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Technical Notes and Correspondence

Array Algorithms for H < Estimation of the results developed for Kalman filtering and LQG control over the
. . ) last three decades.
Babak Hassibi, Thomas Kailath, and Ali H. Sayed One immediate fall-out is that it allows one to generalize the

square-root and fast array algorithms BFf estimation to theH =
Abstract—n this paper we develop array algorithms for H = filterin setting. The hope s that the resultirfg™ array algorithms will
These algorithms cznpbe regarded gs theyKrgein space generalizatio%s of be more attractive for actual 'mplementatlon§ B filters and
H? array algorithms, which are currently the preferred method for im- ~ controllers. As we shall see, th#™ array algorithms have several
plementing FZ? filters. The array algorithms considered include two main  interesting features. They involve propagating (indefinite) square-roots
families: square-root array algorithms, which are typically numerically  of the quantities of interest and guarantee that the proper inertia of

more stable than conventional ones, and fast array algorithms which, ,oce quantities is preserved. Furthermore, the condition required
when the system is time-invariant, typically offer an order of magnitude

reduction in the computational effort. Both have the interesting feature 07 the existence of the? ™ filters is built into the algorithms—if
that one does not need to explicitly check for the positivity conditions the algorithms can be carried out, then A" filter of the desired

required for the existence of FZ° filters, as these conditions are built into  |evel exists, and if they cannot be executed then sHCEH filters

the algorithms themselves. However, sincdd™ square-root algorithms o not exist. This can be a significant simplification of the existing
predominantly use J-unitary transformations, rather than the unitary algorithms

transformations required in the H? case, further investigation is needed

to determine the numerical behavior of such algorithms.
2
Index Terms—Array algorithms, estimation, fast algorithms, robustness, II. H” SQUARE-ROOT ARRAY ALGORITHMS
H™. In state-space estimation problems we begin with the (possibly)
time-variant state-space model

. INTRODUCTION
rjp = Fjej+ Gjuj, o

Ever since its inception in 1960, the celebrated Kalman filter has y; = Hyxj +v; (2.1)
played a central role in estimation. Although first expressed as a re-
cursive algorithm which required the propagation of a certain Riccati
recursion, current implementations of the Kalman filter are most oftegherepj € CM*", Gy € CVX™, H; € CP*™ andL; € CT" are

expressed in (what is called) anray form, and do not propagate this known, {u;, v,;} are the unknown disturbancefg;, } is the observed
Riccati recursion directly. The square-root array algorithms devisedditput, and s, } is the sighal we intend to estimate. We are typically in-
the late 1960's [1]-{3] are closely related to the QR method for solvingrested in obtaining filtered and predicted estimates, denotég by
systems of linear equations and have the properties of better congids,, that use the observatiofigy, & < j} and{ys. k < j}, respec-
tioning, reduced dynamical range, and the use of orthogonal transfgyely.
mations, which typically lead to more stable algorithms. Furthermore, |n conventional Kalman filtering théwo, u;,v;} are assumed to
for constant systems, or in fact for systems where the time-variatipg uncorrelated zero-mean random variables with variafiges 0,
is structured in a certain way, the Riccati and square-root recursiogg, > 0, andR; > 0, respectively, and the goal is to determine the esti-
both of which takeD(n") elementary computations (flops) per iteramatess, |; ands; so as to respectively minimize the expected squared
tion (wheren is the state-space dimension) can be replaced by mas&timation errorgs, — 4; 1) (si —4;|,) and(s; — 8:)"(s: — 4:). The
efficient fast recursions, which require or®(»*) flops per iteration splutions to these problems are given by
[41-7].

Recently, there has been growing interest in worst casH,’0r es- i1 = Fj@; + K, ;(y; — H;&j)
timation with the belief that the resulting estimators will have more {
robust performance in the face of model uncertainty and lack of sta-
tistical knowledge on the exogenous signals (see, e.g., [8]1-[10]). The [ it11541 = Fidjj + Ky (Y — Hipa Fidj ) 2.2)
resulting > estimators involve propagating a Riccati recursion and S0 =Ly, &)1 =0
bear a striking resemblance to the conventional Kalman filter. In a se- . o . .
fies of papers [11], we have recently shown tEEE filters are in- WNere the gain matricels, ; andXiy,; can be computed via
deed Kalman filters, provided we set up estimation problems, notin the ; . ; ;
usual Hilbert space of random variables, but in an indefinite-metric (or Kyj=PiH;R_ ;. Kpj=FjKy;
so-called Krein) space. This observation leads to a unified approach to R.;=R;j+ H,;P,H; (2.3)
H? andH®° theory and shows a way to apply to tHE® setting many

whereP; satisfies the Riccati recursion

s; = Ljx;

§,=L;2;, #0=0
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obtained results into doubt. For this, and other reasons (reduced dy- possibleH * a priori estimators that achieve (3.3) are given by
namic range, better conditioning, more stable algorithms, etc.) atten-  thoses; = F, ;(yo,- - y;—1) that satisfy
tion has moved in the Kalman filtering communlty to algorithms that
propagate square-root factors By, i.e. a matrle * say, such that = §50;— Ljg; 1" B 5515 — Lz,
Py = PP}y = PP ), [2), D S T R

Algorlthm 1 (Conventlonal Square-Root AlgorithmJhe gain ma-
trix K, ; necessary to obtain the predicted state estimates in the con-

7=0

— Gayr — Lede) (v°I; — LiPeLy) ™ (Siyp — Ledin) > 0

ventional Kalman filter (2.2) can be updated as (3.4)
{Rj” H;P* 0 } { R/ 0 0} forall 0 < k < i, wherei; is given by the recursion
pl/2 A1/2 ] 1/2 1/2
0 F]P]' G]Qj IXPJB Pj+l 0 §j—L7i‘j
1/2 1/2 o — e T - S S —
PO/ :Ho/ (2.5) i = Fii;+ K, |:yj _ Hji‘j:| > to =0 (3.5)
and the gain matri¥; ; necessary to obtain the filtered state estimates ~ andK,; = F;P;[L} H} ]R—
in (2.2) can be updated as i) Given~y > 0,anH a posterlorlfllter that achieves
1/2 pl/2 1/2 ;
BTOH DT oy [ B 0 pz _i/2 : . .
U L Ky ,R? o ’ D (55 =510 (55 = 8j15)
7=0 2
1/7 NH/210@) _ [ pl/2 sup 4 - - <y (3.6)
[F P GJQJ ]OJ - [PJ+1 0] 26 o, {u;} {v;} 1 d ! }
) @) ) _ ) (2. ) 23y xo + Zu;u,j + Z'U;'Uj
where@;, ©;"/, and©}™ are any unitary matrices that triangularize i=o i=o

the above pre-arrays.

Note that the quantities necessary to update the square-root array, €Xists if, and only if, all theeversely leadingubmatrices ofz;
and to calculate the state estimates, may all be found from the trian- andZ,; have the same inertia for< j < :. If this is the case,
gularized post-array. The above algorithms can be verified by squaring then all possibleZ > a posterioriestimators that achieve (3.6)

both sides of (2.5) and (2.6), using the fact thg®? = T, and com- are given by those; | ; = F ;(yo. - - - y;) that satisfy
paring the entries of both sides of the result.
K Z{ém L”L‘J} R;}|:s,7|,7_Ljij:|>0’ 0<k<i
ll. H*™ SQUARE-ROOT ARRAY ALGORITHMS s H;ji, Ty — Hjdy
A. H* Filtering (3.7

Let us begin by quoting the standard solutions to the so-called sub-
optimal H > estimation problems using the notation of [11]. (See also
[9] and [10].)

Theorem 1 (Suboptimd > Filters): Consider the standard state-
space model (2.1) and define the matrices

wherez; is given by the same recursion as (3.5) withreplaced
by §j BE

Important special choices that guarantee (3.4) and (3.7) are the
so-calledcentrala filters,s; = L;i; ands;|; = Lji;|;, wherei;
satisfies the recursion

I, 0 .
R; = v A 41 = F&; + Ka j(y; — Fj25), 20=0 (3.8)
0 I,
and i g L with
R.; = {‘“" a } + { f} P;[LY H!) (3.1) N By
J 0 Ll lHE]T K., =DH; (I, + H;P;H}) ™
where theP; satisfy the Riccati recursion and - . Y .
Pj= [P =~ "LiL;]
* * * * —1 L; *
Piwi =FPiFy + G;G; — FyF[L; HJR_; [HJJ b F; and wherez; | ; satisfies the recursion
Py =Tl,. (3.2) A R - L
Tjpr i = F525 05 + Ko g (Wi — Hip Fij )
i) Given~ > 0, anH*° a priori filter that achieves 1|1 =0 (3.9)
; with K, ; = PH; (I, + H;P;H;)™".
D (si =8 (55— 4)) B A Kien S —
= . rein Space Formulation
sup =0 - - <~ (3.3) P _ o )
wo{u;},{v;} I . . The centralH = filters of (3.8) and (3.9) look very similar to their
TG o + D wjug 4+ v Kalman filter counterparts. In fact, we have recently shown that these

I filters can be obtained as certain Kalman filters, not inZ&h
(Hilbert) space, but in an indefinite metric (so-called Krein) space [11],
[12]. We shall not go into the details of estimation in indefinite-metric
spaces here. Instead, we shall use the above observation as a guideline

1By the inertia of a Hermitian matrix, we mean the number of its positivdOr generalizing the square-root array algorithms of Section Il to the
negative, and zero eigenvalues. H*° setting.

exists if, and only if,all leading submatrice®f R; and R. ;
have the same inerfidor 0 < j < 1. If this is the case, then all
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The first problem that occurs if one wants to extend (2.5) to the Krein  Proof: The proof will be omitted for brevity and can be found,
space setting (of which thH*° filtering problem is a special case) isfor example, in [12, Ch. 5]. [ |
that the matrice®;, @;, P, andR..; need not be nonnegative definite.

We thus need to employ the notion of imdefinitesquare-root C. Square-Root Array Algorithms

R = RV2W R/, Qi = Q25 /2 We can now apply the r.esult of .Lemma lto the.triangulariiation
i P o i P W of the pre-array (3.11) using A-unitary transformation with/ =
P =p"sPp? R, =R/ISPR? (=I,)& T, 1, & 1. Infact, we need only consider the condition for
triangularizing the first block row (since setting the bld& 3) entry
where the{ Sf")} are signaturé matrices representing the inertia ofof the post array to be zero can always be done via a standard unitary
{Ri,Qi, Pi, R.;}. In the H™ setting we know that, when a solutiontransformation). Thus we need only consider

exists,P; > 0[11], and thatR. ; andR; have the same inertia. More- I 0 I
over, sincel; = I, > 0 andR; = I, © (—+*I,), we may write [ { (;’ I } [H]} P]vl/z] O,=[A 0] (3.15)
P J
R, =RMIRY?. Qi=QY*Q*? using aJ-unitary®;, with J = (—1,) &1, 1, If we insist on a lower
P, = pM?pr/?, R.; = RY?JR*/? (3.10) (upper) triangular, from Lemma 1, the condition is that all leading

(reversely leading) submatrices Hfand

with R!/? = (vI,) @ I, andJ = (—I,) @ I,. This suggests that in VI, 01T=I, 01+, 0
the H>® filtering problem, the pre-array in (2.5) should be replaced by { ! } { ! } { i }

0 Lo L]lLo I
|:’7'Iq 0 } {L;‘ } P2 Pt
0o I H; J . (3.11) LiT oipaye s )
0 EP G +[H]}P]- PIPIL Hi]=R.;  (316)

Since theH ™ estimation problem is most naturally formulated in &poyld have the same inertia. But this is precisely the condition re-
Krein space, it seems plausible that we should attempt to triangular&gred for the existence of aH> a priori (a posterior) filter! (see
(3.11), not by a unitary transformation, but by aunitary transforma-  Theorem 1). This result is quite useful—it states thaf#fi filter ex-

tion, i.e., a matrixd such that ists if, and only if, the pre-array can be triangularized.

Now that we have settled the existence question, we can triangularize

0J6" =607J6 =J. (312)  ihe pre-array (3.11) as
Unitary transformations (or ordinary rotations) preserve the length (or I, 0 H; Pz N
ordinary norm) of vectorsI-unitary transformations (or hyperbolic ro- 0 ~I L; |7 9, = { 0 O} . (3.17)
tations), on the other hand, preserve the (indefiniteporm of vectors. 0 F; pjl/2 G, B C 0

Indeed, ift = a®, with © J-unitary, therbJb* = a©JO"a™ = aJa™.

Now it is well known that it is always possible to triangularize array30 identify the elementsi, B, andC' in the post array we can square
using unitary transformations. But is this also true/efinitary trans- both sides of (3.17), use the fact titat is J-unitary, and compare the
formations? Thus, suppose we are given the (two-element) row vedalpck entries of both sides. This leads to the following result.

[« b] and are asked to hyperbolically rotate it so that the resulting vectorT heéorem 2{ = Square-Root Algorithm):The /> a priori (a pos-
lies along the direction of the-axis. If such a transformation exist, thenteriori) filtering problem with leveh has a solution if, and only if, for

we can write allj = 0,---,1there exist/-unitary matrices (With/ = (—I,) D1, @
I, © I.,), ©;, such that
b]1O =Je¢ .
[a b]©=[c 0] (3.13) {“/Tq 0} {Lf}pw 0 I ()
. J Q. — €,

where®JO* = JandJ = 1d(—1). Sinced is.J-unitary this implies 0 I H; ‘ TR _éuz P2 9
that 0 FP” G pIer

o ‘ PR =1y (3.18)

laf* = [o]” = |e|* > 0. (3.14)

with lef lower (upper) triangular. If this is the case, then all possible
Thus,[a b] must have nonnegative-norm. In other words, if the given H° a priori (a posterior) filters are given by (3.4) and (3.5) [(3.7) and
[« b] has negativel -norm (i.e.,|a|* — |b]* < 0) then it is impossible (3.5)] with &, ; andR. ; as found above.
to hyperbolically rotate it to lie along the-axis. Note that, as in thé7? case, the quantities necessary to update the
Thus itis quite obvious that it is not always possible to triangulariz&juare-root array and to calculate the desired estimates may all be
arrays using/ -unitary transformations. The precise condition followsfound from the triangularized post-array. An interesting aspect of The-
Lemma 1 {-Unitary Matrices and Triangularization):Let A and orem 2 is that there is no need to explicitly check for the existence
B be arbitraryn x n andn x m matrices, respectively, and supposeonditions required o filters. These conditions are built into the
J = 51®52, whereS; andS; aren x» andm x m signature matrices. square-root algorithms themselves: Hfi® estimator of the desired
Then[4 B] can be triangularized by &unitary transformatio® as  |evel exists if, and only if, the algorithms can be performed.

[A4 BlO=[C 0] D. The Central Filters

with C' lower (upper) triangular, if and only if, all leading (reversely Perhaps the most important f.ilters in t_he parametr_izati(_)n of The-
leading) submatrices of, and AS, A* + BS:B* have the same in- orem 1 are the so-called central filters, which we described in (3.8) and
ertia. B (3.9). In this section we shall show how the observer gaihs, and

K, ;, forthe central filters can be readily obtained from the square-root
2A diagonal matrix with diagonal entries eitherl or —1. array algorithms of Theorem 2.
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that the state-space model (2.1) is time-invariant, i.e., fat= F,
G; = G, H; = H, and, that in theH? case,Q; = @ > 0 and
R; =R > 0,forall j.

y
Under the aforementioned assumptions, it turns out that we can write
Pj1 — P; = M,;SM;, for all 5 4.1)

whereM; is an x d matrix andS is ad x d signature matrix. Thus, for
time-invariant state-space mode#y,., — P; has ranki for all j and in
addition has constant inertia. In several important casean be much
less tham.. Two such cases at®, = 0, andF, = II (the solution to

II = FIIF* + GQG™). In any case, wher < n, propagating the
Euclidean Space smaller matrices\/;, which is equivalent to propagating tt&, can

@) offer significant computational reductions.
Algorithm 2 (FastH? Recursions): The gain matrixk, ; =
. K, R ]/ necessary to obtain the state estimates in the conventional

y
\\\\ [ab s Kalman filter (2.2) can be computed using
it R!? HM, R!/? 0

c.J e, J+1

. {Fm FMJ} T |:IH'J+1 MJH}

£ X whereO ; is any.J-unitary matrix (withJ = I, @ S) that triangularizes
N the above pre-array. The algorithm is initialized with o = R +
N HNoH*, K,o = FIl,H*RY, and

// \\
/\ MySM; = P, — Iy = FILF* + GQG" — KpoReoKp o — 1.
7 Y

The validity of the above algorithm can be readily verified by

squaring both sides of (4.2), using the fact thgt/©; = .J, and
(b) comparing the entries on both sides of the result.
Fig. 1. Standard rotations versus hyperbolic rotations. Note that compared to the square-root formulas, the size of the pre-
array in the fast recursions has been reduced fiofv) x (p+n—+m)

| ] o 12 ) 0(p+n)x (p+d). Thus the numbgr of o_peration_s for each iteration

n fact, in [12] itis shown that, whe ;" is lower triangular, then pas peen reduced froM(n®) to O(n2d), with d typically much less
thann.

(4.2)

Minkowski Space

K, ;= (second block column ok, ,R1/°>

1o\ L V. H® FAST ARRAY ALGORITHMS
: ((2, 2) block entry of"/" ) . (3.19)
N A. The General Case
However, finding an expression fdi; ; requires us to rewrite the  Generalizing the fast array algorithms to t#E™ case is now
a posteriori square-root algorithm of Theorem 2 via the followingstraightforward and follows the same pattern presented for the

two-step procedure, which is té> analog of (2.6): square-root algorithms. We shall therefore omit the details and refer
~I, 0 L. L L the reader to [12, Chapter 5]. The result is given below.
{ Oq I } [H]} P]/ ol — Rc,/] 0 Theorem 3 °° Fast Array Algorithm): The H °° a priori (a poste-
0 r ;31/2 oKy JBI/Z pl‘/? riori ) filtering problem with levely has a solution if, and only if, for all
J Y j =0, ithere exist/-unitary matrices (withh = (—I1,)® 1,4 S5),
[ F; P;‘/JZ Gl @(,2) [leﬁ 0] (3.20) ©;, such that
Where(/)(l) is J-unitary, with.J = (=I,) & I, ¢ I,., (—)(2) is unitary, Rl/f {f]} M; { Ri/fﬂ 0 5
/3 S .
andRz_’';" is upper triangular. In the above recursions, we of course have X Rl/’ 5 j K, J+1Rl/;+1 M;
p.J =7

Ki; = P [L; H;]R.!.In[12] we have shown that, wheR.’” is

upper triangular, the gain matri, ; is given by with Ri{f lower (upper) triangular, and where the algorithm is initial-

1/9 ized with
K, ;= (second block column ok's ; R )

—-I, 0 L
1 Re = e II L* H*

((2 2) block entry ole/Z> . (321 0 { 0 Ip} + {H} ol ]

K,o=FIL[L* H*|R.;

IV. H? FAST ARRAY ALGORITHMS and

The conventional Kalman filter and square-root array recursions of ~ MoSMy = P — I,
Section Il both requir@®(n?) operations per iteration. However, when = FI F* 4+ GQG* — K, 0R. oK}y — . (5.2)
the state-space model is time-invariant (or if the time-variation is struc- ' ’
tured in a certain way), there exist fast recursions that require orfithis is the case, then all possiblé> a priori (a posterior) filters
O(n?) operations per iteration [4]-[7]. In what follows we shall assumare given by (3.4), (3.5) and (3.5)—(3.7).
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Note that compared to thE > square-root formulas, the size of the [7] A. H. Sayed and T. Kailath, “Extended Chandrasekhar recursions,”

pre-array in theH > fast recursions has been reduced frgmt ¢ + IEEE Trans. Automat. Confwol. 39, pp. 619-623, Mar. 1994.

] ] ; [8] T. Basar, “Optimum performance levels for minimax filters, predictors
n)x(ptat n * n?) o +q + n) x .(p +q+ d) wherem, p, and smoothers,Syst. Contr. Letfvol. 16, pp. 309-317, 1991.
andq are the dimensions of the driving disturbance, output, and states{Q] P. P. Khargonekar and K. M. Nagpal, “Filtering and smoothing in an

to be estimated, respectively, and wheris the number of the states. H* setting,”|EEE Trans. Automat. Coniwol. 36, pp. 151-166, 1991.
Thus the number of operations for each iteration has been reduced froi#f)] U. Shaked and Y. Theodor,H >-optimal estimation: A tutorial,”
()(n“‘) '[OO(nZd) with d typically much less than. in Proc. IEEE Conf. Decision and Controlfucson, AZ, 1992, pp.

/ . . . 2278-2286.
. Asin th_e square'r(_)_Ot_ case, th? fast recursions do _nOt require ?Xp“?il] B. Hassibi, A. H. Sayed, and T. Kailath, “Linear estimation in Krein
itly checking the positivity conditions of Theorem 1—if the recursions spaces—Parts | and II: Theory and applicatiofSEE Trans. Automat.
can be carried out then d&h> estimator of the desired level exists, and Contr, vol. 41, pp. 18-49, Jan. 1996.
if not, such an estimator does not exist. [12] B. Hassibi, “Indefinite metric spaces in estimation, control and adaptive
filtering,” Ph.D. dissertation, Stanford Univ., CA, 1996.
. [13] s. Bittante, A. J. Laub, and J. C. Willems, Ed$he Riccati Equa-
B. The Central Filters tion. Berlin, Germany: Springer-Verlag, 1991.
We finally remark that fast array algorithms can also be developed
for the centralH = filters (3.8) and (3.9). The resulting statements are

straightforward and will be omitted for brevity.

VI. CoNcLUsIO , :
NCLUSION Reliable Control of Nonlinear Systems

In this paper, we developed square-root and fast array algorithms for
the H*° a priori anda posterioriand filtering problems. These algo- Yew-Wen Liang, Der-Cherng Liaw, and Ti-Chung Lee
rithms involve propagating the indefinite square-roots of the quantities
of interest and have the interesting property that the appropriate inertia ) ) ’
of these quantities is preserved. Moreover, the conditions for the %¥}éﬁ;ggcﬁ;£:h's paper, we extend Veillette's results (1995) to the study
. o £ o . ) -quadratic regulator problem for nonlinear systems. This
istence of thel ™ filters are built into the algorithms, so that filter is achieved by employing the Hamilton—-Jacobi inequality in the nonlinear
solutions will exist if, and only if, the algorithms can be executed. case instead of algebraic Riccati equation in the linear one. The proposed
The conventional square-root and fast array algorithms are prefersgate-feedback controllers are shown to be able to tolerate the outage of
because of their better numerical behavior (in the case of square-rdgtiators within a prespecified subset of actuators. Both the gain margins
- . S f guaranteeing system stability and retaining a performance bound are
arrays) and their reduced computational complexity (in the case of tz]sef?mated.
fast recursions). Since thE°° square-root and fast array algorithms
are the direct analogs of their conventional counterparts, they may
more attractive for numerical implementationgbi* filters. However,
sinceJ-unitary rather than unitary operations are involved, further nu-
merical investigation is needed. |. INTRODUCTION
Our derivation of theH ™ square-root and fast array algorithms
demonstrates a virtue of the Krein space approacH to estimation
and control; the results appear to be more difficult to conceive a
prove in the traditionaH “° approaches. We should also mention tha

b@dex Terms—Algebraic Riccati equation, Hamilton—Jacobi inequality,
linear-quadratic regulator problem.

The study of the design of reliable control systems which can
m}erate the failure of the control components and retain the desired
ystem performance has recently attracted considerable attention

there are many variations of the conventional square-root and f%‘?ebT'g" [1] Zlilnd [E]_[l?)])' Several a%prr:)aches for the ?ehsign o;fthe
array algorithms, e.g. for control problems, and the methods givé‘?‘f'a e controllers have been proposed; however, most of those efforts

here are directly applicable to extending these variations tditfte are focuseq on linear C(.)erI systems [1], [6]-[8] rat_hert_han _nonlingar
setting as well. Finally, the algorithms presented here are equa‘ﬂ es. For instance, Veillette employed the alg:_ebra|c Riccati equation
applicable to risk-sensitive estimation and control problems and i proach to dt_evelop a procedure for the des'.gn of a state-feedback
. . controllers, which could tolerate the outage within a selected subset
quadratic dynamic games. . - - .
of actuators while retaining the stability and the known quadratic
performance bound [7]. Both the gain margins for guaranteeing
system’s stability and preserving system performance were also
[1] P. Dyer and S. McReynolds, “Extension of square-root filtering to inestimated in [7]. Two recent papers employed the Hamilton—Jacobi

i'{;‘gg process noise,J. Optimiz. Theory Applvol. 3, pp. 444-459, jnequality approach to investigate the nonlinear reliable control

P. G. Kaminski, A. E. Bryson, and S. F. Schmidt, “Discrete Square_ro&roblem. One stydled t.h.e design of controllers that could guarantee
filtering: A survey of current techniquesEEE Trans. Automat. Congr. locally asymptotic stability andf.. performance even when some
vol. 16, pp. 727-735, Dec. 1971. components failed within a prespecified subset of control components
[3] H. L. Harter, “The Method of Least-Squares and Some Alternatives,”

Aerospace Res. Lab., Air Force Systems Command, Wright-Patterson
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