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Array Algorithms for Estimation

Babak Hassibi, Thomas Kailath, and Ali H. Sayed

Abstract—In this paper we develop array algorithms for filtering.
These algorithms can be regarded as the Krein space generalizations of

array algorithms, which are currently the preferred method for im-
plementing filters. The array algorithms considered include two main
families: square-root array algorithms, which are typically numerically
more stable than conventional ones, and fast array algorithms which,
when the system is time-invariant, typically offer an order of magnitude
reduction in the computational effort. Both have the interesting feature
that one does not need to explicitly check for the positivity conditions
required for the existence of filters, as these conditions are built into
the algorithms themselves. However, since square-root algorithms
predominantly use -unitary transformations, rather than the unitary
transformations required in the case, further investigation is needed
to determine the numerical behavior of such algorithms.

Index Terms—Array algorithms, estimation, fast algorithms, robustness,
.

I. INTRODUCTION

Ever since its inception in 1960, the celebrated Kalman filter has
played a central role in estimation. Although first expressed as a re-
cursive algorithm which required the propagation of a certain Riccati
recursion, current implementations of the Kalman filter are most often
expressed in (what is called) anarray form, and do not propagate this
Riccati recursion directly. The square-root array algorithms devised in
the late 1960’s [1]–[3] are closely related to the QR method for solving
systems of linear equations and have the properties of better condi-
tioning, reduced dynamical range, and the use of orthogonal transfor-
mations, which typically lead to more stable algorithms. Furthermore,
for constant systems, or in fact for systems where the time-variation
is structured in a certain way, the Riccati and square-root recursions,
both of which takeO(n3) elementary computations (flops) per itera-
tion (wheren is the state-space dimension) can be replaced by more
efficient fast recursions, which require onlyO(n2) flops per iteration
[4]–[7].

Recently, there has been growing interest in worst case, orH1, es-
timation with the belief that the resulting estimators will have more
robust performance in the face of model uncertainty and lack of sta-
tistical knowledge on the exogenous signals (see, e.g., [8]–[10]). The
resultingH1 estimators involve propagating a Riccati recursion and
bear a striking resemblance to the conventional Kalman filter. In a se-
ries of papers [11], we have recently shown thatH1 filters are in-
deed Kalman filters, provided we set up estimation problems, not in the
usual Hilbert space of random variables, but in an indefinite-metric (or
so-called Krein) space. This observation leads to a unified approach to
H2 andH1 theory and shows a way to apply to theH1 setting many
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of the results developed for Kalman filtering and LQG control over the
last three decades.

One immediate fall-out is that it allows one to generalize the
square-root and fast array algorithms ofH2 estimation to theH1

setting. The hope is that the resultingH1 array algorithms will
be more attractive for actual implementations ofH1 filters and
controllers. As we shall see, theH1 array algorithms have several
interesting features. They involve propagating (indefinite) square-roots
of the quantities of interest and guarantee that the proper inertia of
these quantities is preserved. Furthermore, the condition required
for the existence of theH1 filters is built into the algorithms—if
the algorithms can be carried out, then anH1 filter of the desired
level exists, and if they cannot be executed then suchH1 filters
do not exist. This can be a significant simplification of the existing
algorithms.

II. H2 SQUARE-ROOT ARRAY ALGORITHMS

In state-space estimation problems we begin with the (possibly)
time-variant state-space model

xj+1 = Fjxj +Gjuj ; x0

yj = Hjxj + vj

sj = Ljxj

(2.1)

whereFj 2 Cn�n; Gj 2 Cn�m; Hj 2 Cp�n andLj 2 Cq�n are
known,fuj ; vjg are the unknown disturbances,fyjg is the observed
output, andfsjg is the signal we intend to estimate. We are typically in-
terested in obtaining filtered and predicted estimates, denoted byŝj j j
andŝj , that use the observationsfyk; k � jg andfyk; k < jg, respec-
tively.

In conventional Kalman filtering thefx0; uj ; vjg are assumed to
be uncorrelated zero-mean random variables with variances�0 � 0;
Qi � 0, andRi > 0, respectively, and the goal is to determine the esti-
mateŝsj j j andŝj so as to respectively minimize the expected squared
estimation errors(si� ŝi j i)

�(si� ŝi j i) and(si� ŝi)�(si� ŝi). The
solutions to these problems are given by

x̂j+1 = Fj x̂j +Kp;j(yj �Hj x̂j)

ŝj = Lj x̂j ; x̂0 = 0

x̂j+1 j j+1 = Fj x̂j j j +Kf;j+1(yj+1 �Hj+1Fj x̂j j j)

ŝj j j = Lj x̂j j j ; x̂�1 j�1 = 0
(2.2)

where the gain matricesKp;j andKf;j can be computed via

Kf;j = PjHjR
�1
e;j ; Kp;j = FjKf;j

Re;j = Rj +HjPjH
�
j (2.3)

wherePj satisfies the Riccati recursion

Pj+1 = FjPjF
�
j +GjQjG

�
j �Kp;jRe;jK

�
p;j

P0 = �0: (2.4)

The matrixPj appearing in the Riccati recursion (2.4) has the phys-
ical meaning of being the variance of the state prediction error,~xj =
xj � x̂j , and therefore has to be nonnegative definite. Round-off er-
rors can cause a loss of positive-definiteness, thus throwing all the
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obtained results into doubt. For this, and other reasons (reduced dy-
namic range, better conditioning, more stable algorithms, etc.) atten-
tion has moved in the Kalman filtering community to algorithms that
propagate square-root factors ofPj , i.e. a matrix,P 1=2

j say, such that

Pj = P
1=2
j (P

1=2
j )� = P

1=2
j P

�=2
j [1], [2].

Algorithm 1 (Conventional Square-Root Algorithm):The gain ma-
trix Kp;j necessary to obtain the predicted state estimates in the con-
ventional Kalman filter (2.2) can be updated as

R
1=2
j HjP

1=2
j 0

0 FjP
1=2
j GjQ

1=2
j

�j =
R
1=2
e;j 0 0

Kp;jR
1=2
e;j P

1=2
j+1 0

P
1=2
0 =�

1=2
0 (2.5)

and the gain matrixKf;j necessary to obtain the filtered state estimates
in (2.2) can be updated as

R
1=2
j HjP

1=2
j

0 P
1=2
j

�
(1)
j =

R
1=2
e;j 0

Kf;jR
1=2
e;j P

1=2
j j j

; P
1=2
0 = �

1=2
0

[FjP
1=2
j j j GjQ

1=2
j ] �

(2)
j = [P

1=2
j+1 0 ]

(2.6)
where�j ; �

(1)
j , and�(2)

j are any unitary matrices that triangularize
the above pre-arrays.

Note that the quantities necessary to update the square-root array,
and to calculate the state estimates, may all be found from the trian-
gularized post-array. The above algorithms can be verified by squaring
both sides of (2.5) and (2.6), using the fact that�j�

�
j = I , and com-

paring the entries of both sides of the result.

III. H1 SQUARE-ROOT ARRAY ALGORITHMS

A. H1 Filtering

Let us begin by quoting the standard solutions to the so-called sub-
optimalH1 estimation problems using the notation of [11]. (See also
[9] and [10].)

Theorem 1 (SuboptimalH1 Filters): Consider the standard state-
space model (2.1) and define the matrices

Rj =
�
2Iq 0

0 Ip

and

Re;j =
�
2Iq 0

0 Ip
+

Lj

Hj
Pj [L

�
j H�

j ] (3.1)

where thePj satisfy the Riccati recursion

Pj+1 =FjPjF
�
j +GjG

�
j � FjPj [L

�
j H�

j ]R
�1
e;j

Lj

Hj
PjF

�
j

P0 =�0: (3.2)

i) Given
 > 0, anH1 a priori filter that achieves

sup
x ;fu g;fv g

i

j=0

(sj � ŝj)
�(sj � ŝj)

x�0�
�1
0 x0 +

i

j=0

u�juj +

i

j=0

v�j vj

< 

2 (3.3)

exists if, and only if,all leading submatricesof Rj andRe;j

have the same inertia1 for 0 � j � i. If this is the case, then all

1By the inertia of a Hermitian matrix, we mean the number of its positive,
negative, and zero eigenvalues.

possibleH1 a priori estimators that achieve (3.3) are given by
thoseŝj = Fp;j(y0; � � � yj�1) that satisfy

k�1

j=0

ŝj j j � Lj x̂j

yj �Hj x̂j

�

R
�1
e;j

ŝj j j � Lj x̂j

yj �Hj x̂j

� (ŝk j k � Lkx̂k)
�(
2Iq � LkPkL

�
k)
�1(ŝk j k � Lkx̂k) > 0

(3.4)

for all 0 � k � i, wherex̂j is given by the recursion

x̂j+1 = Fj x̂j +Kp;j
ŝj � Lj x̂j

yj �Hj x̂j
; x̂0 = 0 (3.5)

andKp;j = FjPj [L
�
j H�

j ]R
�1
e;j .

ii) Given 
 > 0, anH1 a posteriorifilter that achieves

sup
x ;fu g;fv g

i

j=0

(sj � ŝj j j)
�(sj � ŝj j j)

x�0�
�1
0 x0 +

i

j=0

u�juj +

i

j=0

v�j vj

< 

2 (3.6)

exists if, and only if, all thereversely leadingsubmatrices ofRj

andRe;j have the same inertia for0 � j � i. If this is the case,
then all possibleH1 a posterioriestimators that achieve (3.6)
are given by thosêsj j j = Ff;j(y0; � � � yj) that satisfy

k

j=0

ŝj j j � Lj x̂j

yj �Hj x̂j

�

R
�1
e;j

ŝj j j � Lj x̂j

yj �Hj x̂j
> 0; 0 � k � i

(3.7)

wherex̂j is given by the same recursion as (3.5) withŝj replaced
by ŝj j j .

Important special choices that guarantee (3.4) and (3.7) are the
so-calledcentrala filters, ŝj = Lj x̂j andŝj j j = Lj x̂j j j , wherex̂j
satisfies the recursion

x̂j+1 = Fj x̂j +Ka;j(yj � Fj x̂j); x̂0 = 0 (3.8)

with

Ka;j = ~PjH
�
j (Ip +Hj

~PjH
�
j )
�1

and
~Pj = P

�1
j � 


�2
L
�
jLj

�1

and wherêxj j j satisfies the recursion

x̂j+1 j j+1 =Fj x̂j j j +Ks;j+1(yj+1 �Hj+1Fj x̂j j j)

x̂�1 j�1 = 0 (3.9)

with Ks;j = PjH
�
j (Ip +HjPjH

�
j )
�1.

B. A Krein Space Formulation

The centralH1 filters of (3.8) and (3.9) look very similar to their
Kalman filter counterparts. In fact, we have recently shown that these
H1 filters can be obtained as certain Kalman filters, not in anH2

(Hilbert) space, but in an indefinite metric (so-called Krein) space [11],
[12]. We shall not go into the details of estimation in indefinite-metric
spaces here. Instead, we shall use the above observation as a guideline
for generalizing the square-root array algorithms of Section II to the
H1 setting.
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The first problem that occurs if one wants to extend (2.5) to the Krein
space setting (of which theH1 filtering problem is a special case) is
that the matricesRi; Qi; Pi andRe�i need not be nonnegative definite.
We thus need to employ the notion of anindefinitesquare-root

Ri = R
1=2
i S

(1)
i R

�=2
i ; Qi = Q

1=2
i S

(2)
i Q

�=2
i

Pi = P
1=2
i S

(3)
i P

�=2
i ; Re;i = R

1=2
e;i S

(4)
i R

�=2
e;i

where thefS(k)
i g are signature2 matrices representing the inertia of

fRi;Qi; Pi; Re;ig. In theH1 setting we know that, when a solution
exists,Pi � 0 [11], and thatRe;i andRi have the same inertia. More-
over, sinceQi = Im > 0 andRi = Ip � (�
2Iq), we may write

Ri = R
1=2
i JR

�=2
i ; Qi = Q

1=2
i Q

�=2
i

Pi = P
1=2
i P

�=2
i ; Re;i = R

1=2
e;i JR

�=2
e;i (3.10)

with R1=2
i = (
Iq) � Ip andJ = (�Iq)� Ip. This suggests that in

theH1 filtering problem, the pre-array in (2.5) should be replaced by


Iq 0

0 Ip

Lj

Hj
P
1=2
j 0

0 FjP
1=2
j Gj

: (3.11)

Since theH1 estimation problem is most naturally formulated in a
Krein space, it seems plausible that we should attempt to triangularize
(3.11), not by a unitary transformation, but by aJ-unitary transforma-
tion, i.e., a matrix� such that

�J�� = ��

J� = J: (3.12)

Unitary transformations (or ordinary rotations) preserve the length (or
ordinary norm) of vectors.J-unitary transformations (or hyperbolic ro-
tations), on the other hand, preserve the (indefinite)J-norm of vectors.
Indeed, ifb = a�, with�J-unitary, thenbJb� = a�J��a� = aJa�.

Now it is well known that it is always possible to triangularize arrays
using unitary transformations. But is this also true ofJ-unitary trans-
formations? Thus, suppose we are given the (two-element) row vector
[a b] and are asked to hyperbolically rotate it so that the resulting vector
lies along the direction of thex-axis. If such a transformation exist, then
we can write

[ a b ] � = [ c 0 ] (3.13)

where�J�� = J andJ = 1�(�1). Since� isJ-unitary this implies
that

jaj2 � jbj2 = jcj2 � 0: (3.14)

Thus,[a b] must have nonnegativeJ-norm. In other words, if the given
[a b] has negativeJ-norm (i.e.,jaj2 � jbj2 < 0) then it is impossible
to hyperbolically rotate it to lie along thex-axis.

Thus it is quite obvious that it is not always possible to triangularize
arrays usingJ-unitary transformations. The precise condition follows.

Lemma 1 (J -Unitary Matrices and Triangularization):Let A and
B be arbitraryn � n andn �m matrices, respectively, and suppose
J = S1�S2, whereS1 andS2 aren�n andm�m signature matrices.
Then[A B] can be triangularized by aJ-unitary transformation� as

[A B ] � = [C 0 ]

with C lower (upper) triangular, if and only if, all leading (reversely
leading) submatrices ofS1 andAS1A� + BS2B

� have the same in-
ertia.

2A diagonal matrix with diagonal entries either+1 or�1.

Proof: The proof will be omitted for brevity and can be found,
for example, in [12, Ch. 5].

C. Square-Root Array Algorithms

We can now apply the result of Lemma 1 to the triangularization
of the pre-array (3.11) using aJ-unitary transformation withJ =
(�Iq)�Ip�In�Im. In fact, we need only consider the condition for
triangularizing the first block row (since setting the block(2; 3) entry
of the post array to be zero can always be done via a standard unitary
transformation). Thus we need only consider

Iq 0

0 
Ip

Lj

Hj
P
1=2
j �j = [A 0 ] (3.15)

using aJ-unitary�j , withJ = (�Iq)�Ip�In. If we insist on a lower
(upper) triangularA, from Lemma 1, the condition is that all leading
(reversely leading) submatrices ofJ and


Iq 0

0 Ip

�Iq 0

0 Ip


Iq 0

0 Ip

R

+
Lj

Hj
P
1=2
j P

�=2
j [L�j H�

j ] = Re;j (3.16)

should have the same inertia. But this is precisely the condition re-
quired for the existence of anH1 a priori (a posteriori) filter! (see
Theorem 1). This result is quite useful—it states that anH1 filter ex-
ists if, and only if, the pre-array can be triangularized.

Now that we have settled the existence question, we can triangularize
the pre-array (3.11) as

Ip 0

0 
Iq

Hj

Lj
P
1=2
j 0

0 FjP
1=2
j Gj

�j =
A 0 0

B C 0
: (3.17)

To identify the elementsA; B, andC in the post array we can square
both sides of (3.17), use the fact that�j is J-unitary, and compare the
block entries of both sides. This leads to the following result.

Theorem 2 (H1 Square-Root Algorithm):TheH1 a priori (a pos-
teriori) filtering problem with level
 has a solution if, and only if, for
all j = 0; � � � ; i there existJ-unitary matrices (withJ = (�Iq)�Ip�
In � Im), �j , such that


Iq 0

0 Ip

Lj

Hj
P
1=2
j 0

0 FjP
1=2
j Gj

�j =
R
1=2
e;j 0 0

Kp;jR
1=2
e;j P

1=2
j+1 0

P
1=2
0 =�

1=2
0 (3.18)

with R1=2
e;j lower (upper) triangular. If this is the case, then all possible

H1 a priori (a posteriori) filters are given by (3.4) and (3.5) [(3.7) and
(3.5)] withKp;j andRe;j as found above.

Note that, as in theH2 case, the quantities necessary to update the
square-root array and to calculate the desired estimates may all be
found from the triangularized post-array. An interesting aspect of The-
orem 2 is that there is no need to explicitly check for the existence
conditions required ofH1 filters. These conditions are built into the
square-root algorithms themselves: anH1 estimator of the desired
level exists if, and only if, the algorithms can be performed.

D. The Central Filters

Perhaps the most important filters in the parametrization of The-
orem 1 are the so-called central filters, which we described in (3.8) and
(3.9). In this section we shall show how the observer gains,Ka;j and
Ks;j , for the central filters can be readily obtained from the square-root
array algorithms of Theorem 2.
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(a)

(b)

Fig. 1. Standard rotations versus hyperbolic rotations.

In fact, in [12] it is shown that, whenR1=2
e;j is lower triangular, then

Ka;j = second block column ofKp;jR
1=2
e;j

� (2, 2) block entry ofR1=2
e;j

�1

: (3.19)

However, finding an expression forKs;j requires us to rewrite the
a posteriori square-root algorithm of Theorem 2 via the following
two-step procedure, which is theH1 analog of (2.6):


Iq 0

0 Ip

Lj

Hj
P
1=2
j

0 P
1=2
j

�
(1)
j =

R
1=2
e;j 0

Kf;jR
1=2
e;j P

1=2
j j j

[FjP
1=2
j j j Gj ] �

(2)
j = [P

1=2
j+1 0 ]

(3.20)
where�(1)

j is J-unitary, withJ = (�Iq)� Ip � In; �
(2)
j is unitary,

andR1=2
e;j is upper triangular. In the above recursions, we of course have

Kf;j = Pj [L
�
j H

�
j ]R

�1
e;j . In [12] we have shown that, whenR1=2

e;j is
upper triangular, the gain matrixKs;j is given by

Ks;j = second block column ofKf;jR
1=2
e;j

� (2, 2) block entry ofR1=2
e;j

�1

: (3.21)

IV. H2 FAST ARRAY ALGORITHMS

The conventional Kalman filter and square-root array recursions of
Section II both requireO(n3) operations per iteration. However, when
the state-space model is time-invariant (or if the time-variation is struc-
tured in a certain way), there exist fast recursions that require only
O(n2) operations per iteration [4]–[7]. In what follows we shall assume

that the state-space model (2.1) is time-invariant, i.e., thatFj = F;

Gj = G; Hj = H , and, that in theH2 case,Qj = Q � 0 and
Rj = R > 0, for all j.

Under the aforementioned assumptions, it turns out that we can write

Pj+1 � Pj =MjSMj ; for all j (4.1)

whereMj is an�dmatrix andS is ad�d signature matrix. Thus, for
time-invariant state-space models,Pj+1�Pj has rankd for all j and in
addition has constant inertia. In several important cases,d can be much
less thann. Two such cases areP0 = 0, andP0 = � (the solution to
� = F�F � + GQG�). In any case, whend < n, propagating the
smaller matricesMj , which is equivalent to propagating thePj , can
offer significant computational reductions.

Algorithm 2 (FastH2 Recursions): The gain matrixKp;j =

Kp;jR
�1=2
e;j necessary to obtain the state estimates in the conventional

Kalman filter (2.2) can be computed using

R
1=2
e;j HMj

Kp;j FMj
�j =

R
1=2
e;j+1 0

Kp;j+1 Mj+1
(4.2)

where�j is anyJ-unitary matrix (withJ = Ip�S) that triangularizes
the above pre-array. The algorithm is initialized withRe;0 = R +

H�0H
�; Kp;0 = F�0H

�R
1=2
e;0 , and

M0SM
�
0 = P1 � �0 = F�0F

� +GQG
�
�Kp;0Re;0K

�
p;0 � �0:

The validity of the above algorithm can be readily verified by
squaring both sides of (4.2), using the fact that�jJ�

�
j = J , and

comparing the entries on both sides of the result.
Note that compared to the square-root formulas, the size of the pre-

array in the fast recursions has been reduced from(p+n)�(p+n+m)
to (p+n)� (p+ d). Thus the number of operations for each iteration
has been reduced fromO(n3) toO(n2d), with d typically much less
thann.

V. H1 FAST ARRAY ALGORITHMS

A. The General Case

Generalizing the fast array algorithms to theH1 case is now
straightforward and follows the same pattern presented for the
square-root algorithms. We shall therefore omit the details and refer
the reader to [12, Chapter 5]. The result is given below.

Theorem 3 (H1 Fast Array Algorithm): TheH1 a priori (a poste-
riori ) filtering problem with level
 has a solution if, and only if, for all
j = 0; � � � ; i there existJ-unitary matrices (withJ = (�Iq)�Ip�S),
�j , such that

R
1=2
e;j

L

H
Mj

Kp;jR
1=2
e;j FMj

�j =
R
1=2
e;j+1 0

Kp;j+1R
1=2
e;j+1 Mj+1

(5.1)

with R1=2
e;j lower (upper) triangular, and where the algorithm is initial-

ized with

Re;0 =
�
2Iq 0

0 Ip
+

L

H
�0 [L

� H� ]

Kp;0 = F�0 [L
� H� ]R�1

e;0

and

M0SM
�
0 = P1 � �0

= F�0F
� +GQG

�
�Kp;0Re;0K

�
p;0 � �0: (5.2)

If this is the case, then all possibleH1 a priori (a posteriori) filters
are given by (3.4), (3.5) and (3.5)–(3.7).
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Note that compared to theH1 square-root formulas, the size of the
pre-array in theH1 fast recursions has been reduced from(p + q +
n) � (p + q + n + m) to (p + q + n) � (p + q + d) wherem; p,
andq are the dimensions of the driving disturbance, output, and states
to be estimated, respectively, and wheren is the number of the states.
Thus the number of operations for each iteration has been reduced from
O(n3) toO(n2d) with d typically much less thann.

As in the square-root case, the fast recursions do not require explic-
itly checking the positivity conditions of Theorem 1—if the recursions
can be carried out then anH1 estimator of the desired level exists, and
if not, such an estimator does not exist.

B. The Central Filters

We finally remark that fast array algorithms can also be developed
for the centralH1 filters (3.8) and (3.9). The resulting statements are
straightforward and will be omitted for brevity.

VI. CONCLUSION

In this paper, we developed square-root and fast array algorithms for
theH1 a priori anda posterioriand filtering problems. These algo-
rithms involve propagating the indefinite square-roots of the quantities
of interest and have the interesting property that the appropriate inertia
of these quantities is preserved. Moreover, the conditions for the ex-
istence of theH1 filters are built into the algorithms, so that filter
solutions will exist if, and only if, the algorithms can be executed.

The conventional square-root and fast array algorithms are preferred
because of their better numerical behavior (in the case of square-root
arrays) and their reduced computational complexity (in the case of the
fast recursions). Since theH1 square-root and fast array algorithms
are the direct analogs of their conventional counterparts, they may be
more attractive for numerical implementations ofH1 filters. However,
sinceJ-unitary rather than unitary operations are involved, further nu-
merical investigation is needed.

Our derivation of theH1 square-root and fast array algorithms
demonstrates a virtue of the Krein space approach toH1 estimation
and control; the results appear to be more difficult to conceive and
prove in the traditionalH1 approaches. We should also mention that
there are many variations of the conventional square-root and fast
array algorithms, e.g. for control problems, and the methods given
here are directly applicable to extending these variations to theH1

setting as well. Finally, the algorithms presented here are equally
applicable to risk-sensitive estimation and control problems and to
quadratic dynamic games.
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Reliable Control of Nonlinear Systems

Yew-Wen Liang, Der-Cherng Liaw, and Ti-Chung Lee

Abstract—In this paper, we extend Veillette’s results (1995) to the study
of reliable linear-quadratic regulator problem for nonlinear systems. This
is achieved by employing the Hamilton–Jacobi inequality in the nonlinear
case instead of algebraic Riccati equation in the linear one. The proposed
state-feedback controllers are shown to be able to tolerate the outage of
actuators within a prespecified subset of actuators. Both the gain margins
of guaranteeing system stability and retaining a performance bound are
estimated.

Index Terms—Algebraic Riccati equation, Hamilton–Jacobi inequality,
linear-quadratic regulator problem.

I. INTRODUCTION

The study of the design of reliable control systems which can
tolerate the failure of the control components and retain the desired
system performance has recently attracted considerable attention
(see e.g., [1] and [6]–[10]). Several approaches for the design of the
reliable controllers have been proposed; however, most of those efforts
are focused on linear control systems [1], [6]–[8] rather than nonlinear
ones. For instance, Veillette employed the algebraic Riccati equation
approach to develop a procedure for the design of a state-feedback
controllers, which could tolerate the outage within a selected subset
of actuators while retaining the stability and the known quadratic
performance bound [7]. Both the gain margins for guaranteeing
system’s stability and preserving system performance were also
estimated in [7]. Two recent papers employed the Hamilton–Jacobi
inequality approach to investigate the nonlinear reliable control
problem. One studied the design of controllers that could guarantee
locally asymptotic stability andH1 performance even when some
components failed within a prespecified subset of control components
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