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C
ognitive radio (CR) has recently emerged as a prom-
ising technology to revolutionize spectrum utiliza-
tion in wireless communications. In a CR network,
secondary users continuously sense the spectral
environment and adapt transmission parameters to

opportunistically use the available spectrum. A fundamental
problem for CRs is spectrum sensing; secondary users need to
reliably detect weak primary signals of possibly different types
over a targeted wide frequency band in order to identify spectral
holes for opportunistic communications. Conceptually and
practically, there is growing awareness that collaboration among
several CRs can achieve considerable performance gains. This

article provides an overview of the challenges and possible solu-
tions for the design of collaborative wideband sensing in CR net-
works. It is argued that collaborative spectrum sensing can
make use of signal processing gains at the physical layer to miti-
gate strict requirements on the radio frequency front-end and to
exploit spatial diversity through network cooperation to signifi-
cantly improve sensing reliability.

COGNITIVE RADIOS
Traditional spectrum allocation policies are facing scarce radio
frequency (RF) resources due to the proliferation of wireless
services. Recently, the Federal Communications Commission
(FCC) is developing policies for unlicensed wireless devices to
opportunistically use vacant frequency bands (see Figure 1),

[Zhi Quan, Shuguang Cui, H. Vincent Poor, and Ali H. Sayed]

Collaborative 
Wideband Sensing 

for Cognitive Radios

[An overview of challenges and solutions]

Digital Object Identifier 10.1109/MSP.2008.929296

IEEE SIGNAL PROCESSING MAGAZINE [60] NOVEMBER 2008 1053-5888/08/$25.00©2008IEEE

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 21, 2009 at 13:40 from IEEE Xplore.  Restrictions apply.



especially vacant TV broadcast bands [1]. In this context, the
emerging CR technology is considered to be a promising tech-
nique to improve spectrum utilization by seeking and oppor-
tunistically utilizing resources in time, frequency, and space
domains without causing harmful interference to legacy systems
[2]. In the literature, CR networks are also referred to as next
generation (XG) or dynamic spectrum access (DSA) networks [3].
This technology is promising for the friendly coexistence of het-
erogeneous wireless networks such as cellular networks, wireless
personal area networks (PANs), wireless local area networks
(LANs), and wireless metropolitan area networks (MANs).

CR technology has already been adopted as a core platform
in emerging wireless access standards such as the IEEE 802.22-
Wireless Regional Area Networks (WRANs) [4]. The most impor-
tant application of IEEE 802.22 WRANs is wireless broadband
access in rural and remote areas, delivering performance com-
parable to that of existing broadband access technologies, e.g.,
digital subscriber line (DSL) and cable modems, serving urban
and suburban areas [5], [6]. IEEE 802.22 networks are expected
to exploit the unused ultra-high frequency (UHF) TV bands to
provide wireless services such as data, voice, audio, and video
traffic with appropriate quality of service (QoS) support [7].

CR implementations face many technical challenges, includ-
ing spectrum sensing, dynamic frequency selection, adaptive
modulation, and wideband frequency-agile RF front-end circuit-
ry [8]. These challenges are compounded by the inherent trans-
mission impairments of wireless links, user mobility,
nonuniform legacy radio resource allocation policies, and user-
dependent economic considerations. We focus on spectrum
sensing issues and describe possible solutions for some of the
design challenges.

SIGNAL DETECTION FOR SPECTRUM SENSING
Obviously, spectrum sensing is a critical functionality of
CR networks; it allows secondary users to detect spectral
holes and to opportunistically use under-utilized fre-
quency bands without causing harmful interference to
legacy systems. The spectrum sensing problem can be
formulated as follows.

To detect a weak primary signal confined inside some a priori
known bandwidth B, one could pose a binary hypothesis testing
problem as follows:

H0 : x(n) = v(n)

H1 : x(n) = s(n) + v(n), n = 1, 2, . . . , N, (1)

where H0 represents the absence of the primary signal, i.e.,
the received baseband complex signal x(n) contains only
additive white Gaussian noise (AWGN), v(n) ∼ CN (0, σ 2

v ) ,
and H1 represents the presence of the primary signal, i.e.,
x(n) consists of a primary signal s(n) corrupted by v(n).
Moreover, N corresponds to the number of available meas-
urements. We initially review and comment on three signal
detection techniques for spectrum sensing before moving on
to motivate collaborative sensing.

ENERGY DETECTION
The noncoherent energy detector (or radiometer) [9] is one of
the simplest approaches for deciding between H0 and H1. Let
x = [x(1), x(2), . . . , x(N )]T and s = [s(1), s(2), . . . , s(N )]T .
The decision rule in this case is given by

T(x) �
N∑

n= 1

|x(n)|2
H1

�
H0

γ, (2)

where T(x) is the test statistic and γ is the corresponding test
threshold. Although T(x) has a chi-square distribution [10],
according to the central limit theorem T(x) is asymptotically
normally distributed if N is large enough (N ≥ 20 is often suffi-
cient in practice). Specifically, for large N, we can model the
statistics of T(x) as follows:

T(x) ∼
{N

(
Nσ 2

v , 2Nσ 4
v
)

under H0

N
(
Nσ 2

v + Nps, 2Nσ 4
v + 4Nσ 2

v ps
)

under H1
(3)

where ps = ‖s‖2/N represents the average primary signal
power. In this way, for large N, the probability of false alarm,
Pf ,and the probability of detection, Pd, can be approximated as

Pf = P(H1|H0) = Q

(
γ − Nσ 2

v

σ 2
v
√

2N

)
(4)

and

Pd = P(H1|H1) = Q

⎛
⎝ γ − Nσ 2

v − Nps

σv

√
2Nσ 2

v + 4Nps

⎞
⎠ , (5)

respectively, where

Q(x) = 1√
2π

∫ +∞

x
e−τ 2/2dτ

is the tail probability of a zero-mean unit-variance Gaussian ran-
dom variable.

[FIG1] A conceptual illustration of spectrum utilization over time
and frequency. Within a certain geographical region and at a
certain time, some frequency bands are not used by legacy
systems.
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Let

SNR � ps

σ 2
v

= ‖s‖2

Nσ 2
v

denote the signal-to-noise ratio (SNR). Using relations (4) and
(5), it is easy to see that in order to ensure certain values for Pf

and Pd, the required number of samples, N, is given by

N = 2
[

Q−1(Pf ) − Q−1(Pd )
√

1 + 2SNR
]2

SNR−2. (6)

In the large SNR regime (i.e., when SNR � 1), we conclude
that O(1/SNR) samples are need-
ed to meet the desired (Pf , Pd )
performance level. (The notation
y = O(g(n )) signifies that there
exits a constant κ such that
limn→∞(y/g (n)) ≤ κ .) On the
other hand, we see that
O(1/SNR 2) samples are needed
in the low SNR regime (i.e., when
SNR 
 1). In other words, the
energy detector needs a detection time on the order of
O(1/SNR2) to achieve a desired operating point (Pf , Pd) at low
SNR. It is worth noting that when the only known a priori
information is the noise power, the energy detector is optimal
in terms of the Neyman-Pearson criterion [10].

MATCHED FILTER
The coherent detector, also referred to as a matched filter, can
improve detection performance if the primary transmitted sig-
nal, s, is deterministic and known a priori [10]. The matched fil-
ter correlates the known signal s(n) with the unknown received
signal x(n), and the decision is made through

T(x) �
N∑

n= 1

x(n)s∗(n)

H1

�
H0

γ. (7)

The test statistic T(x) is normally distributed under both
hypotheses, i.e.,

T(x) ∼
{N

(
0, Npsσ

2
v
)

under H0

N
(
Nps, Npsσ

2
v
)

under H1
(8)

and the probabilities of false alarm and detection are now given by

Pf = Q
(

γ

σv
√

Nps

)
(9)

and

Pd = Q
(

γ − Nps

σv
√

Nps

)
, (10)

respectively. As before, the required number of samples, N, to
achieve an operating point (Pf , Pd) can be found to be

N =
[

Q−1(Pf ) − Q−1(Pd )
]2

SNR−1 = O(1/SNR). (11)

It is well known that the matched filter structure is the opti-
mal detector that maximizes the SNR in the presence of addi-
tive noise if the transmitted signal, s, is known a priori.
However, the matched filter is not suitable for spectrum sens-
ing in very low SNR regions since synchronization is difficult
to achieve.

FEATURE DETECTION
Feature detection exploits the
unique pattern of a specific signal
to detect its presence. Most pri-
mary signals are modulated sinu-
soidal carriers, have certain
symbol periods, or have cyclic pre-
fixes, which result in built-in peri-
odicity. Hence, cyclostationary

feature detection can use the inherent periodicity of primary
signals for more accurate detection [11]. The modulated signal,
s(n), can be characterized as a wide-sense second-order cyclo-
stationary process since both its mean and autocorrelation
exhibit periodicity. Specifically, let

μs = E [s(n)]

and

Rs(n1, n2) = E [s(n1)s∗(n2)].

Then, for all n, n1, and n2, it holds that

μs(n) = μs(n + T0)

and

Rs(n1, n2) = Rs(n1 + T0, n2 + T0),

where T0 > 0 is a fundamental period. The cyclic autocorrela-
tion function of a wide-sense second-order cyclostationary
process with cyclic frequency α �= 0 is defined as

Rα
s (m) � E [s(n)s∗(n + m)e−2 παn], (12)

which has the following property [12]:

R α
s (m) =

{
finite if α = i/ T0,

0 otherwise
(13)

for any nonzero integer i. Thus, for a cyclostationary process
{s(n)}, there exists an α �= 0 such that Rα

s (m) �= 0 for some

IEEE SIGNAL PROCESSING MAGAZINE [62] NOVEMBER 2008

GIVEN A SINGLE FREQUENCY BAND,
THE FIRST CHALLENGE FOR CRS IS

TO RELIABLY DETECT THE EXISTENCE
OF PRIMARY USERS IN ORDER TO
MINIMIZE THE INTERFERENCE TO
LICENSED COMMUNICATIONS.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 21, 2009 at 13:40 from IEEE Xplore.  Restrictions apply.



IEEE SIGNAL PROCESSING MAGAZINE [63] NOVEMBER 2008

value of m. The corresponding
representation of Rα

s (m) in the
frequency domain, referred to
as the spectral correlation func-
tion, can be obtained through
the discrete time Fourier trans-
formation (DTFT)

S α
s (e jω) =

+∞∑
m=−∞

R α
s (m)e− jωm, (14)

where ω ∈ [−π, π] is the digital frequency corresponding to the
sampling rate Fs.

The binary hypothesis test (1) can then be replaced by

H0 : S α
x (e jω) = S α

v (e jω)

H1 : S α
x (e jω) = S α

s (e jω) + S α
v (e jω). (15)

Since the noise v(n) is in general not periodic, we have
Sα

v (e jω) = 0 for α �= 0.For a finite observation time N, an esti-
mate for the spectral correlation function at ω = 2πk/L can be
obtained as

Ŝ α
x (k) = 1

N

N∑
n= 1

XL

(
n, k + kα

2

)
X ∗

L

(
n, k − kα

2

)
, (16)

where

XL (n, k) = 1√
L

n+ L/2 − 1∑
l = n− L/2

x(l )e− j2πkl/L (17)

is the L-point discrete Fourier transform (DFT) around the nth
sample of the received signal, and kα = αL/Fs is the index of
the frequency bin corresponding to the cyclic frequency α.
Suppose that the ideal spectral correlation function, S α

s (k ), is
known a priori. The test statistic is then given by a
single-cycle detector [13]

Tsc(x) =
L− 1∑
k= 0

Ŝ α
x (k)

[
S α

s (k)
]∗ H1

�
H0

γ, (18)

or a multicycle detector

Tmc(x) =
∑
α

L− 1∑
k= 0

Ŝ α
x (k)

[
S α

s (k)
]∗ H1

�
H0

γ, (19)

where the sum is taken over all α’s for which S α
s (k ) is not iden-

tically zero.

The performance of the cyclo-
stationary feature detector in
terms of Pf and Pd is generally
mathematically intractable. One
has to turn to Monte Carlo simula-
tions to evaluate the performance
and identify the optimal threshold
[13]. The cyclostationary feature
detector is noncoherent due to

its quadratic transform, but its coherent detection of fea-
tures results in a processing gain with respect to the energy
detector if the noise power is known.

Since CRs usually have limited knowledge about the primary
signals, energy detection becomes a most important technique
for spectrum sensing. The more sophisticated techniques
(coherent detection and feature detection) can be used for sens-
ing refinement or signal classification if more a priori knowl-
edge about the primary signal is available [14], [15]. In the rest
of this article, we will focus primarily on energy detection and
show how collaborative sensing strategies can be useful in
improving the performance.

DESIGN CHALLENGES FOR SPECTRUM SENSING
We will consider two main challenges faced by spectrum sens-
ing: reliable sensing and wideband sensing.

RELIABLE SPECTRUM SENSING
Given a single frequency band, the first challenge for CRs is
to reliably detect the existence of primary users to minimize
the interference to existing communications. Since the sig-
nals are usually undermined by channel shadowing or multi-
path fading between the target-under-detection and the CRs,
it is generally difficult to distinguish between a white spec-
trum and a weak signal attenuated by a bad channel. Fading
or shadowing may result in the hidden terminal problem, as
illustrated in Figure 2, where one CR node (CR1) inside the
protection region of a primary transmitter (PTx) cannot
detect the primary signal due to shadowing; in this case, CR1
may assume that it is outside the protection region of PTx
and may cause harmful interference by transmitting in the
primary frequency band.

To prevent the hidden terminal problem, the CR network
could fuse the sensing results of multiple CRs and exploit
spatial diversity among distributed CRs to enhance the sens-
ing reliability [8], [16]. In this way, a network of spatially dis-
tributed CRs, which experience different channel conditions
from the target, would have a better chance of detecting the
primary radio by exchanging sensing information. Therefore,
collaborative spectrum sensing can alleviate the problem of
corrupted detection by exploiting the built-in spatial diversity
to reduce the probability of interfering with primary users.
Since collaborative sensing is generally coordinated over a
control channel, efficient cooperation schemes should be
investigated to reduce bandwidth and power requirements
while optimizing the sensing reliability. Important design
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considerations include the overhead reduction associated
with sensing information exchange and the feasibility issue of
control channels. In general, operating characteristics (such
as false alarm versus missed detection probabilities) of the
detector should be selected by considering the achievable
opportunistic throughput of secondary users and the proba-
bility of colliding with primary users.

HIGH-RESOLUTION WIDEBAND SENSING
Another critical challenge for CR systems is to monitor and
process ultra-wide frequency bands (up to several gighertz) in
order to reliably find spectral holes for opportunistic spec-
trum access. Such a requirement presents unique challenges
to both hardware design at the RF front-end and the develop-
ment of reliable signal processing algorithms. First, spectrum
sensing requires a wideband RF front-end with a high-resolu-
tion high-speed analog-to-digital (A/D) converter, which is
expensive to implement [17]. In addition, spectrum sensing
should accurately identify both occupied and unoccupied fre-
quency segments in real time to improve spectrum utilization
and avoid introducing harmful interference to the primary
radios. These observations motivate the need for efficient
wideband spectrum sensing algorithms that can mitigate the
severe requirements on the RF front-end circuitry and enable
CRs to maximize the opportunistic throughput in an interfer-
ence-limited secondary network.

The existing literature on wideband spectrum sensing
for CR networks is limited. One known approach is to use a
tunable narrowband bandpass filter (BPF) at the RF front-
end to sense one band at a time [18], over which existing
narrowband spectrum sensing techniques can be applied. In
order to operate over multiple frequency bands at a time,
the RF front-end requires a wideband architecture and spec-

trum sensing usually involves the esti-
mation of the power spectral density
(PSD) of the wideband signal. In [19]
and [20], a wavelet transform was used
to estimate the PSD over a wide fre-
quency range given its multiresolution
features. However, these previous works
do not consider joint decisions over
multiple frequency bands, which is
essential for implementing efficient
wideband CR systems.

This article will discuss practical
solutions for wideband spectrum sensing
in CR systems. In particular, we intro-
duce a wideband sensing technique,
termed multiband joint detection (MJD)
[21]. This technique, instead of consider-
ing one frequency band at a time, takes
into account the detections of primary
signals across multiple frequency bands
and enables secondary users to make bet-
ter overall decisions to optimize the CR

system performance such as the aggregate opportunistic
throughput. Moreover, collaboration among multiple spatially
distributed CRs can relax the sensitivity constraint on the RF
front-end by enhancing the detection signal energy at the
fusion center and may even broaden the frequency range of
spectrum sensing.

NARROWBAND COLLABORATIVE SENSING FRAMEWORKS
We start with the collaborative spectrum sensing problem over a
single narrow band. Consider a CR network with M secondary
users. User i (i = 1, 2, . . . , M ) collects N measurements and
formulates the binary hypothesis test problem:

H0 : xi(n) = vi(n)

H1 : xi(n) = his(n) + vi(n), (20)

where hi is the channel gain between the PTx and the i th sec-
ondary user, and vi (n) ∼ CN (0, σ 2

i ) is the noise at the i th CR
receiver. Without loss of generality, it is assumed that hi is con-
stant during the detection interval (N samples) and the value of
N should be much less than the coherence time of the channel
between the primary transmitter and the secondary receivers.
With energy detection, secondary user i (i = 1, 2, . . . , M ) uses
the following decision rule: 

Ti (xi) �
N∑

n= 1

|xi(n)|2
H1

�
H0

γi, (21)

where xi = [xi (1), xi (2), . . . , xi (N)]T, Ti(xi) measures the total
energy, and γi is the local threshold at the i th secondary user.

To evaluate the sensing performance, we define the probabil-
ity of detecting the spectral hole as
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[FIG2] The hidden terminal problem in CR networks, in which the guard region and the
area covered by the primary radio range together form the protection region of the
primary transmitter.
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P(H0 |H0) = 1 − Pf

and the probability of interference as

P(H0 |H1) = 1 − Pd,

where Pf and Pd denote the prob-
abilities of false alarm and detec-
tion, respectively. Specifically,
P(H0|H0) is the probability that
the secondary users successfully
identify the unoccupied spectral
segment and is an important
measure of opportunistic spec-
trum utilization. Likewise,
assuming that the CRs always transmit in spectral segments
on which they do not detect primary signals, the quantity
P(H0|H1) measures the probability that the secondary users
cause harmful interference to the primary users. Of course,
P(H0|H1) is simply the probability of a missed detection.

Our objective is to design efficient cooperation schemes for
the M spatially distributed nodes to improve the sensing reliabili-
ty, i.e., to maximize P(H0|H0) while maintaining P(H0|H1) as
small as possible. In practice, collaborative spectrum sensing can
be implemented in either a centralized or distributed manner, as
shown in Figure 3. The centralized implementation uses a fusion
center to fuse the sensing results from multiple CRs and arrive at
the final decision. In the distributed case, each CR collects the
sensing results from its neighbors and performs its own local
decision fusion. Collaborative spectrum sensing can achieve dif-
ferent levels of performance by exchanging different amounts of
data: hard decisions and summary statistics (soft decisions).

HARD DECISION FUSION
With hard decision fusion, each CR makes a local decision
about the presence of primary users and then sends the binary
decision (i.e., a single bit) to the fusion center for decision
fusion. The voting rule [22] is one of the simplest sub-
optimal fusion rules that can be used; it counts the
number of nodes that vote for the presence of the signal
and compares the vote to a given threshold.
Alternatively, the OR logic operation can be used to
combine decisions from several secondary users [23],
where the fusion center decides H1 if any one of the
users claims that H1 is true. Likewise, an AND logic
operation can be used [24], which decides H1 if, and
only if, all the nodes claim that H1 is true. Considering
the case of correlated noises, these three decision fusion
schemes were numerically evaluated with the assump-
tion of identical thresholds at individual nodes in [25].

It is known that approaches based on the likeli-
hood-ratio test (LRT) provide the optimal performance
according to the Neyman-Pearson criterion [9], [10].
Denote the decisions from the individual nodes by a
binary vector u = [u1, u2, . . . , uM]T, where

ui =
{

0 if the i th node decides H0

1 if the i th node decides H1.
(22)

Let P(u|H0) and P(u|H1), respectively, represent the probabil-
ity distribution functions of u under hypotheses H0 and H1.
Then the LRT detector is given by

L(u) = P(u|H1)

P(u|H0)

H1

�
H0

γ ∗ (23)

where γ ∗ is the optimal thresh-
old determined by the targeted
probability of detecting the spec-

tral hole. Computing the optimal local decision thresholds
{γi} under the Neyman-Pearson criterion is mathematically
untractable, and the problem becomes NP-complete if the
measurements at the individual nodes are correlated [26],
[27]. Hence, one must turn to suboptimal solutions [28].
Note that the hard decision fusion schemes require mini-
mum bandwidth for the control channel but need a local
detector at each CR.

SUMMARY STATISTICS COMBINATION
To avoid optimizing the local thresholds {γi} for binary decision
fusion, the nodes can instead send the summary statistics
y � [T1(x1), T2(x2), . . . , TM(xM)]T to the fusion center in
which an optimal test can be performed as

L(y) = P(y|H1)

P(y|H0)

H1

�
H0

γ ∗, (24)

where γ ∗ again denotes the optimal threshold selection
as determined by the desired probability of detecting
spectral holes.

[FIG3] Data fusion for cooperative sensing. (a) In centralized
implementation, the sensing results of individual CRs are sent to a
fusion center in which a global decision is made. (b) In distributed
implementation, each CR acts as a fusion center, collecting the
sensing measurements from its neighboring nodes and making its
decision independently.
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From the central limit theorem, it can be argued that y
is asymptotically normally distributed for large N [10], say
y ∼ N (μμμ0,			0) under H0 and y ∼ N (μμμ1,			1) under H1 .
With energy detection, we have from (3) that

μμμ0 = N
[
σ 2

v1
σ 2

v2
· · · σ 2

vM

]T

and

			0 = 2N

⎡
⎢⎣

σ 4
v1

. . .

σ 4
vM

⎤
⎥⎦

for hypothesis H0, and that

μμμ1 = N
[
σ 2

v1
+ ps1 σ 2

v2
+ ps2 · · · σ 2

vM
+ psM

]T

and

			1 = 2N

⎡
⎢⎣

σ 2
v1

(
σ 2

v1
+ 2ps1

)
. . .

σ 2
vM

(
σ 2

vM
+ 2psM

)
⎤
⎥⎦

for hypothesis H1. Please note that 			0 and Σ1 are positive
semi-definite matrices, denoted by Σ0 � 0 and Σ1 � 0.

The statistics of y under both hypotheses H0 and H1 can
be estimated in practice. For H0, the noise power {σ 2

vi
}M

i=1 can
be calibrated in a given band when it is known for sure that it
is not being used. The information about the deterministic
quiet periods is usually available in TV bands (e.g., TV channel
37 is currently always empty) [27]. For H1, the statistics can
be learned a priori during the period when the primary trans-
mitter was known for sure to be working. Again, obtaining
such a priori information about the primary signal is possible
since most current TV stations transmit pilot signals periodi-
cally at a fixed power level. This method is also applicable to
the downlinks of certain cellular networks, where base sta-
tions periodically transmit pilot signals at known power lev-
els. The received primary signal power psi can be estimated by
subtracting the noise power σ 2

vi
from the total received power

at the i th node during the period when we know for certain
that the primary user is transmitting since the primary signal
is generally independent of the noise.

The diagonal covariance matrices Σ0 and Σ1 imply that the
statistics received at the fusion center are independent of each
other. This assumption is reasonable for IEEE 802.22 net-
works, whose service coverage has a radius of 33–100 km and
in which consumer premise equipments (CPEs) are usually
separated far away. One would like to further model the corre-
lation between these statistics provided that sufficient channel
information is available.

Given the distributions of y (24) becomes

P(y|H1)

P(y|H0)
=

det−
1
2 (			1) exp

[
− 1

2 (y − μμμ1)
T			−1

1 (y − μμμ1)
]

det−
1
2 (			0) exp

[
− 1

2 (y − μμμ0)
T			−1

0 (y − μμμ0)
]
(25)

where det(A) denotes the determi-
nant of the matrix A. By taking the
natural logarithm, the LRT detector
L(y) can be simplified into a quad-
ratic form: 

Lq(y) = yT
(
			−1

0 − 			−1
1

)
y + 2

(
μμμT

1			
−1
1 − μμμT

0			
−1
0

)
y. (26)

Since this LRT-based fusion usually involves nonlinear (quadrat-
ic) operations, performance analysis and threshold optimization
continue to be a complex task.

Alternatively, a simpler detector structure can be used by lin-
early combining the local energy levels from the individual CRs
for global decision making [30]. Specifically, the test statistic
can be chosen to be of the form

Ll(y) = wTy
H1

�
H0

γ, (27)

where w is a weight vector (to be chosen) representing the con-
tribution of the individual nodes to the global decision. For
example, if a node generates a high SNR observation that is more
likely to result in a correct decision, then it should be assigned a
larger weighting coefficient. Since the linear combination of sev-
eral Gaussian random variables is still Gaussian, the performance
of the linear detector (27) can be evaluated as 

P(H0|H0) = 1 − Q

(
γ − μμμT

0w√
wT			0w

)
(28)

and

P(H0|H1) = 1 − Q

(
γ − μμμT

1w√
wT			1w

)
. (29)

We can then pose the problem of maximizing the probability of
detecting the spectral hole (i.e., the opportunistic spectrum
utilization of the targeted frequency band) subject to a con-
straint on the interference probability. (Depending on the spe-
cific application, one may formulate an alternative
optimization problem that minimizes P(H0|H1) subject to a
constraint on P(H0|H0). Mathematically, this alternative
problem belongs to the same category as (30) and can be
solved using the algorithms developed in this article with triv-
ial modifications.) The problem can be formulated as
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max
γ,w

P(H0|H0)

s.t. P(H0|H1) ≤ ε. (30)

Since the Q-function (6) is monotonically decreasing (see
Figure 4), it can be shown that the weight vector w and the
threshold γ can be jointly optimized by solving an uncon-
strained optimization problem of the form [30]:

max
w

f(w) = Q−1(1 − ε)
√

wT 			1w + (μμμ1 − μμμ0)
Tw√

wT 			0w
(31)

with

γ = Q−1(1 − ε)

√
wT 			1w + μμμT

1w. (32)

Directly solving problem (31) is difficult. Nevertheless, we
can apply a divide-and-conquer strategy to divide the problem
into several subproblems and then consolidate their solutions
[30]. First, we consider the case where f(w) ≥ 0, i.e.,
P(H0|H0) ≥ 1/2, and the CR system is aggressive in seeking
spectral holes for opportunistic transmission. The uncon-
strained problem (31) is actually equivalent to the following
constrained optimization problem:

max
z

Q−1(1 − ε)

√
zT 			1z + (μμμ1 − μμμ0)

Tz

s.t. zT 			0z ≤ 1 (33)

where

z = w√
w			0w

. (34)

For Q−1 (1 − ε) ≤ 0 (i.e., ε ≤ 1/2), the above problem is a con-
vex optimization problem that can be easily solved [31]. For
ε > 1/2 and Q−1 (1 − ε) > 0, problem (33) becomes one of
maximizing a convex function (or minimizing a concave func-
tion) over an ellipsoid, which can be efficiently solved through
an iterative algorithm using quadratic-constraint quadratic-
programming (QCQP) reformulations [30].

Now consider the case in which f(w) < 0, i.e.,
P(H0|H0) < 1/2, where the CR system is conservative in shar-
ing the spectrum with primary users. Problem (31) becomes
equivalent to

max
z

Q−1(1 − ε)
√

zT 			1z + (μμμ1 − μμμ0)
Tz

s.t. zT 			0z ≥ 1
(35)

which can also be solved using the iterative alogrithm developed
in [30]. Thereafter, a faster algorithm exploiting semidefinite
programming (SDP) to solve such nonconvex optimization
problems has been developed in [32].

Compared with the optimal LRT detector (26), the linear
structure (27) is simple and efficient. As shown in Figure 5, the
optimal linear detector (27) can provide performance compara-
ble to the optimal LRT-based scheme (26). In general, the com-
bination of summary statistics from the spatially distributed
nodes yields gains over hard-decision fusion but requires a rela-
tively higher bandwidth for the control channel. Other subopti-
mal linear fusion rules such as maximum deflection combining
and maximum ratio combining for collaborative sensing can be
found in [30], [33] and [34].

COLLABORATIVE WIDEBAND SENSING
In a particular geographical region and at a particular time,
some licensed frequency bands might not be used by the pri-
mary users and are available for opportunistic spectrum
access. For example, the ultra high frequency (UHF) bands

[FIG4] The Q-function is monotonically decreasing; it is concave
if x ≤ 0 and convex if x > 0.
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from 470 to 890 MHz are reserved for TV broadcasting chan-
nels, each with a bandwidth of 6 MHz, but some of them are
empty at a particular time and location. Wideband spectrum
sensing is thus critical since the CRs need to detect spectral
holes from such an ultra-wide frequency band for oppor-
tunistic communications.

The sensing techniques discussed so far are applicable to
a single frequency band,  for
which a BPF is needed to extract
the target signal. Deploying the
narrowband detector for wide-
band spectrum sensing requires a
tunable BPF at the RF front end
to scan one band at a time. This
mechanism is slow and inflexible. To improve the sensing
agility (e.g., processing multiple bands in parallel), efficient
wideband sensing algorithms become a necessity in the
design of wideband CR systems.

We will describe a cross-layer design principle for collabo-
rative wideband sensing, in which spectrum sensing at the
physical (PHY) layer, and the maximization of opportunistic
throughput at higher layers, are integrated into a unified
framework based on the multiband joint detection (MJD)
scheme introduced in [21] and [35]. Unlike the traditional
spectrum sensing techniques that scan one band at a time,
multiband joint detection jointly processes multiple narrow
frequency bands from a network of spatially distributed CRs.
Within the collaborative wideband sensing framework, the
multiband joint detection is formulated into a class of opti-
mization problems, which maximize the aggregate oppor-
tunistic throughput of the CR system subject to certain
constraints on the spectrum utilization of individual bands
and interference to the primary users [35]. The wideband
sensing strategy enables secondary users to efficiently take
advantage of the unused frequency bands in an interference-
limited CR network.

MULTIBAND JOINT DETECTION
Consider a primary communication system operating over a
wideband channel that is divided into K nonoverlapping nar-
row subbands. At a particular time and in a geographical loca-
tion, some of the K subchannels might not be used by the
primary users and are available for opportunistic communica-
tion by secondary users. To monitor the activities of the K
subbands, the wideband signal is transformed into the fre-
quency domain (say, via an FFT) and the signal energy at each
subband is then measured.

The wideband spectrum sensing technique will jointly
optimize a bank of narrowband detectors instead of process-
ing only one narrow band at a time [35]. The objective is to
maximize the aggregate opportunistic throughput of a CR
network subject to some interference constraints. We model
the detection problem on subband k as one of choosing
between H0,k (“0”), which represents the absence of the pri-
mary signal in subband k, and H1,k (“1”), which represents

the presence of the primary signal in subband k. To decide
whether the k th subband is occupied or not, we again test
the following two hypotheses:

H0,k : Xk(n) = Vk(n)

H1,k : Xk(n) = HkSk(n) + Vk(n), k = 1, 2, . . . , K, (36)

where Xk(n) is the received signal,
Vk(n) represents the additive chan-
nel noise, Hk signifies the channel
gain, and Sk(n) stands for the pri-
mary transmitted signal (the capital
letters refers to frequency domain

signals). Let Xk = [Xk(1), Xk(2), . . . , Xk(N )] . Using energy
detection, the decision rule is given by 

Tk(Xk) �
N∑

n= 1

|Xk(n)|2
H1,k

�
H0,k

γk, k = 1, 2, . . . , K, (37)

where γk is the decision threshold of subband k. As before,
the sensing performance of (37) at subband k can be meas-
ured in terms of the probability of detecting the spectral
hole, P

(
H0,k|H0,k, γk

)
, and the probability of interference,

P
(
H0,k|H1,k, γk

)
, which are both functions of the threshold

γk. For both hypotheses, Tk(Xk) has a chi-square distribu-
tion with N degrees of freedom. To simplify the analysis, we
again apply the central limit theorem to approximate
Tk(Xk) with a Gaussian random variable when N is large as
before, i.e., Tk(Xk) ∼ N (μ0,k, σ

2
0,k) under H0,k and

Tk(Xk) ∼ N (μ1,k, σ
2
1,k) under H1,k. Under the decision rule

(37), the sensing performance of subband k can be evaluated by

P(H0,k|H0,k, γk) = 1 − Q
(

γk − μ0,k

σ0,k

)
(38)

and

P(H0,k|H1,k, γk) = 1 − Q
(

γk − μ1,k

σ1,k

)
. (39)

The design objective is to find the optimal threshold vector
γγγ = [γ1, γ2, . . . , γK]T such that the CR network can oppor-
tunistically use the unused spectral segments in an efficient
way without causing harmful interference to primary users.
Due to channel frequency diversity [36], a secondary user may
experience different channel conditions (e.g., channel gain,
interference, and noise) across the K subbands. For a CR
exploiting the K narrowband subbands for opportunistic trans-
mission, the supported throughput vector is denoted by
r = [r1, r2, . . . , rK]T, which are the rates achievable when the
bands are available to use. Therefore, as a spectrum efficiency
measure, the aggregate opportunistic throughput of the CR
system can be defined as
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R(γγγ ) �
K∑

k= 1

rk P(H0,k|H0,k, γk). (40)

On the other hand, opportunistic sharing of the licensed spec-
trum should avoid harmful interference to the primary users.
First of all, for a wideband channel consisting of multiple sub-
bands, the probability of interference on each subband should
be bounded by a tolerable level, say, P(H0,k|H1,k) ≤ αk .
Moreover, suppose that we represent the penalties of interfer-
ence induced by secondary users across all the subbands by a
predefined metric vector, i.e., c = [c1, c1, . . . , cK]T, where the
metric ck indicates the cost incurred if the primary user at the
k th subband is interfered with by secondary users. For exam-
ple, ck can be defined as a function of the bandwidth of subband
k since in some applications each subband does not have to
occupy an equal amount of bandwidth. Consequently, an aggre-
gate interference measure to the primary system is defined as

I(γγγ ) �
K∑

k= 1

ck P(H0,k|H0,k, γk). (41)

We would like to maximize the aggregate opportunistic
throughput, R (γγγ ), subject to some constraints on the aggregate
interference, and the individual interference and achievable
spectrum efficiency at each subband

max
γγγ

R (γγγ )

s.t. I (γγγ ) ≤ ε

P(H0,k|H1,k, γk) ≤ αk, k = 1, 2, . . . , K
P(H0,k|H0,k, γk) ≥ βk, k = 1, 2, . . . , K,

(42)

where the last K constraints signify that the CR network would
like to maintain a certain level of opportunistic spectrum uti-
lization for each particular subband.

The optimization problem (42) is difficult to solve since both
the objective function (40) and constraints are nonlinear and
nonconvex functions in {γk}. Nevertheless, the problem can be
reformulated into an equivalent form

min
γγγ

K∑
k=1

rkQ
(

γk−μ0,k
σ0,k

)

s.t.
K∑

k=1
ckQ

(
γk−μ1,k

σ1,k

)
≥ cT 1 − ε

γmin,k ≤ γk ≤ γmax,k, k = 1, 2, . . . , K,

(43)

where

γmin,k = μ0,k + σ0,kQ−1(1 − βk), k = 1, 2, . . . , K (44)

γmax,k = μ1,k + σ1,kQ−1(1 − αk), k = 1, 2, . . . , K (45)

and 1 is the all-one vector. Furthermore, we find that Q(x ) is
convex if x > 0 and is concave if x ≤ 0 [35] as illustrated in
Figure 4. By exploiting this hidden convexity of the problem

structure, the reformulated problem (43) becomes a convex
optimization problem under the conditions

αk ≤ 1/2 and βk ≥ 1/2, k = 1, 2, . . . , K. (46)

This regime of {αk} and {βk} is of practical interest since it
requires that on each subband, the opportunistic spectrum uti-
lization is greater than or equal to 50% and the probability of
interference is less than 50%. The reformulated convex problem
can then be solved using efficient numerical algorithms (i.e., the
interior-point method) [31]. Consequently, the solutions provide
the jointly optimal thresholds for these K narrowband detectors.
Please note that the system parameters ε, {αk}, and {βk}, should
be properly chosen so that (43) is feasible.

The performance of the multiband joint detection algorithm
is compared with that of a uniform-threshold (γk = γ for all k )
approach that maximizes the aggregate opportunistic through-
put of the CR system subject to the same constraints on the
interference. As illustrated in Figure 6, the optimal multiband
joint detection with heterogeneous thresholds accommodating
channel diversity for both primary and secondary users exhibits
superior performance.

SPATIO-SPECTRAL JOINT DETECTION
As we did in the single band case, to exploit spatial diversity to
prevent the hidden terminal problem, it is important to fuse

[FIG6] The throughput of a CR system versus the constraint on
the interference cost ε. The wideband channel consists of eight
subchannels, each with a unit primary signal power level and a
unit noise power level. The squared channel gains between the
primary and secondary users are (05, 0.3, 0.45, 0.65, 0.25, 0.6,
0.4, and 0.7), the opportunistic data rates of secondary users
(612, 524, 623, 139, 451, 409, 909, and 401) in kB/s, and the costs
of interference (1.91, 8.17, 4.23, 3.86, 7.16, 6.05, 0.82, and  1.30).
For each subband k (1 ≤ k ≤ 8), it is expected that the
opportunistic spectrum utilization is at least 50%, i.e., βk = 0.5,
and the probability that the primary user is interfered with is at
most αk = 0.1. For simplicity, it is assumed that the noise power
level is σ 2

v = 1 and the length of each detection interval is
N = 100.
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the sensing results from individual CRs to obtain a more accu-
rate inference about the targeted wideband channel. Here, we
describe a spatio-spectral joint detection (SSJD) strategy based
on the linear combination of summary statistics from different
CRs [37].

Consider again M spatially distributed CRs sensing a bank of K
narrow subbands. Let Tk,i represent the sensing result of the k th
subband from the i th CR. Each CR sends its sensing results over
multiple subbands to a fusion center where the final decision is
made. For subband k, the sensing results from the M CRs can be
represented in a vector Yk = [Tk,1, Tk,2, . . . , Tk,M]T. For energy
detection, Yk is normally distributed under both hypotheses
according to the central limit theorem, i.e., Yk ∼ N (μμμ0,k,			0,k)

under H0,k and Yk ∼ N (μμμ1,k,			1,k) under H1,k. On each sub-
band, these sensing results are linearly combined through a
weight vector wk = [wk,1, wk,2, . . . , wk,M]T as

zk = wT
kYk =

M∑
i = 1

wk,i Yk,i, (47)

which is also normally distributed under both hypotheses, 
i.e., zk ∼ N (wT

kμμμ0,k, wT
k			0,kwk) under H0,k and zk ∼ N

(wT
kμμμ1,k, wT

k			1,kwk) under H1,k. At the fusion center, the sta-
tistic zk is compared with a test threshold to decide the presence
or absence of a primary signal in subband k, i.e.,

zk

H1,k

�
H0,k

γ k k = 1, 2, . . . , K. (48)

Accordingly, the probability of detecting spectral holes,
P(H0,k|H0,k, γk, wk) , and the probability of interference,
P(H0,k|H1,k, γk, wk), are respectively given by

P(H0,k|H0,k, γk, wk) = 1 − Q

⎛
⎝ γk − wT

kμμμ0,k√
wT

k			0,k wk

⎞
⎠ (49)

and

P(H0,k|H1,k, γk, wk) = 1 − Q

⎛
⎝ γk − wT

kμμμ1,k√
wT

k			1,k wk

⎞
⎠ , (50)

which are both functions of the design parameters (γk, wk).
Consequently, the aggregate opportunistic throughput and the
aggregate interference of the K subbands can be defined as

R (γγγ , w) �
K∑

k= 1

rkP(H0,k|H0,k, γk, wk) (51)

and

I (γγγ , w) �
K∑

k= 1

ckP(H0,k|H0,k, γk, wk). (52)

Thus, the optimal SSJD can be formulated into an optimization
problem that maximizes the aggregate opportunistic through-
put of the CR network subject to the same constraints as in the
single-CR wideband sensing case, i.e.,

max
γγγ ,W

R (γγγ , W)

s.t. I (γγγ , W) ≤ ε

P(H0,k|H1,k, γk, wk) ≤ αk, k = 1, 2, . . . , K
P(H0,k|H0,k, γk, wk) ≥ βk, k = 1, 2, . . . , K,

(53)

where γγγ = [γ1, γ2, . . . , γK]T and W = [w1, w2, . . . , wK] are
the optimization variables.

Since the objective function and constraints are neither lin-
ear nor convex, it is difficult to solve (53). Through mathemati-
cal reformulation, the problem (53) can be transformed into the
equivalent form [37]

max
γγγ ,W

K∑
k=1

rkQ
[(

γk − wT
kμμμ0,k

)√
wT

k			1,kwk

wT
k			0,kwk

]

s.t.
K∑

k=1
ckQ

(
γk − wT

kμμμ1,k
) ≤ cT1 − ε

γk − μμμT
0,kwk ≤ Q−1 (1 − αk)

√
wT

k			0,kwk,

γk − μμμT
1,kwk ≥ Q−1(1 − βk), k = 1, 2, . . . , K,

(54)

which has a nonconvex objective function but a set of convex
constraints under the conditions (46). Since 			0,k � 0, the
Rayleigh Ritz inequality [38] gives

wT
k			1,k wk

wT
k			0,k wk

≥ λmin

(
			

−T/2
0,k 			1,k			

−1/2
0,k

)
, (55)

where 			1/2
0,k is chosen as the square root obtained from the

Cholesky decomposition [38] and λmin(·) denotes the minimum
eigenvalue. As a result, the objective function of (54) can be
upper bounded by a convex function, i.e.,

K∑
k= 1

rkQ

⎛
⎝ γk − wT

kμμμ0,k√
wT

k			0,k wk

⎞
⎠

≤
K∑

k= 1

rkQ
[(

γk − wT
kμμμ0,k

)
λmin

(
			

−T/2
0,k 			1,k			

−1/2
0,k

)]
(56)

since the Q-function is monotonically decreasing. By minimiz-
ing the upper bound of the objective function in problem (54),
we can obtain a good approximation to the optimal solution of
the original optimization problem. Figure 7 shows that the SSJD
algorithm outperforms the MJD procedure without cooperation.

The formulations of MJD and SSJD exemplify a cross-layer
optimization framework for CRs, which takes into account the
channel conditions, interference, opportunistic throughput, and
network cooperation.
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DESIGN CONSIDERATIONS IN 
OPPORTUNISTIC SPECTRUM SHARING
Now we discuss some high-level design considerations in oppor-
tunistic spectrum sharing. There are two basic approaches for
the secondary users to share the spectrum with the primary
users. The first one is to deterministically use an underlay
mechanism (e.g., a spread spectrum scheme), with which the
CR devices use extremely low power to simultaneously share the
spectrum with the primary users with zero probability of caus-
ing harmful interference. This mechanism needs to place severe
restrictions on transmit power to limit interference. The other
approach uses an overlay mechanism to opportunistically access
the unused spectral segments identified via spectrum sensing,
with finite probability of interfering with the primary users. As
such, spectrum sensing is mostly used for overlay CR networks.
With spectrum sensing, the secondary users opportunistically
share the spectrum with the licensed primary users, and the
unoccupied spectral segments are assigned to the secondary
users according to their QoS requirements such as throughput,
delay, and packet loss.

To implement the CR overlay system mentioned above,
orthogonal frequency division multiplexing (OFDM) is an
attractive candidate, since it can easily generate signals with
arbitrary spectrum occupancy pattern [39], [17], [40]. With
OFDM-based CRs, the interference to the primary users can be
avoided by simply nullifying the subcarriers in the occupied
spectral segments and modulating only the subcarriers in the
spectral holes. With a sufficient number of subcarriers, an
OFDM-based CR system can operate efficiently in any target
licensed band regardless of its channelization scheme. Other
advantages of an OFDM-based CR system include robustness
against multipath delay spread (with the guard interval and
cyclic prefix), insensitivity to sampling time drift (and thus no
need for complex synchronization), and easy integration with
multiantenna techniques [41]. 

MULTILAYER DESIGN ISSUES
FOR COLLABORATIVE SENSING
As we have demonstrated earlier, collaborative spectrum sens-
ing is performed across multiple layers in the network, involv-
ing signal processing at the physical layer, channel sharing
and opportunistic throughput maximization at the medium
access control (MAC) layer, and node collaboration at the net-
work (NET) layer. In Figure 8, we show a layered architecture
of collaborative spectrum sensing in a CR network. We will
discuss practical design issues across multiple layers in the
remainder of the article.

HARDWARE CONSIDERATION AT THE PHYSICAL LAYER
Since a wideband CR system needs to scan a wide frequency
range to reliably detect spectral holes, an individual CR device
requires a high-resolution RF front-end with a high-speed A/D
converter at a sampling rate up to several gigahertz, which is
difficult to implement with current hardware technologies
[17]. Collaborative sensing can alleviate the harsh require-

ments on the circuitry of the RF front-end in two ways. First,
the collaboration among multiple CRs observing the same
band can significantly increase the observation SNR at the
fusion center and thus relax the sensitivity constraint on the
CR receiver. Second, multiple CRs, each of which is responsi-
ble for sensing a portion of the target spectrum, can team up
to perform spectrum sensing over an ultra-wide frequency
band up to several gigahertz. Therefore, collaborative wide-
band sensing provides a practical solution to lessen the costly
requirements on the RF front-end circuitry.

[FIG7] The throughput capacity of a CR system consisting of two
secondary users versus the constraint on the interference cost ε.
The wideband channel consists of eight subchannels, each with a
unit primary signal power and a unit noise power. The squared
channel gains between the primary and secondary users are
(0.17, 0.21, 0.27, 0.14, 0.37, 0.38, 0.49, and 0.33) and (0.21, 0.17,
0.21, 0.21, 0.17, 0.43, 0.15, and 0.35). The opportunistic data
rates of the secondary users are (356, 327, 972, 806, 755, 68, 720, 
and 15) in kB/s and the costs of interference (0.71, 5.95, 3.91, 
4.21, 0.44, 2.03, 0.58, and 2.85). For each subband k (1 ≤ k ≤ 8),
we set βk = 0.5 and αk = 0.1. It is also assumed that the noise
power level is σ 2

v = 1 and the length of each detection interval is
N = 100.
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[FIG8] A layered structure for distributed wideband spectrum
sensing in a cognitive radio network.
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CONTROL CHANNEL BANDWIDTH 
VERSUS QUANTIZATION LEVEL
In practice, the summary statistics from individual CRs need to
be quantized before being transmitted to the fusion center. The
quantization level leads to a tradeoff between the sensing per-
formance and the bandwidth requirement of the control channel.
That is, a larger number of quantization bits will introduce less
distortion into the transmitted summary statistics, while placing
a heavier burden on the bandwidth of the control channel.

To illustrate the sensitivity of the proposed collaborative
sensing to quantization levels, we quantize the summary sta-
tistics, i.e., the energy levels in (21), and then perform linear
combination with three CRs according to (27) to form a glob-
al energy level. We consider implementing a Lloyd-Max quan-
tizer for the measured energy level of each CR, where for a
given number of quantization levels, the Lloyd-Max algo-
rithm minimizes the mean square error (MSE) between the
input and the output of the quantizer. From Figure 9, we find
that a 4-b quantizer would provide sensing performance
comparable to that of the ideal analog forwarding scheme.
This observation is consistent with [30] in that the perform-
ance of collaborative sensing is insensitive to the error intro-
duced by the control channel since quantization errors can
be modeled as additive noise on the top of the channel noise.
Therefore, collaboration among multiple CRs can improve
the sensing reliability at the cost of only a small amount of
bandwidth for the control channel.

MAC
Since there are multiple CRs sharing the control channel,
the access to the control channel must be coordinated to pre-
vent collision/interference and ensure reliable reception at
the fusion center. Carrier sense multiple access (CSMA)-
based protocols would provide simple solutions for sensing
result exchange among CRs. The control channel can be

implemented using either a dedicated channel or an underlay
channel sharing the spectrum with the primary network.
Spread spectrum is a good candidate technique for establish-
ing the underlay channel for CRs but it needs to carefully
control the transmit power or interference temperature to
avoid creating harmful interference [8].

CONCLUSIONS
Motivated by the fact that collaborative wideband sensing
techniques are an essential component of CR networks and
are especially useful when individual CR devices cannot
reliably detect weak primary signals, this article has sur-
veyed the existing collaborative spectrum sensing tech-
niques for CRs. We have introduced a linear fusion scheme
for collaborative sensing and a multiband joint detection
framework for wideband sensing. We have also presented
efficient algorithms to optimize the sensing performance.
Implementation issues of the proposed sensing algorithms
in a wideband CR system have been discussed from a multi-
layer networking perspective.
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[FIG9] The effect of quantization level on the sensing
performance in collaborative sensing with M = 3 cognitive
radios. The SNR levels at individual cognitive radios are
(−1.8,−6.3,−3.8) in decibels with N = 20 .
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