1a11y important in square-root 1mplementat1ons of the
H®* filters' [24].

Construction of the H*A Priori Filter: To complete the
proof of Theorem 2 we still need to show that if a minimum
over {zg,ug, -, ur—1} exists for all 0 < &k < 1, then
we can find the estimates {#}i_, such that the value
of Jpi(zo, %0, ", Uk—1,Y0," "+, Yk—1) at’its minimom is
positive.

According to Theorem 6 in [1], the minimum value of
Jp k(T0, %0, -+, Uk—1, Y057 -+ Yk—1) 18

« 1p—~1|€z,
Z[eza €y, 1R ;[ ZJ} +el (- ’YpI+LkPkLk) 'e
j= y
Spzaa] T
o Wi Yjti—1
2 — 5l o i
<[]+ o

X (=921 + L PoL}) ™ (2 — Zapp1) > 0

vl + LiP;Ly
H,P;L}

LpH: ]
I+ }IJPJL’?>|<

where 2;;_1 and §;;_1 are obtained from‘ the Krein—space
projections of %; and y; onto L{{%}]_ o (w3 0 }, respec-
tively. Thus %;);_; is a linear function of {y;}7_,. Using the
block triangular factorization of the R, ; we may rewrite the
above as

k
Z(ZJ zj[] 1) ( ’)’pI""L PL*) (2j—2j|j—l)

k—1
+> (Y5 — G350 (T + HiPHT) ™y — G5 1)>0
o 49)
where
[51' - Ajlj—l] _ { ! 0}
Y5 — Yjlj—1 ~H;PLi(—pl + Ly L5)~" 1

« l:ZJ ZJ|] 1 } (49)
Yi — Yili-1

Note that g;);-1 is given by the Krein-space projection of y;

onto {{Z}_o, {y;}{_ } Recall from Lemma 7 that

—y2I+ L;P;L} < 0,1+ H;P;H} > 0.

Any choice of %;;_; that renders (48) positive will do,
and the simplest choice is Zj;_1 = 2j;-1 = Lj%j—1,
where Z;);_1 is given by the Krein-space projection of z;
onto {{z}_y,{y;}{Zs}. We may now utilize the Krein
space—Kalman filter correspondmg to the state-space model
(47) to recursively compute f:j‘j_l, Viz.

‘/i'j-!-llj = F}ﬂA'/'JIJ 1 +FP[L* H*]

R_ { - L; $J|J 1}
e,j y]

Hjdj5
Setting #; — L;#;;—1 = 0 and simplifying, we get the desired
recursion for £;41;. ]

(50)
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G. All H®® A Priori Filters

The positivity condition (48) gives a full parameterization of
all H* a priori estimators. We thus have the following result.

Theorem 4 (All H>® A Priori Estimators): All H® a pri-
ori estimators that achieve a level vy, (assuming they exist)
are given by

8 = Litj + (] = L;P;L;)%
xSj((I+ Hjo1 Py HY 1) 3 (yjm1 — HjaZjo1),
X (I + HoPoHy)™ % (yo — Hoo)) (51)
where
Tr = Tk + PkLZ(-—’Yf,I + LkLZ)—l(Ek - Lk.'iik) (52)
£; satisfies the recursion
Ej1; = Fidjj1 + F;P[L}  Hy]
_ L;z
X R, Jli—1 ] 53
& [yJ H 551 ©3)

with P;, P;, and R, ; given by Theorem 2 and S is any
(possibly nonlinear) contractive causal mapping. :

Proof: Referring to (49), we see that the g;;_; = H;&;
differ from §;;_1 = H;&; via the additional projection onto
Zjij—1- Thus we can write
Tjlj-1 = Bj)j-1+ PiLj (=T + LiP; L) ™ (4151 — j1-1)
which proves (52). Moreover, from the proof of Theorem 2
[see (50)1, the recursion for Z; is given by (53). Condition
(48) can now be rewritten as

k
Y Giliot = 25150 (=75 + LiP L) ™ (%1521 — 251-1)
=0
k—1 N
+ 3 (W = Fii—1) (T + Hy P )7 (g5 = G55-1) > 0
=0
(54)

and an argument similar to the one given in the proof of
Theorem 3 will yield the desired result. O

H. The H>* Smoother

If instead of ey and epx, which correspond to the a
posteriori and a priori filters, respectively, we consider the
smoothed error

sk = Z)i — LT, k<i
where Zy; = Fs(yo,y1,- -+, %) is the estimate of z, given
all observations {y;} from time 0 until time ¢; we are led to
the so-called H° smoothers. Such estimators guarantee that
the maximum energy gain from the disturbances {Hg 1 2(:1:0 -
o), {u;Yi=0, {v;}i=o} to the smoothing errors {e,,;}i_q is

43

bounded by v, ie.,

sup
xg,u€ha,v€hs

ZZ_O :]63;j
(wo—x0>+2—0 Ju]+2'—0 ;v

(zo ~ Zo)*II
<2 (55)

Using an argument similar to the ones given before, we are
led to the following quadratic form

Js,i<$07 UQy 7y Ui, Yo, o0 7yl)
i i
= wollg ag + Y ufuk + Y (Uk — Hrae)* (ux — Haz)
k=0 k=0
= 772> " (Gayi— Lewi)* (Bagi — Liar)- (56)
k=0

Note that the only difference between J; ; and Jy; is that Zy;,
has been replaced by Zg; (i.e., filtered estimates have been
replaced by smoothed estimates). Once more it can be shown
that an H°° smoother of level ~, will exist if, and only if,
there exists some Z|; such that J; ; > 0. The rather interesting
result shown below, and which has already been pointed out
in the literature (see e.g., [4], [7], and [16]), is that one H™®
smoother is given by the conventional H? smoother (which
does not even depend on ;).

Theorem 5 (H* Smoother): For a given vy, > 0, an H*
smoother that achieves level ~; ex1sts, iff the block diagonal
matrix

Re = Re,() ® Re,l D @Re,i

I 0 H; .
Rej = [0 _72} + [L]’_]Pj[H,-

s

where

L]

and P; is the same as in Theorem 1, has (7 4+ 1)p positive
eigenvalues and (i + 1)g negative eigenvalues. In other words,
iff

n[R]=[GE+1p 0 (i+1)g].

If this is the case, one possible H, smoother is given by the
H? smoother.

Proof: The condition for J, ;(zg, uo, -, Ui, Yo, -+, Ys) 1O
have a minimum is slightly different than the earlier cases
since we do not require that J, (g, uo, -, Uk, Yo, - Yk)
have a minimum over the disturbances for all past values
k < i. Thus using Lemma 9 from the companion paper [1],
the condition for a minimum over {zg, ug, - -,u;} is that the
matrices

R,and R=Ry®R1®--DR;

have the same inertia, where R; = I, & (—v21,). But this is
precisely the inertia condition given in the statement of the
Theorem.

The value of J,; at its minimum is (see [1])

b z.l][}iy l;f] 1[31]



44 [EEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 41, NO. 1, JANUARY 1996

where we have defined

R, Ry:
& =D e
with

Yo Zo); |

y=|: = |
Y; | Zifs |
Yo E

y=1: Zi=
Yi _&ﬁj

and where the {y;} and {%;;} satisfy the Krein state-space
model (23). In this case all the entries in Z|; are unknown
and there is no causal dependence between the {Z;);,} and the
{y;}. Using a block triangular factorization, or a completion of
squares argument, the value at the minimum can be rewritten
as

v Ry ty + (3; — ReyRy'y)* (Rz — Ry Ry Ryz) ™t
X (Zt’h e ngR;:ly)

But R, > 0 (since it is the covariance of a Hilbert space
state-space model), and hence one possible choice of Zj; to
guarantee J, ; > 0 is to choose Z; = Rz R, 'y = 2); which
is clearly the [1? smoothed estimate of 2. 0
The following result is now straightforward.
Theorem 6 (All H* Smoothers): All H* smoothers that
achieve a level v, (assuming they exist) are given by

% = 2 + (Rs — Rey Ry Rys)2S(R; Y 2y) (58)

where S is any (not necessarily causal) contractive mapping,
éli is the usual H? smoothed estimate, and R, and R; —
R:yR;'yR, are defined in (57).

It is clear from the discussions so far in the paper that the
Krein-space estimation formalism provide simple derivations
of H° estimators. These estimators turn out.to be certain
Krein space—Kalman filters, and show that Krein-space esti-
mation yields a unified approach to H? and H* problems.
To derive such filters and to solve other related problems
as discussed ahead, all one essentially needs is to identify
an indefinite quadratic form and to construct a convenient
auxiliary state-space model with the appropriate Gramians.
Two further applications of this approach are discussed next.

IV. RISK-SENSITIVE ESTIMATION FILTERS
The so-called risk-sensitive (or exponential cost) criterion
was introduced in [13] and further studied in [14]-[16]. Glover
and Doyle [21] noticed their close connection to the H ° filters
discussed earlier. We shall make this connection in a different
way by bringing in an appropriate quadratic form.

A. The Exponential Cost Function
We again start with a state-space model of the form

{:I,‘j+1 = Fj.?)j + Gj‘u]', 720

59
y; = Hizj +v;. &

We now assume, however, that zo, {u;}, and {v;} are
independent zero mean Gaussian random variables with co-
variances Ilg, @i, and R;, respectively. We further assume that
the {u;} and {v;} are white-noise processes. Conventional H?
estimators, such as the Kalman filter, estimate the quantity
z; = L;z; from the observations {y]} by performing the
following minimization (see e.g., [1], [22], and [23])
min E[C;] (60)
{Z;1}
where C; = 3% _ (21— Ljz;)* (21— L;z;), 2,1 denotes the
estimate of z; given the observations up to and including time
{, and E[-] denotes expectation. As we have seen earlier, | = 7,
[ =5 —1,and [ = i correspond to the a posteriori, a priori,
and smoothed estimation problems, respectively. Moreover,
the expectation is taken over the Gaussian random variables
zo and {u;} whose joint conditional distribution is given by

p(','CO’uO)"'yui I y07"'ayi)

X :
X exp [—§Ji(:co,uo,'--,ui;yo,'--,yi) (61)
where the symbol o stands for “proportional to,” and
Ji(%o, o, -+, i3 Yo, -+, %i) is equal to (using the fact that
Zo, {w;}, and {v;} are independent, and that v; = y; — H;z;)

o3l "wo+ Y usQ5 w4+ (v — Hyz;) Ry (y; — Hyzy)-

=0 7=0
(62)
In the terminology of [15], the filter that minimizes (60) is
known as a risk-neutral filter.
An alternative criterion that is risk-sensitive has been exten-
sively studied in [13]-[16] and corresponds to the minimiza-

tion problem '
in z:(6) in ( 2) {E ( be )D (63)

min z;(6) = mi ——log | Eexp(—=C,)| |.

Zay 0 (Ea \ 0 2 V1)
The criterion in (63) is known as an exponential cost eri-
terion, and any filter that minimizes p;(6) is referred to as
a risk-sensitive filter. The scalar parameter § is correspond-
ingly called the risk-sensitivity parameter. Some intuition
concerning the nature of this modified criterion is obtained
by expanding p;(#) in terms of § and writing

ui((g) = E(Cﬁ - ZVHI(CZ) + 0(92)

The above equation shows that for § = 0, we have the risk-
neutral case (i.e., conventional H? estimation). When 8 > 0,
we seek to maximize E exp(—5C;) which is convex and
decreasing in C;. Such a criterion is termed risk-seeking (or
optimistic) since larger weights are on small values of C;,-and
hence we are more concerned with the frequent occurrence of
moderate values of C; than with the occasional occurrence of
large values. When 6 < 0, we seek to minimize E exp(—£C;)
which is convex and increasing in C;. Such a criterion is
termed risk-averse (or pessimistic) since large weights are on
large values of C;, and hence we are more concerned with the
occasional occurrence of large values than with the ‘frequent
occurrence of moderate ones. In what follows, we shall see that
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in the risk-averse case # < 0, the limit at which minimizing
(63) makes sense is the optimal H°° criterion.

B. Minimizing the Risk-Sensitive Criterion

Using the conditional distribution density function (61), we
can easily verify that

0 6
E(exp (-—501)> x /exp (—EC,')
1
X exp |:_5Ji(5'30,11'07‘"inEZIO,'"ayi)] dzo dug - - - du;

which shows that the risk-sensitive criterion (63) can be
alternatively written as
e > o F}axfexp[ - 8C; — LJi(wo,uo, s u
Zj‘l -
yOa"'7yi)] dzg dug - - - dus.

i) 8 < O g

. 1 .
min [exp [ — 5C;i — 3Ji(zo,u0, -, Ui
2l

Yo, ¥i)| dwo dug- - dus.
This suggests that we define the second-order scalar form

7y’b)
= Ji(ZO7u07"'7ui707"’ayi)+00i

Ji(z07u07 U0yt

= ol mo + Y uiQ s + Y (y; — Hyzj)*
=0 =0

x Ry (y; — Hijzi) + 0 (%11 — Liz;)*
j=0
X (2]'“_1 - ijj).

Before proceeding with the extremizations in i) and ii), we
need to ensure that the integrals in i) and ii) are finite. The
condition is given by the following lemma, which is easy to
prove.

Lemma 8 (Finiteness Condition): The integral

1.
/exp {—EJi(asg,uo,--',ui;yo,-~~,yi)} dzg dug -« - du;

is finite iff J;(xo, o, -+, %i; Yo, - -, ¥;) has a minimum over
{Z0,uo, -+, u;}. In that case it is proportional to

1 . =
exp {—— min J;(zo, wo, -+, Ui Yo, -+ ’i‘h)}
2 Lo, U

The above lemma thus reduces the risk-sensitive problem
to one of finding the minimum of a second-order scalar form.
More precisely, the criterion becomes

i) 8>0: min{zm}{minm,u jj(mo,uo, U Y0, i)

i) 6<0: maxz, ,} {ming, . Ji(zo, o, -+, uis Yo, - i)}

Note that the second of the above problems is a quadratic
game problem [12]. Though we shall not consider quadratic
games here, it is also possible to solve them using the approach
given in this and the companion paper.

45

To solve the above problem, we can introduce the following
auxiliary Krein state-space model that corresponds to the (pos-

‘sibly indefinite) quadratic form J;(Zo, %0, Uis0 s, Yi)
Tjp1 = Fizj+ Gu; 20
with
VA 13)0 Q(:S g
< u; |, |k > = b R. 0 . (65)
v; g 0 0 [0] 9_1I:|6jk

We can now readily use the state-space model (64) and the
results of the companion paper [1] to check for the condition
of a minimum over {zg, ug, ‘- -, u; } and to compute the value
at the minimum. Then the resulting quadratic form can be
further extremized via a Krein-space projection. The details
will not be repeated here, since they are the same as those
given in the derivation of the H* filter. We shall just note
that the quadratic form J;(zo, uo, - - -, %;; Yo, - - - , ¥s) is exactly
the same as the quadratic forms Jy; (2o, o, -, Ui Yo,
Yi), Jpi (To, o,y Uis Yo, -, ¥i), and Jy i (o, uo,- -,
U3 Yo, +*, ¥:i), when we choose 6 = —'yf_z, f=— p—z, and
0 = —v; 2 and when the estimate is chosen as a filtered,
predicted, and smoothed estimate, respectively. Therefore the
derivations of the risk-sensitive filters follow exactly the same
derivation of the H* filters discussed earlier. We thus have
the following results.

Theorem 7 (A Posteriori Risk-Sensitive Filter): For a given
§ > 0, the risk-sensitive estimation problem always has a
solution. For a given § < 0, a solution exists iff
[ e[l 2] [ o

have the same inertia for all = 0,1, - - - 4, where Py = Il and

Pj41 = FiPiF} + G;Q;Gj

- F;Pj[H: L}|R;; [gj }PiF;.

In both cases the optimal risk-sensitive filter with parameter
# is given by

Zijs = Li%qps

Eip1fivr = Fidtipi + Ko i1 (Wier — Hip1 Fidyp), £-4-1 =0
and
Kois1 = Pyt H (I + Hia P H )7

Proof: The proof is exactly that of Theorem 1. We only
note here that for § > 0 a solution always exists since
61 0
0 R,
usual Hilbert-space setting.

> 0 and the state-space model reduces to the
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Theorem 8 (A Priori Risk-Sensitive Filter): For a given 6
> 0, the a priori risk-sensitive estimation problem always has
a solution. For a given § < 0, a solution exists iff all leading
submatrices of

0=*1 0 6= 0
[ 0 Rj] and Ko = [ 0 Rj]
L.
+ J
{Hj
have the same inertia for all j = 0,1,---¢, where P; is the

same as in the a posteriori case. In both cases the a priori
risk-sensitive filter with parameter 6 is given by

|z 31

Ziji-1 = Lifs)5-1
Tipa)e = Fidtyica + Kai(ys ~ Hitii—1), $o)-1 =0
where

Koi= FPH(I+HPH)™.

Theorem 9 (Risk-Sensitive Smoother): For a given 6 > 0,
the risk-sensitive smoother always has a solution. For a given
6 < 0, a solution exists iff the block diagonal matrix

Re=R5,0®Re,1@"’

Rej = {0 0—11} + {Lj
and P; is the same as in the a posteriori case, has (i + 1)p

positive eigenvalues and (i+41)q negative eigenvalues. In other
words, iff

@ Re,i
where

}PJ[H’-‘

J

L]

W[R]=[G+1)p 0 (i+1)q].
In both cases the risk-sensitive smoother is the H2 smoother.

We can now state the striking resemblances between the H
and the risk-sensitive filters. The H filters obtained earlier
are essentially risk-sensitive filters with parameter § = —v~2.
Note, however, that at each level v, the H* filters are not
unique, whereas for each 6, the risk-sensitive filters are unique.
Also, the risk-sensitive filters generalize to the 6 > 0 case. It is
also noteworthy that the optimal H,, filter corresponds to the
risk-sensitive filier with § = —v;2, and that 4 is that value for
which the minimizing property of J; breaks down and p;(6)
becomes infinite. This relationship between the optimal H,,
filter and the corresponding risk-sensitive filter was first noted
in [21].

V. FINITE MEMORY ADAPTIVE FILTERING

We now consider an application of the Krein space-Kalman
filter to the problem of finite memory (or sliding window)
adaptive filtering. It has been recently shown [20] that a unified
derivation of adaptive filtering algorithms and their corre-
sponding fast versions can be obtained by properly recasting
the adaptive problem into a standard state-space estimation
problem. We now verify that if we further allow the elements
of the state-space model to belong to a Krein space, then the
so-called sliding window problem can also be handled within
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Fig. 2. Sliding window with varying window length. .

the same framework. In fact, this frameworEk also allows us
to easily consider more general sliding patterns with windows
of varying lengths, as explained ahead. Moreover, we shall
obtain a physical interpretation of innovations with negative
Gramian, and see that it corresponds to the loss of information.

A. The Standard Problem

The finite memory adaptive filtering problem can be formu-
lated as follows: given the input—output pairs {h;,d;} where
hj € CY*™ is a known input vector and d; € C is a known
output scalar, recursively determine estimates of an unknown
weight vector w € C™, such that the scalar second-order form

Ji(w, diti1, - dishimgy1, o )
=g 'w+ > (dj — hjw)*(d; ~ hjw) (66)
J=i—li+id
where IIy > 0, is minimized for each s.

Since J; is a function of the pairs {h;,d;}i_;_, ,;, at each
time instant 4, we are interested in determining the estimate
of w using only the data given over an interval of length I;.
The quantity {; > 0 is therefore referred to as the (memory)
length of the sliding window.

Note that we allow for a time-variant window length. To

* clarify this point, consider the example of Fig. 2 where at time

< we have a window length of [; = . At the next time instant
we add the data point {h;1, d;+1}, so that the window length
changes to l; 1 = [ + 1. At time ¢ + 2 we add the data point
{hi+2,diy2} and drop the data point {h;_;,d;—;} so that the
window length remains /;19 = [+ 1. In a similar fashion, more
general sliding window patterns can be considered as well.

To recast expression (66) into the usual quadratic form
considered in this paper, the lower index of the summation
term needs to start at the fixed time 0. For this purpose, we
rewrite J; as follows

: Ji(W,di~zi+1,“',dz‘,hi—zgl,"',hi)
i
=w'lgtw+ D (dj — hjw)*(dj — hjw)
j=t—l;+1

i—1l;

+Zd — hjw)*(d; — hjw)
—Z

w)*(dj — hjw) ' 67)
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where we have added and subtracted identical terms. We now
invoke a change of variables and substitute the time index 3

by another time index k that allows us to replace J; by a

Jy. The new index k has the property whenever a new data
point is added (i.e., ¢ is incremented), then % is incremented.
Whenever a data point is discarded from the window, however,
k is incremented as well. Thus if at time ¢ the length of the
window is [;, then the index k will run from 0 to 2 —I; + 1
(since there will have been ¢ data points added and ¢—;+1 data
points removed). To be more specific, the change of variables
is as follows. ,

a) At each time 4, since the data point {h;,d;} is added,

we increment the index k and define

(ik = d,', TLk = hi and Rk =1. (68)

b) If at time ¢ the data point {h;_;,,d;_;, } is removed, we
increment the index & once more and define
Bk = hi—li and Rk = —1.

dy = di_y,, (69)

With this convention we may write the quadratic form
Ji(w,dicg,41, - diy hici41, -+, i) as

Ji = jk(’w,do,"',dk,ho,"',hk)
k
= w'Tlg w + Y (d; — hjw)*(d; — hjw)  (70)
j=0

which is of the form that we have been considering in this
and the companion paper [1]. Note that the quadratic form
Ji(w,do, -+, dk, ho,+ -, hy) is indefinite, since whenever a
data point is dropped we have Ry = —1. We can therefore
use Krein-space methods to solve the problem.

Using the same approach that we have used so far, we
now construct the partially equivalent state-space model to
the indefinite quadratic form .J;,. Thus

{ﬂzj+1_=$j, ro=w 0<;<k

dj = hjzk + v an

with IL > 0, Q; = 0, S; = 0, and R; as in (68) and (69).

We can now state the following result.

Theorem 10 (Finite Memory Adaptive Filter): The finite
memory adaptive filter is given by the following recursions.

a) For updating the data point {h;,d;} at time 7, we have

w]i:i—li_l = wii41:i—li_1
+ Ky k(di = hithyi_1:-0,_,)  (72)

where );,; is the ‘estimate when the sliding window
encompasses all the data from time j to time ¢, and

Kpr = th:R;i

Rep =1+ hiPyht (73)
and where P, satisfies the recursion
Poy1 =P, — Kp Rk Ky, Po=1lo.  (74)

b) For downdating the data point {h;_;,,d;—;, } at time 7,
we have

Wiizi—t;41 = Wizit, + Kpa(dict, — himgjiiy,) (75)
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where

_ * —1
Ko = thi—liRe,k

Rep = —14 hi_y, Prhi_y, (76)
and Py satisfies the recursion
Py = Py~ Ky pRe p K ). an

Moreover, the above solutions for y;.; always correspond to
a minimum, and in particular

Re,k =14+ h,th:‘ >0 (78)
when we are updating, and
Rep=-1+ h"':'—lith:—li <0 (79)

when we are downdating.

Proof: The solutions given by a) and b) in the above
theorem are simply the Krein space—Kalman filter recursions
for the state-space model (71) which we know computes the
stationary point of J; over w. This stationary point is always
a minimum, however, since

2T, 0%, | Lo,
a2 = N = HO —+ Z hjhj >0
Jj=i~-1;+1
(recall that IT; ' > 0). O

Using Lemma 12 in the companion paper [1], having a
minimum means that R, and R, have the same inertia for
all k. Thus the statements (78) and (79) readily follow.

The fact that whenever we drop data we have R, ; < 0 has
an interesting interpretation. Consider the equation

Piry1 =P, — Kp,kRe,kK Y

If we drop data at step k£ we would expect Pyy1 to get
larger (more positive-definite) than Pj. This can only happen
if Re . < 0. Thus, we may infer that innovations with negative
Gramian correspond to a loss of information.

The above discussion puts the problem of finite memory
adaptive filtering into the same state-space estimation frame-
work as conventional adaptive filtering techniques (see [20]).
Therefore the various algorithmic extensions discussed there
may be applied to finite memory problems, albeit that we now
need to consider a Krein space. We shall not give the details
here, but shall just mention that when the elements of the input
vectors {h;} form a time sequence, viz.

hi =[u; w1 Uj—n+1]
and when the window length is constant, ie., [; = [, then
the state-space model (71) is periodic with period T = 2,
and we may speed up the estimation algorithm by a so-called
Chandrasekhar-type recursion. Similar results, obtained via a
different approach, have been reported in [26].
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V1. CONCLUSION

Certain studies in least-squares estimation, adaptive filter-
ing, and H*° filtering motivated us to develop a theory for
linear estimation in certain indefinite metric spaces, called
Krein spaces. The main difference from the conventional
Hilbert-space framework for Kalman filtering and LQG control
are that projections in Krein spaces may not necessarily exist
or be unique, and that quadratic forms may have stationary
points that are not necessarily extreme points (i.e., minima
or maxima). We showed that these simple but fundamen-
tal differences explain both the unexpected similarities and
differences between the well-known Kalman-filter solution
for stochastic state-space systems and the solution for the
completely nonstochastic H*° filtering problem.

The main points are the following. There are many problems
whose solution can be reduced to the recursive minimization
of -some indefinite quadratic form. A stationary point, when
it exists, of the quadratic form can be computed as follows:
set up a (partially equivalent) problem of projecting a vector
in a Krein space onto a certain subspace. The advantage is
that when there is state-space structure, this projection can be
recursively computed by using the innovations approach to
derive a Krein space-Kalman filter. The equivalence is only
partial because the Krein-space projection only defines the sta-
tionary point of the quadratic form and further conditions need
to be checked to determine if this point is also a minimum. It
turns out that this checking can also be done recursively using
quantities arising in the Kalman-filtering algorithms.

Apart from quite straightforward derivations of known
results in H2, H*, and risk-sensitive estimation and control,
the above approach allows us to extend to the H® setting
some of the huge body of results and insights developed
over the last three decades in the field of Kalman filtering
(and LQG control). A first bonus is the derivation (see [24])
of square-root and (fast) Chandrasekhar algorithms for H™
estimation and control, a possibility that is much less obvious
in current approaches. These square-root algorithms, which are
now increasingly standard in H? Kalman filtering, have two
advantages over the earlier H°° algorithms: they eliminate the
- need for explicitly checking the existence conditions of the
filters and have various potential numerical and 1mplementa—
tional advantages.

Application of the Krein-space formulation to adaptive
filtering arises from the approach in [20] where it was shown
how to recast adaptive filtering problems as state-space es-
timation problems. If we further allow the elements of the
state-space model to belong to a Krein space, then we can solve
finite memory and H*° adaptive filtering problems. In the
finite memory case, this allows us to consider general sliding
patterns with windows of varying lengths. In the H° adaptive
case, this has allowed us to establish that the famed LMS (or
stochastic gradient) algorithm is an optimal H° filter [25].

We also remark that, although not pursued here, it is also
possible to construct dual (rather than partially equivalent)
Krein state-space models (via the concept of a dual basis)
which can be used to extend the methods of this paper to the
solution of H? and H* control problems.

We may finally remark that a major motivation for the
Krein-space formulation is that it provides geometric insights
into various estimation and control problems: Such geometric
insights are also useful elsewhere. For example, they can
be used to provide a stochastic interpretation and a geomet-
ric proof of the KYP (Kalman—Yacobovich=Popov) Lemma'
[27]-[29].
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