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W
ireless location refers to the geographic coordinates of a mobile subscriber in
cellular or wireless local area network (WLAN) environments. Wireless loca-
tion finding has emerged as an essential public safety feature of cellular sys-
tems in response to an order issued by the Federal Communications
Commission (FCC) in 1996. The order mandated all wireless service providers

to deliver accurate location information of an emergency 911 (E-911) caller to public safety
answering points (PSAPs). The FCC mandate aims to solve a serious public safety problem caused
by the fact that, at present, a large proportion of all 911 calls originate from mobile phones, the
location of which cannot be determined with existing technology. However, many difficulties
intrinsic to the wireless environment make meeting the FCC objective challenging; these chal-
lenges include channel fading, low signal-to-noise ratios (SNRs), multiuser interference, and mul-
tipath conditions. In addition to emergency services, there are many other applications for wireless
location technology, including monitoring and tracking for security reasons, location sensitive
billing, fraud protection, asset tracking, fleet management, intelligent transportation systems,
mobile yellow pages, and even cellular system design and management. This article provides an
overview of wireless location challenges and techniques with a special focus on network-based
technologies and applications.
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WIRELESS NETWORKS
Wireless networks are primarily designed for voice and data
communications. The widespread availability of wireless nodes,
however, makes it possible to utilize these networks for wireless
location purposes as well. It is expected that location-based
applications will play an important role in future wireless mar-
kets. While location services are now driven by emergency and
security requirements imposed on the wireless networks, in the
future they will be driven by commercial demands for location-
motivated products. Increasingly, application-level software will
incorporate location information into its features to fully utilize
such information once it becomes available. For example, asset
tracking and management software would incorporate location
information into a database for enhanced tracking capabilities.
As such, wireless location information will add a new dimension
to future applications.

Wireless networking devices constitute the main infrastruc-
ture to be utilized for wireless location finding. A location find-
ing system should be able to seamlessly use both cellular and
WLANs for location finding by roaming between the networks.
The result would be transparent location coverage for both out-
door and indoor environments. Today, the main commercially
deployed wireless location finding system is linked to the cellu-
lar network in response to requirements by the FCC for emer-
gency 911 calls made through cell phones. These requirements
are collectively known as the enhanced 911 (E911) mandate.
The details of the FCC requirements for E911 will be discussed. 

The purpose of this article is to provide an overview of the
basic challenges facing the wireless techniques that are being
developed for accurate location information. We start with an
overview of the main applications that serve as the major driving
force behind the technology. 

For ease of reference, Table 1 collects the acronyms that are
common in this field and used extensively in subsequent sections.

APPLICATIONS
Figure 1 illustrates some of the available market forecasts for
wireless location technology [1], [2]. It is estimated that loca-
tion-based services (LBSs) will generate annual revenues of the
order of US$15 billion worldwide. In the United States alone,
about 170 million mobile subscribers are expected to become
covered by the FCC-mandated location accuracy for emergency
services. To illustrate the potential of LBS, we will now provide a
partial list of applications that will be enhanced using wireless
location information [3].

■  E911: Currently, a high percentage of E911 calls originate
from mobile phones; the percentage is estimated at one
third of all 911 calls (170,000 a day) [5], [6]. These wireless
E911 calls do not receive the same quality of emergency
assistance that fixed-network 911 calls enjoy. This is due to
the unknown location of the wireless E911 caller. To face
this problem, the FCC issued an order on 12 July 1996 [5],
requiring all wireless service providers to report accurate
mobile station (MS) location information to the E911 opera-
tor at the PSAP. In the FCC order, it was mandated that

within five years from the effective date of the order, 1
October 1996 (a deadline that is now well passed), wireless
service providers must convey to the PSAP the location of
the MS within 100 m of its actual location for at least 67%
of all wireless E911 calls. (The original FCC requirement
was 125 m and was later tightened to 100 m.) This FCC
mandate has motivated considerable research efforts
towards developing accurate wireless location algorithms
for cellular networks and has led to significant enhance-
ments to the wireless location technology (see, e.g.,
[12]–[25]). According to the latest FCC rules, the new man-
date and accuracy requirements will be enforced in 2005.
Although the FCC does not have a specific order for indoor
environments, a location capability coverage for both indoor
and outdoor emergency situations is desirable.
■  Mobile advertising: Location-specific advertising and mar-
keting will benefit once the location information becomes
available. For example, stores will be able to track customer
locations and attract them by flashing customized coupons
on customers’ wireless devices [14]. In addition, a cellular
phone or a personal digital assistant (PDA) could act as a
handy mobile yellow pages on demand. 
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ACRONYMS DESCRIPTION
2G SECOND GENERATION OF MOBILE SYSTEMS
3G THIRD GENERATION OF MOBILE SYSTEMS
AOA ANGLE OF ARRIVAL
AP ACCESS POINT
AMPOA AMPLITUDE OF ARRIVAL
BS BASE STATION
CDMA CODE DIVISION MULTIPLE ACCESS
E911 ENHANCED 911
FCC FEDERAL COMMUNICATIONS COMMISSION
GPS GLOBAL POSITIONING SYSTEM
LBS LOCATION BASED SERVICES
ML MAXIMUM LIKELIHOOD
MS MOBILE STATION
NLOS NON-LINE-OF-SIGHT
PDA PERSONAL DIGITAL ASSISTANT
PSAP PUBLIC SAFETY ANSWERING POINT
rms ROOT MEAN SQUARE
SINR SIGNAL-TO-INTERFERENCE-NOISE RATIO
SNR SIGNAL-TO-NOISE RATIO
TDOA TIME DIFFERENCE OF ARRIVAL
TOA TIME OF ARRIVAL
UMTS UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
WCDMA WIDEBAND CODE DIVISION MULTIPLE ACCESS
WLAN WIRELESS LOCAL AREA NETWORK

[TABLE 1]  LIST OF ACRONYMS.

[FIG1] Forecast revenues for location-based services [1], [2].
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■  Asset tracking (indoor/outdoor): Wireless location technol-
ogy can also assist in advanced public safety applications,
such as locating and retrieving lost children, patients, or
pets. In addition, wireless location technology can be used to
track personnel/assets in a hospital or a manufacturing site
to provide more efficient management of assets and person-
nel. One could also consider applications such as smart and
interactive tour guides, smart shopping guides that direct
shoppers based on their location in a store, and traffic con-
trols in parking structures that guide cars to free parking
slots. Department stores, enterprises, hospitals, manufactur-
ing sites, malls, museums, and campuses are some of the
potential end users to benefit from the technology.
■  Fleet management: Many fleet operators, such as police
forces, emergency vehicles, and other services like shuttle and
taxi companies, can make use of the wireless location technolo-
gy to track and operate their vehicles in an efficient manner to
minimize response times. In addition, a large number of driv-
ers on roads and highways carry cellular phones while driving.
The wireless location technology can help track these phones,
thus transforming them into sources of real-time traffic infor-
mation that can be used to enhance transportation safety.
■  Location-based wireless access security: New location-
based wireless security schemes can be developed to height-
en wireless network security and avoid the interception of
digital information. By using location information, only peo-
ple at specific physical areas could access certain files or
databases through a WLAN.
■  Location sensitive billing: Using the location information
of wireless users, wireless service providers can offer variable-
rate call plans or services that are based on the caller location.

MOBILE-BASED VERSUS NETWORK-BASED TECHNIQUES
Wireless location technologies fall into two main categories:
mobile based and network based. In mobile-based location sys-
tems, the MS determines its location from signals received from

some base stations (BSs) or from the global positioning system
(GPS). In GPS-based estimations, the MS receives and measures
the signal parameters from at least four satellites of the current
network of 24 GPS satellites. The parameter measured by the MS
for each satellite is the time the satellite signal takes to reach the
MS. GPS systems have a relatively high degree of accuracy, and
they also provide global location information. There is also a
hybrid technique that uses both the GPS technology and the cel-
lular infrastructure. In this case, the cellular network is used to
aid the GPS receiver embedded in the mobile handset for
improved accuracy and/or acquisition time [15].

Still, embedding a GPS receiver into mobile devices leads to
increased cost, size, and battery consumption. It also requires
the replacement of millions of mobile handsets that are already
on the market. In addition, the accuracy of GPS measurements
degrades in urban environments as well as inside buildings. For
these reasons, some wireless service providers may be unwilling
to embrace GPS fully as the sole location technology.

Network-based location technology, on the other hand, relies on
some existing networks (either cellular or WLAN) to determine the
position of a mobile user by measuring its signal parameters when
received at the network BSs. In this technology, the BSs measure
the signals transmitted from an MS and relay them to a central site
for further processing and data fusion to provide an estimate of the
MS location. A significant advantage of network-based techniques is
that the MS is not involved in the location-finding process; thus,
the technology does not require modifications to existing handsets.
However, unlike GPS location systems, many aspects of network-
based location are not yet fully studied.

The rest of this article focuses on network-based wireless
location. For location estimation, two operations must be per-
formed at the BSs. The BSs have to measure some signal param-
eters (such as the time or the angle of arrival) of the received MS
signals. Then, the measured signal parameters are combined in a
data fusion stage to provide the final estimate for location. Both
of these stages are discussed in the following sections. Figure 2

IEEE SIGNAL PROCESSING MAGAZINE [26] JULY 2005

[FIG2] Network-based wireless location finding. (a) Outdoor environment using a cellular network. (b) Indoor environment using a
WLAN.
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illustrates this two-stage procedure (measurement and data
fusion) for an outdoor environment using a cellular network and
for an indoor environment using a WLAN. Although the focus of
the article is on network-based location systems, most of the net-
work-based location algorithms presented here can be used at
the MS as well. Therefore, from now on, network-based wireless
location will simply be referred to as wireless location.

DATA FUSION METHODS
The data fusion step combines measurements from different
BSs to obtain an estimate of the MS location. Let (xm, ym)

denote the MS location coordinates in a Cartesian coordinate
system. Let the coordinates of three BSs (BS1, BS2, and BS3)
be denoted by (x1, y1), (x2, y2), and (x3, y3), respectively. For
simplicity of presentation, only the x and y coordinates are
considered in the derivations and the z coordinate is ignored.
This corresponds to a case where the BSs and the mobile user
are located on a relatively flat plane. Without loss of generality,
the origin of the Cartesian coordinate system is set at BS1, i.e.,
(x1, y1) = (0, 0). Several data fusion techniques have been
introduced in the literature; these techniques depend on what
signal parameters are measured at the BSs [3], [4]. (These are
several studies in the literature that compare the performance
of different fusion algorithms, e.g. [26], [27].) The most com-
mon signal parameters are the time, angle, and amplitude of
arrival of the MS signal.

TIME OF ARRIVAL DATA FUSION
The time of arrival (TOA) data fusion method is based on com-
bining estimates of the TOA of the MS signal when arriving at
three different BSs. Since the wireless signal travels at the
speed of light (c = 3 × 108 m/s), the distance between the MS
and BSi is given by 

ri = (ti − t o)c, (1)

where to is the time instant at which the MS begins transmis-
sion and ti is the TOA of the MS signal at BSi. The distances
(r1, r2, r3) can be used to estimate (xm, ym) by solving the fol-
lowing set of equations (see Figure 3):

r2
1 =x2

m + y2
m (2)

r2
2 = (x2 − xm)2 + (y2 − ym)2 (3)

r2
3 = (x3 − xm)2 + (y3 − ym)2 . (4)

Without loss of generality, it can be assumed that r1 < r2 < r3.
One way to solve this overdetermined nonlinear system of

equations is as follows. First, (2) and (3) are solved for the
two unknowns (xm, ym) to yield two solutions. As shown in
Figure 3, (2) and (3) each define a locus on which the MS
must lie. Second, the distance between each of the two possi-
ble solutions and the circle given by (4) is calculated. The
solution that results in the shortest distance from the circle
(4) is chosen to be an estimate of the MS location coordinates

[12]. Although this method helps resolve the ambiguity
between the two solutions resulting from (2) and (3), it does
not combine the third measurement r3 in an optimal man-
ner. Furthermore, it is not possible in this way to combine
TOA measurements from more than three BSs (which would
be useful when the measurements {ri} are subject to inaccu-
racies and noise).

This issue can be addressed by combining all the available
measurements using a least-squares solution as follows (alterna-
tive techniques such as maximum likelihood (ML) solution can
be found, e.g, in [49], [50]). Subtracting (2) from (3) gives

r2
2 − r2

1 = x2
2 − 2x2 xm + y2

2 − 2y2 ym.

Similarly, subtracting (2) from (4) gives

r2
3 − r2

1 = x2
3 − 2x3 xm + y2

3 − 2y3 ym.

Rearranging terms, the above two equations can be written
in matrix form as 




x2 y2

x3 y3







xm

ym


 = 1

2




K2
2 − r2

2 + r2
1

K2
3 − r2

3 + r2
1


 , (5)

where 

K2
i = x2

i + y2
i . (6)

Then, (5) can be rewritten as 

Hx = b, (7)

where

H =



x2 y2

x3 y3


 , x =




xm

ym


 , b = 1

2




K2
2 − r2

2 + r2
1

K2
3 − r2

3 + r2
1


 .

If more than three TOA measurements are available, it can be
verified that (7) still holds with

[FIG3] TOA data fusion using three BSs.
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
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...
...
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K2
4 − r2
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1

...


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. (8)

In this case, the least-squares solution of (7) is given by ([3], [7])

x̂ =
(

HTH
)−1

HTb. (9)

It is seen that the TOA data fusion method requires accurate
synchronization between the BSs and MS clocks so that the
measurements {ri} are adequate approximations for the actual
distances. Many of the current wireless system standards only
mandate tight timing synchronization among BSs (see, e.g.,
[30]). The MS clock itself might have a drift that can reach a few
microseconds. This drift directly generates an error in the loca-
tion estimate of the TOA method. In the next subsection  we
present a data fusion technique that combines time DOA
(TDOA) measurements and helps avoid MS clock synchroniza-
tion errors [3], [31], [34].

TDOA DATA FUSION
The TDOA associated with BSi is ti − t1; i.e., it is the difference
between the TOAs of the MS signal at BSi and BS1. Now we
define the distance differences

ri1
�= ri − r1

= (ti − t o)c − (t1 − t o)c = (ti − t1)c. (10)

Note that these differences are not affected by errors in the MS
clock time (t o) as it cancels out when subtracting two TOA
measurements. (3) can be rewritten in terms of the TDOA meas-
urement r21 as

(r21 + r1)
2 = K2

2 − 2x2 xm − 2y2 ym + r2
1.

Expanding and rearranging terms gives

−x2 xm − y2 ym = r21 r1 + 1
2

(
r2

21 − K 2
2

)
.

Similarly, (4) leads to

−x3 xm − y3 ym = r31 r1 + 1
2

(
r2

31 − K2
3

)
.

Rewriting these equations in matrix form gives 

Hx = r1c + d, (11)

where

c =



−r21

−r31


 , d = 1

2




K2
2 − r2

21

K2
3 − r2

31


 .

Equation (11) can be used to solve for x in terms of the
unknown r1 to yield

x = r1H−1c + H−1d. (12)

Substituting this intermediate result into (2) leads to a quadratic
equation in r1. Solving for r1 and substituting the positive root
back into (12) yields the final solution for x.

If more than three BSs are involved in the MS location, (11)
still holds with

H =




x2 y2

x3 y3

x4 y4

...
...




, c =




−r21

−r31

−r41

...




, d = 1
2




K2
2 − r2

21

K2
3 − r2

31

K2
4 − r2

41

...




which yields the following least-squares intermediate solution

x̂ =
(

HTH
)−1

HT(r1c + d). (13)

Combining this intermediate result with (2) again, the final esti-
mate for x is obtained. A more accurate solution can be obtained
as in [32] if the second-order statistics of the TDOA measure-
ment errors are known.

ANGLE OF ARRIVAL DATA FUSION
At the BS, angle of arrival (AOA) estimates can be obtained
using an antenna array. The direction of arrival of the MS sig-
nal can be calculated by measuring the phase difference
between the antenna array elements or by measuring the
power spectral density across the antenna array in what is
known as beamforming (see, e.g., [37] and the references
therein). By combining the AOA estimates of two BSs, an esti-
mate of the MS position can be obtained (see Figure 4). The
number of BSs needed for the location process is less than that
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[FIG4] Combining AOA measurements.
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of the TOA and TDOA meth-
ods. Another advantage of
AOA location methods is
that they do not require BS
or MS clock synchroniza-
tion. However, one disad-
vantage of the AOA method
is that antenna array structures do not currently exist in sec-
ond generation (2G) cellular systems. Still, the use of antenna
arrays is planned in third generation (3G) cellular systems,
such as UMTS and cdma2000 networks [38], [39].

More generally, assume n BSs estimate the AOA of the MS
signal, and the goal is to combine these measurements to esti-
mate the MS location. As indicated in Figure 4, let α2 denote the
AOA of the MS signal at BS2. Then

[
xm

ym

]
=

[
r1 cos α1

r1 sin α1

]

and
[

xm

ym

]
=

[
x2

y2

]
+

[
r2 cos α2

r2 sin α2

]
.

Likewise, for any other BSi,

[
xm

ym

]
=

[
xi

yi

]
+

[
ri cos αi

ri sin αi

]
.

Collecting these relations into a single equation yields

Hx = b,

where

H =




1 0
0 1

1 0
0 1

...
...

1 0
0 1




, x =
[

xm

ym

]
, b =




r1 cos α1

r1 sin α1

x2 + r2 cos α2

y2 + r2 sin α2

...

xn + rn cos αn

yn + rn sin αn




. (14)

The least-squares solution for x is then

x̂ =
(

HTH
)−1

HTb. (15)

Besides the regular sources of error in AOA measurements,
such as noise and interference, AOA measurements can be
corrupted by non-line-of-sight (NLOS) effects and errors in

the angular orientation of
the installed antenna
arrays. The issue of NLOS
is discussed in another sec-
tion. For the error in the
angular orientation of the
antenna arrays, some test

measurements can be conducted to calibrate the orientation
of the antenna array.

HYBRID DATA FUSION TECHNIQUES
In TOA, TDOA, and AOA methods, two or more BSs are involved
in the MS location process. In situations where the MS is much
closer to one BS (serving site) than the other BSs, the accuracy
of these methods can be degraded due to the relatively low SNR
of the received MS signal at one or more BSs. The accuracy is
further reduced if some type of power control is used, since this
requires that the MS reduce its transmitted power when it
approaches a BS. In these cases, an alternate data fusion proce-
dure is used to obtain AOA estimates and combine them with
TOA estimates (see, e.g., [40]). In real scenarios, the accuracy of
TOA and AOA estimates is usually a function of the environ-
ment. For example, in rural areas, AOA measurements can be
more accurate than TOA measurements if a large-size antenna
array is deployed. On the other hand, TOA measurements are
more accurate than AOA measurements if the BS antenna array
is surrounded by many scatterers. The following is a simple two-
step hybrid least-squares procedure. Assume n BSs estimate the
AOA and TOA of the MS. From (9), the least-squares estimate of
(xm, ym) using TOA measurements is given by

(̂
xm

ym

)
TOA

=
(

HT
TOAHTOA

)−1
HT

TOAbTOA, (16)

where

HTOA =




x2 y2

x3 y3

...
...

xn yn




, bTOA = 1
2




K2
2 − r2

2 + r2
1

K2
3 − r2

3 + r2
1

...

K2
n − r2

n + r2
1




and

K2
i = x2

i + y2
i .

Likewise, from (15), the least-squares estimate of (xm, ym)

using only AOA measurements is given by

(̂
xm

ym

)
AOA

=
(

HT
AOAHAOA

)−1
HT

AOAbAOA (17)

where

A LARGE PROPORTION OF ALL 911 
CALLS ORIGINATE FROM MOBILE PHONES, 

THE LOCATION OF WHICH SHOULD BE
DETERMINED WITH SUFFICIENT ACCURACY.
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HAOA =




1 0
0 1

1 0
0 1

...
...

1 0
0 1




, bAOA =




r1 cos α1

r1 sin α1

x2 + r2 cos α2

y2 + r2 sin α2

...

xn + rn cos αn

yn + rn sin αn




. (18)

The final location estimate could be taken as a linear combina-
tion of the two estimates, say as

(̂
xm

ym

)
= η

(̂
xm

ym

)
TOA

+ (1 − η)

(̂
xm

ym

)
AOA

(19)

where the positive parameter η is chosen depending on the rela-
tive accuracy of the TOA and AOA measurements.

DATA FUSION WITH NLOS CONDITIONS
An important source of error in TOA-based and AOA-based
data fusion is the case where there is no line-of-sight from the
mobile station to the BSs. A geometrically constrained data
fusion scheme could be used to reduce the effect of such NLOS
conditions [41] (see [8] for other ways to exploit the geometry
of the problem). Figure 5 shows a representation of a cellular
system assuming three BSs. Let the θi denote the angles
induced by the topology of the BSs. Let also rij denote the dis-
tance between the i th and j th BSs. Likewise, the αi denote
the AOAs of the MS signal at the BSs. In practice, the distance
measurements ri in (1) are generally corrupted by NLOS off-
sets arising from the presence of obstacles between the MS and
the BS, as well as by measurement noise. Similarly, the AOA

measurements αi are corrupted by NLOS effects and by noise.
Hence, the available measurements are

ᾱi =αi + vαi

r̄i =ri + vri (20)

where vαi and vri represent the corruptions to αi and ri. One
scheme for recovering (xm, ym) from the measurements
{ r̄i, ᾱi} is based on formulating a constrained optimization
problem that reduces the effect of NLOS conditions on loca-
tion accuracy. The constraints will be a reflection of the topol-
ogy of the cellular network. Thus, consider the cellular system
shown in Figure 5. The constraints are the distances between
the BSs, which are given by

r2
12 =r2

1 + r2
2 − 2r1 r2 cos γ1 (21)

r2
23 =r2

2 + r2
3 − 2r2 r3 cos γ2 (22)
...

where the angles {γi} are functions of {αi, θi}. This formulation
is easily extendable to the case of n BSs. Then, one could pose
the problem of estimating the {αi, ri} by solving

{α̂i, r̂i}n
i=1 = arg min

{αi,ri}

n∑
i=1

(
ᾱi − αi

σαi

)2

+
(

r̄i − ri

σri

)2

(23)

subject to 

r2
12 = r2

1 + r2
2 − 2r1 r2 cos(π − (α1 + α2))

r2
23 = r2

2 + r2
3 − 2r2 r3 cos(π − (α3 + (θ2 − α2)))

...

where σ 2
ri

is the variance of the distance error and σ 2
αi

is the
variance of the angle error (both at the i th BS). There are some
known methods for estimating the variances σ 2

ri
and σ 2

αi
(see,

e.g., [42]–[44]). These methods generally use the time history of
the signals, or the scattering model of the environment, to esti-
mate the noise variance, as in

σ 2
ri

≈ 1
K

K−1∑
n=0

( r̄i(n) − µri)
2, (24)

where

µri = 1
K

K−1∑
n=0

r̄i(n) (25)

for K ≈ 400 and where r̄i(n)is the measurement of ri at experi-
ment n. This is also true for σ 2

αi
. Minimizing (23) results in esti-

mates of {ri, αi}. Using the equalized values in (8) or (9) will
result in improved location accuracy.[FIG5] A schematic of a cellular network topology with three BSs.
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THE WIRELESS ENVIRONMENT
From the previous discussion, it is clear that most wireless loca-
tion methods depend on combining estimates of the TOA and/or
AOA of the received signal at different BSs. Estimating the TOA
and amplitude of arrival (AmpOA) of wireless signals has been
studied in many works since it
is required in many wireless
system designs for online signal
decoding purposes. Yet, esti-
mating these same parameters
for wireless location purposes is
challenging for several reasons.

■ Low SINR conditions. Cellular systems tend to suffer
from high multiple access interference levels that
degrade the SNR of the received signal. Moreover, the
ability to detect the MS signal at multiple BSs is limited
by the use of power control algorithms, which require
the MS to decrease its transmitted power when it
approaches the serving BS. This fact, in turn, decreases
the received MS signal power level at other BSs. In a typi-
cal CDMA IS-95 cellular environment, the received SNR
at the serving BS is in the order of −15 dB. However, the
received SNR at BSs other than the serving BS can be as
low as −40 dB, which poses a challenge for wireless loca-
tion in such environments.
■ Channel fading and Doppler frequency. In wireless location
applications, the estimation period can be considerably long
(it might reach several seconds). Thus, in a fading environ-
ment, the channel values can change significantly over the
location estimation period. In this way, the channel values can
no longer be assumed constant during the estimation period. 
■ Overlapping multipath. In wireless location systems, the
accurate estimation of the TOA, AOA, and AmpOA of the
first arriving ray of the multipath channel is vital. In gen-
eral, the first arriving (prompt) ray is assumed to corre-
spond to the most direct path between the MS and BS.
However, in many wireless propagation scenarios, the
prompt ray is succeeded by a multipath component that
arrives at the receiver within a short time of the prompt
ray. If this delay is smaller than the duration of the pulse-
shape used in the wireless system, these two rays overlap,
causing errors in the prompt ray TOA and AmpOA estima-
tion. These errors degrade the performance of wireless
location algorithms; as such, they demand careful consider-
ations (see, e.g., [9]–[11], [28], and [29]).
In the sections that follow, some algorithms for TOA and

AOA estimation are described. These algorithms exploit the
nature of the wireless channel and are robust to low SNR and
fading conditions [25], [51].

TOA ESTIMATION
The aim of a TOA estimation scheme is to estimate an unknown
delay, τ o, of a known sequence {s(n)}. (At the serving site, the
MS signal can be decoded with reasonably high accuracy; thus,
it can be assumed to be known almost perfectly.) The signal is

assumed initially to be transmitted over a single path fading
channel. A total of K measurements r(n) are collected, which
are related to s(n) via 

r(n) = A h(n) s(n − τ o) + v(n), n = {1, . . . , K }, (26)

where v(n) is additive white
Gaussian noise with variance
σ 2

v , {h(n)} is the fading channel
gain, and A is an unknown
amplitude (real value) that
accounts for the gain of the

static channel if fading were not present. The autocorrelation
function of h(n) is defined as

Rh(i ) = Eh(n)h∗(n − i ). (27)

Without loss of generality, we will assume that the sequence
h(n) has unit variance, i.e., Rh(0) = 1. The ML estimates of
{τ o, h(n)} are defined by

{τ̂ , ĥ(n)} = arg max
τ,h(n)

[P(r(1) · · · r(K)|τ, h(n))], (28)

where the likelihood function P(r(1) · · · r(K)|τ, h(n)) is of the
form

C1 exp

{
−C2

1
K

K∑
n=1

‖r(n) − Ah(n)s(n − τ)‖2

}
(29)

for some positive constants C1 and C2 that are independent of
the unknowns {τ, h(n)}. Thus, the ML estimates of {τ, h(n)} are
given by [25]

{τ̂ , ĥ(n)} = arg max
τ,h(n)

JML(τ, h(n)), (30)

where the cost function JML is given by

JML(τ, h(n)) = 2A
K

K∑
n=1

Re[r (n)h∗(n)s∗(n − τ)]

− A2

K

K∑
n=1

|h(n)|2|s(n − τ)|2.

This construction requires an infinite dimensional search
over {τ, h(n)} and is not feasible in practice even when τ and
h(n) are evaluated over a dense grid. To arrive at a feasible
algorithm, we assume the channel variations are sufficiently
slow, namely, that h(n) is piecewise constant over intervals of
N samples. The value of N depends on the environmental con-
ditions; an optimal choice for N is discussed later in this
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article. Under the slow channel variation assumption, it can
be argued that the maximization problem (30) over τ and
h(n) can be reduced to maximizing the following cost func-
tion instead over τ [25]: 

J(τ) = 1
M

M∑
m=1

∣∣∣∣∣
1
N

mN∑
n=(m−1)N+1

r(n)s∗(n − τ)

∣∣∣∣∣
2

, (31)

where the integers N and M satisfy NM = K. A practical scheme
for maximizing (31) over τ is shown in Figure 6 and was derived
in [25]. The received sequence {r(n)} is correlated with a
delayed replica of the transmitted sequence, {s(n − τ)}, for dif-
ferent values of τ . The resulting sequence is averaged coherently

over an interval of N samples and further averaged noncoher-
ently for M samples after squaring to build the power delay pro-
file, J(τ). The branch that results in the largest value for τ
provides the desired estimate τ̂ . Moreover, the SNR at the out-
put of the searcher is [25]

SNR = A2

σ 2
v

(
Rh(0) +

N−1∑
i=1

2(N − i)Rh(i)
N

)
.

The optimal value of the coherent averaging period (Nopt) is
obtained by maximizing the SNR with respect to N, which leads
to the following expression for finding Nopt:

Nopt−1∑
i=1

iRh(i) = 0. (32)

For a Rayleigh fading channel, Rh(i) is given by

Rh(|i|) = Jo
(
2π fDTs i

)
,

where Jo(·) is the first-order Bessel function, Ts is the sampling
period of the received sequence {r(n)}, and fD is the maximum
Doppler frequency. Therefore, (32) shows that the coherent
averaging interval N should be adapted according to the channel
autocorrelation function.

TOA ESTIMATION WITH ANTENNA ARRAY
Further improvement in the TOA estimation can be accomplished
by deploying an antenna array at the BS [51]. Thus assume that
the BS uses an Na-element antenna array. Then, in contrast to
(26), the received signal at time n is now an Na × 1 vector:

r(n) = ah(n)s(n − τ o) + v(n), (33)

(Note that we are assuming a scat-
tered MS model. Since in a typical cel-
lular system the mobile station is
usually far from the BS, the reflected
rays from the scatterers around the
MS reach the BS at  close angles.
These reflected rays cause a fading
effect in h(n) with almost the same
AOA. Moreover, it is assumed that any
bias in the direction or the angle of
the arrays can be ignored from the
derivations through some calibration
procedures.) where now v(n) is an
additive white Gaussian noise vector
with covariance matrix σ 2

v I, and a is
the array response defined by

a = col
{

1, e j2π d
λ

sin α, . . . , e j2π
(Na−1)d

λ
sin α

}
, (34)

where α is the AOA of the signal measured with respect to the
array, d is the antenna spacing, and λ is the wavelength corre-
sponding to the carrier frequency. Note that the array response
defined by (34) is valid only for a uniform linear array (ULA).
This array response could be modified if other array structures,
such as circular array, are used.

The ML estimates of τ and α are given by

{τ̂ , α̂} = arg max
τ,α

[P(r(1) · · · r(K))|τ, α], (35)

where the likelihood function is now proportional to

exp

{
−C2

1
K

K∑
n=1

‖r(n) − ah(n)s(n − τ)‖2

}
, (36)

in which ‖.‖ is the Euclidean norm of the vector and C2 is some
positive constant. Therefore, the ML estimates of {τ, α} can be
found by solving

[FIG6] A scheme for TOA estimation over fading channels.
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{τ̂ , α̂} = arg max
τ,α

JML(τ, α), (37)

where

JML(τ, α) = 1
K

K∑
n=1

‖r(n) − ah(n)s(n − τ)‖2.

This cost function can be simplified by noting that ‖a‖2 = Na

and that the entries of a have unit norm, so that

JML(τ, α) = 1
K

K∑
n=1

|a∗r(n) − h(n)s(n − τ)|2. (38)

Rather than perform a two-dimensional (2-D) search, the esti-
mator can perform the search for τ and α separately as follows.
Assume first that α is known.
Then the term a∗r(n) in (38) can
be interpreted as the output of a
beamformer (antenna combiner)
steered to direction α, as shown in
Figure 7. The optimization prob-
lem for τ , given α, then reduces
to the single-antenna case of
Figure 6 using a beamformer at
direction α.

AOA ESTIMATION WITH
ANTENNA ARRAY
Now assume τ in (38) is known
and evaluate the correlation

zm = 1
N

(
mN∑

n=(m−1)N+1

r(n)s∗(n − τ o)

)
, m = 1, . . . ,M

(39)

over intervals of length N, during which h(n) is essentially
invariant. Then, using (33),

zm = ah(mN)
1
N

(
mN∑

n=(m−1)N+1

|s(n − τ o)|2
)

+ 1
N

(
mN∑

n=(m−1)N+1

v(n)s∗(n − τ o)

)
. (40)

In other words,

zm = p(m)h(mN)a + um, (41)

where p(m) denotes the constant known power term

p(m) = 1
N

(
mN∑

n=(m−1)N+1

|s(n − τ o)|2
)

,

and um refers to the noise term in (40). Collecting (41) into vec-
tor form yields




z1

z2

...

zM




︸ ︷︷ ︸
z

=




p(1)h(N)INa×Na

p(2)h(2N)INa×Na

...

p(M)h(MN)INa×Na




︸ ︷︷ ︸
A

a +




u1

u2

...

uM




. (42)

The channel gains {h(N), h(2N), . . . , h(MN)} can be esti-
mated roughly from (41) by noting that the top entry of a is
unity, so that 

ĥ(mN) = zm(1)/p(m).

The LS estimate can then be obtained as

â = (A∗A)−1A∗z. (43)

The AOA information can be extracted from the estimated
array response â based only on the phase rotation between the
entries of â (see Figure 8).

MULTIPATH, MULTIUSER ENVIRONMENT
As mentioned previously, wireless propagation suffers from
multipath conditions, in which case the prompt ray may be
succeeded by multipath components that arrive at the receiver
with short delays (e.g., [52]). In this section, we describe one
way to perform TOA and AOA estimation under multipath
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[FIG7] TOA estimation over fading channels using an antenna array.
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conditions. First, we modify the channel model (26) to accom-
modate a more general multiuser, multipath environment.
Assuming the maximum number of channel taps to be L and
the number of mobile users to be Nu, the received signal r(n)

of size Na × 1 is now given by 

r(n) =
Nu∑

k=1

L∑
l=1

ak,lhk,l(n)sk(n − τ o
k,l) + v(n), (44)

where sk(n) is the transmitted sequence by the kth user and
v(n) is an Na × 1 additive white Gaussian noise vector.
Moreover, hk,l(n) and τk,l are the channel gain and delay,
respectively, for user i, and ak,l is the array response correspon-
ding to the l th channel tap from user k to the BS, namely

ak,l = col
{

1, e j2π d
λ

sin αk,l , . . . , e j2π
(Na−1)d

λ
sin αk,l

}
, (45)

where αk,l is the AOA for the l th tap and kth user.
As in the single path case discussed earlier [see (39)], we

define the correlation vectors:

zk,l,m = 1
N

mN∑
n=(m−1)N+1

r(n)s∗k
(

n − τ o
k,l

)
,

where N is the coherent correlation length. Then [compare
with (41)]

zk,l,m = pk,l(m)hk,l(mN)ak,l + ik,l,m + uk,l,m, (46)

where 

pk,l(m) = 1
N

(
mN∑

n=(m−1)N+1

|sk

(
n − τ o

k,l

)
|2

)

and

uk,l,m = 1
N

(
mN∑

n=(m−1)N+1

v(n)s∗k
(

n − τ o
k,l

))
(47)

ik,l,m =
Nu∑

k′=1

L∑
l′=1

k′ �=k,l′ �=l

ρk,l,k′,l′(m)hk′,l′(mN)ak′,l′ (48)

where

ρk,l,k ′,l ′(m) = 1
N

mN∑
n=(m−1)N+1

sk′
(

n − τ o
k ′,l ′

)
s∗k

(
n − τ o

k,l

)

(49)

represents the correlation between the sequences of user k and
all other users. Collecting M such realizations into a vector zk,l

yields




zk,l,1
zk,l,2

...

zk,l,M




︸ ︷︷ ︸
zk,l

=




pk,l(1)hk,l(N)INa×Na

pk,l(2)hk,l(2N)INa×Na

...

pk,l(M)hk,l(MN)INa×Na




︸ ︷︷ ︸
Ak,l

ak,l

+




ik,l,1
ik,l,2

...

ik,l,M




︸ ︷︷ ︸
ik,l

+




uk,l,1
uk,l,2

...

uk,l,M


 . (50)

The least-squares estimation of ak,l can be obtained as

âk,l =
(

A∗
k,lAk,l

)−1
A∗

k,lzk,l. (51)

The AOA information is finally extracted from the estimated
array response âk,l based only on the phase rotation between the
entries of âk,l according to (45). The above least-squares estima-
tion is repeated for all users and multipaths, k = 1, . . . , Nu,
l = 1, . . . , L.

As the number of users and multipaths increases, multiple
access interference (MAI) and intersymbol interference (ISI)
in (46) become stronger. For practical scenarios with a large
number of active users in a cell, the accuracy of the least-
squares estimation of AOA is limited by MAI and ISI. One
solution for reducing the effect of MAI in (46) is to increase
the coherent correlation length N, as well as the realization
length M. However, the correlation or estimation length can-
not be increased indefinitely. The correlation length should
be short enough such that the channel taps can be assumed
constant during the estimation process.

We may use joint least-squares estimation followed by multi-
user interference cancellation to provide an accurate AOA

[FIG8] AOA estimation using an antenna array over a single path
fading channel.
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estimation in the presence of interfering users. This joint tech-
nique takes advantage of the following two facts:

■ A BS (in normal operating
mode) detects and decodes
the signals from all users
simultaneously. Therefore,
the BS knows the training
sequences used by the users,
i.e., sk(n), k = 1, . . . , Nu.
■ The BS performs the channel and array response estima-
tion for all users and multipaths. Therefore, the estimation of
the channel taps (âk,l and hk,l, k = 1, . . . Nu, l = 1, . . . , L)
are available at the BS.
The above information is used in a secondary stage to fur-

ther enhance the accuracy of the estimation process by cancel-
ing the MAI in (46). The interfering signal is regenerated using
the known sk(n), the estimated channel gain ĥk,l, and the array
response ak,l. It is then subtracted from the previous correla-
tion results zk,l, and a new estimate is obtained. The following
steps are performed in the proposed architecture:

1) Use (46)–(51) to calculate {α̂k,l, ĥk,l(mN)}.
2) Use the estimated channel taps to regenerate (estimate) the
MAI term ik,l,m in (48), i.e.,

îk,l,m =
Nu∑

k ′=1

L∑
l ′=1

k ′ �=k,l ′ �=l

ρk,l,k ′,l ′(m)ĥk ′,l ′(mN)âk ′,l ′ . (52)

3) Subtract the estimated interference (52) from the correla-
tion vector in (46). The new zk,l,m becomes

z̄k,l,m = zk,l,m − îk,l,m

with the interference term ik,l,m reduced.
4) Use the z̄k,l,m in (51) to find an improved {α̂k,l, ĥk,l(mN)}.
5) Repeat steps 2–4 for all users and multipaths as necessary.

The above procedure can be repeated until an AOA estimate
within the desirable range is achieved.

WLANS
Similar technical challenges also arise for wireless location
determination in indoor environments, where WLAN is cur-
rently the most widely deployed wireless network. WLAN
standards such as IEEE802.11b, and more recently
IEEE802.11g, have been widely adopted in offices, homes,
hospitals, restaurants, and schools. WLAN connectivity has
also become a standard feature for laptop computers and
PDAs as well as the new generation of smart cellular phones.
As such, there is an increasing interest in utilizing these net-
works for location purposes to help provide good coverage for
indoor scenarios.

THE INDOOR ENVIRONMENT
Yet, the indoor channel environment is challenging for a num-

ber of reasons.
■ Channel fading. The channel
variation as a function of posi-
tion due to the scatterer-rich
nature of indoor environments
can be significant. In a scatterer-
rich environment, the channel

can be considered correlated only over a distance of λ/2,
where λ is the wavelength corresponding to the carrier fre-
quency. At 2.4 GHz, which is the band of operation for
IEEE802.11b and IEEE802.11g, λ/2 is less than 10 cm. In
other words, a movement of about 10 cm in an indoor envi-
ronment can result in significant change in the channel gain.
■ Path loss and shadow fading. The distance between the
access point (AP) and mobile users causes path loss in the
signal strength. The path loss in a typical office area is pro-
portional to d−3.5 , where d is the distance between the
mobile user and the AP. In addition to the path loss, the
shadow fading caused by walls further contributes to atten-
uation of the signal strength.
■ Interference. The 2.4-GHz band is an unlicensed band
where devices such as Bluetooth, cordless phones, and even
microwave ovens operate. The interference from these other
active devices can limit the achievable location accuracy. 

AMPOA ESTIMATION 
Some of the older proposed location-aware systems for indoor
environments [53]–[57] require specialized hardware such as
ultrasound transmitters, camera, and infrared transmitters.
But since the IEEE 802.11b and IEEE 802.11g MAC layer soft-
ware provides the signal strength and the SNR, a software-level
location technique could be developed for WLAN networks
based on the AmpOA at different access points [58]–[66].
Specifically, when an IEEE802.11 wireless network operates in
the infrastructure mode, there are several APs and many end
users within the network. RF-based systems that use the signal
strength for location purposes can monitor the received signal
strength from different APs and use the obtained statistics to
build a conditional probability distribution network to esti-
mate the location of the mobile client. These schemes usually
work in two phases: the first phase is the offline training and
data gathering phase, and the second phase is the location
determination phase using the online signal strength meas-
urements. In the training phase, signal strength measure-
ments are used to build an a priori probability distribution of
the received signal strength at the mobile user from all APs.
Assume there are N APs in the system and the radio map is
created based on measurements from M user locations. The
radio map model is described by [55]–[58]

p(Ai|xj, yj)
�= the PDF of the received signal strength,

where 

IEEE SIGNAL PROCESSING MAGAZINE [35] JULY 2005

LOCATION-BASED APPLICATIONS WILL 
PLAY AN IMPORTANT ROLE IN FUTURE

WIRELESS MARKETS. 



IEEE SIGNAL PROCESSING MAGAZINE [36] JULY 2005IEEE SIGNAL PROCESSING MAGAZINE [36] JULY 2005

Ai = received signal strength from the i th AP

(xj, yj) = coordinates of the jth measurement point

i = 1, 2, . . . , N, j = 1, 2, . . . , M.

After constructing a Bayesian network, the online determi-
nation phase uses ML estimation to locate the mobile user.
Thus, assume that the mobile user measures the received signal
strength from all APs, as in 

A ′
i

�= measured signal from the ith AP.

Then, using Bayes’ rule, the probability of having the mobile
user at location (xj, yj) given the received signal strengths from
all APs is given by 

A ′ �= [A ′
1, . . . , A ′

N]

p(xj, yj|A ′) = p(A ′|xj, yj)p(xj, yj)

p(A ′)

= p(xj, yj)
∏N

i=1 p(A ′
i|xj, yj)

p(A ′)
,

where 
∏N

i=1 p(A′
i|xj, yj) is the approximation for the conditional

probability density function of the received signal strength when
the location of the mobile user is given. Thus, the location of
the mobile user can be estimated as 

(x̂m, ŷm) = arg max
xj,yj

p(xj, yj|A ′)

j = 1, 2, . . . , M. (53)

TOA/AOA ESTIMATION
The TOA and AOA estimation techniques and the data
fusion schemes presented in the previous sections can be
used for indoor environments as well. However, the accura-
cy desired for indoor applications is higher than that
required for outdoor environments. While an accuracy of 50
m is acceptable for many outdoor applications, for indoor
applications an accuracy of few meters is desired. Therefore,
the performance of the estimation algorithms should be
boosted to meet the accuracy requirements. The following
facts will improve the accuracy of location finding algo-
rithms for indoor applications:

■ Higher clocking rates. The clocking rates of WLAN sys-
tems are higher than the ones used in cellular systems; this
is due to the fact that the WLAN physical layers are intend-
ed for higher data rates and occupy a wider bandwidth than
the physical layer of cellular systems. The higher clocking
rate (and, equivalently, the higher sampling rate at the
receiver) translates into higher accuracy in TOA measure-
ments and into more accurate location estimates.
Additionally, the bandwidth per channel used in 3G cellular
networks is about 4 MHz, as opposed to the 11-MHz band-
width in IEEE802.11b and 16-MHz bandwidth in
IEEE802.11a and IEEE802.11g. The higher bandwidth and
clocking rate effectively provide a higher resolution in esti-
mating the TOA of the signals.
■ Higher SNR. WLAN networks operate at higher SNR than
cellular networks. The higher SNR results in more accurate
estimates for TOA and AOA.
■ Oversampling at the receiver. The received signal can be
oversampled to further increase the resolution of TOA 
estimation. Since the received SNR in WLAN networks is
relatively high, an accurate TOA estimation after oversam-
pling is possible.

[FIG9] An illustration of the UCLA WLAN Location Simulator
interface. The estimated location of a mobile user using different
algorithms would be plotted for different realizations. Moreover,
the estimated accuracy of the different methods would be
shown by circles surrounding the mobile location.

[FIG10] An illustration of the UCLA Cellular Location Simulator
interface. The estimated location of a mobile user using different
algorithms would be plotted for different realizations. Moreover,
the estimated accuracy of the different methods and the FCC
accuracy requirements would be shown by circles surrounding
the mobile locations. The design engine allows the user to place
blocking objects in the simulator environment and to select the
trajectory of the mobile user such that it experiences different
situations, fadings, and shadowings. The various parameters
that control the environment can be adjusted as well.
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■ Slow-varying channel. The channel variation in indoor
environments is slower than in outdoor environments. This is
due to the range of speeds present in indoor and outdoor
environments. The slow-varying channel allows for longer
coherent averaging periods at the receiver (the parameter N
used in the derivations), which results in a higher effective
SNR for TOA and AOA estimation.
■ Power up scheme. Due to the local nature of WLAN net-
works, the mobile user can be requested by the network to
raise the level of transmitted power momentarily. This
instant increase in the level of transmitted power will not
degrade the network performance as significantly as it
would for cellular networks.
For further information on indoor location algorithms, see

[15] and [61]. Moreover, [62] describes localization algorithms
in a cooperative sensor network setting.

SIMULATION ENVIRONMENT
To test several of the techniques and algorithms described in the
previous section, a software simulator called the Wireless
Location Simulator has been developed at the UCLA Adaptive
Systems Laboratory [67]. A high degree of testability and flexi-
bility, along with a user-friendly interface, are designed into the
simulator. Selected snapshots of the Wireless Location
Simulator are shown in Figures 9–12. The simulator consists of
an interface and a location-finding engine. The location engine
performs the following tasks:

■ Data fusion techniques: Different data fusion techniques
are implemented using TOA, AOA, or a combination of both.
■ Channel modeling: A multipath, multiuser channel envi-
ronment is created that models path loss, shadowing,
Rayleigh fading, and Doppler frequency effects.
■ Parameter estimation: TOA and AOA estimation algorithms
are implemented as part of the location finding engine.
Different variations of the algorithms are implemented for
performance and comparison purposes.
Most of the algorithms used in the location-finding engine

are generic in the sense that they could be used for both indoor
and outdoor applications with minimum alteration. The loca-
tion-finding engine and the capabilities listed below make the
simulator usable for both networks.

■ Configuring the physical layer for different wireless net-
works. Adjusting the network physical layer parameters
enables the simulator to be used for different wireless
networks. Among the programmable parameters are the
spreading factor, packet size, training length, constellation
type, modulation technique, carrier frequency, level of
transmitted signal power, and the number of antennas at
the transmitter or receiver.
■ Configuring the mobile user conditions. The wireless
channel models depend on the Doppler frequencies present
in the environment. The Doppler frequency depends on the
mobile speed and the carrier frequency of the system. The
simulator accepts different speed and carrier frequencies as
input and generates a Rayleigh fading channel with the U-

shape Doppler spectrum. Moreover, the simulator allows
the user to define the trajectory of the mobile, and then
tracks the user on the defined trajectory.
■ Configuring the environmental parameters and net-
work geographical structure. One of the factors affect-
ing the performance of the wireless location system is
the environment type (e.g., bad urban, urban, suburban,
or rural.) For example, in a bad urban area with many
blocking objects and buildings, NLOS effects play an
important role in the estimation accuracy. The simulator
enables the user to place an arbitrary number of build-
ings of different sizes and shapes in the simulation
environment. The simulator modifies the channel mod-
els to capture the effect of the buildings (shadow fading
and NLOS effects).

[FIG11] Snapshot of the UCLA Location Simulator. The location
estimation accuracy and the FCC requirements are shown by two
circles in this lateral view generated by the 3-D simulation
visualizer.
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[FIG12] Snapshot of the UCLA Location Simulator. The location
estimation accuracy and the FCC requirements are shown by two
circles in this top view generated by the 3-D simulation visualizer.
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■ Performance evaluation and monitoring tools. The simu-
lator contains different tools to illustrate the results and
accuracy of the location procedure, such as

1) comparing the estimated trajectory with the true tra-
jectory
2) statistics of the location error, including the 67% and
95% outage values (the 67% and 95% outage values are of
interest due to the FCC
requirements)
3) a three-dimensional
(3-D) simulator that
creates a 3-D virtual
reality environment.
The 3-D viewer has
different adjustable
camera views from different angles. It provides the user
with an interactive 3-D environment that shows the
movement of the mobile user on the predefined trajecto-
ry. It also shows the accuracy of the algorithm and com-
pares it with the FCC standard.

SOME SIMULATION RESULTS
Some simulation results are shown in Figure 13(a) and (b) for
a CDMA cellular network with the following parameters:
CDMA chip rate of 4 MHz, a processing gain of 64, a 3-tap
Rayleigh fading channel with path loss exponent of two, an
antenna array of size four at the BS, and a Doppler frequency
corresponding to a maximum speed of 30 mph. The location

algorithms are simulated in
a multi-user environment
with a different number of
active users. Figure 13(a)
and (b) shows the resulting
accuracy outage curves. An
outage curve measures the
probabilities that the loca-

tion estimation errors will be below certain values.
For example, in Figure 13(a), it is seen that for a receiver

employing both TOA and AOA measurements, the location
error is below 100 m 90% of the time. The FCC-mandated
requirement for a network-based solution is for the location
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[FIG13] Outage curves for location accuracy in outdoor environment (IC denotes interference cancellation method). (a) Assuming one
user. (b) Assuming six users.

• Number of Base Stations=3
• Number of Active Users=1
• Number of Antennas=4
• Number of Multipaths=3
• Maximum Speed=30 mph

(a) (b)

Multiple Antenna (TOA)–Section IV-A
Multiple Antenna (TOA/AOA)–Section IV-D

Multiple Antenna (TOA)–Section IV-A
Multiple Antenna (TOA/AOA)–Section IV-D
Multiple Antenna (TOA/AOA) with IC–Section X 
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• Number of Base Stations=3
• Number of Active Users=6
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• Number of Multipaths=3
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error to be below 100 m only 67% of the time. For a mobile-
based solution, on the other hand, the FCC requirement
mandates an outage probability of 67% for 50 m. Both of
these requirements are met by the TOA/AOA fusion method
presented earlier. Figure 13(b) repeats the simulation for the
case of six total users.

CONCLUSION
Network-based wireless location poses several interesting prob-
lems from a signal processing perspective. The estimation algo-
rithms must provide accurate parameter estimates under
challenging conditions such as fast fading channels, low SNR,
multipath effects, and multiuser interference. Small errors in
estimation can lead to large errors in location. For example, in
3G CDMA, the chip duration is roughly 0.25 µs. An error in TOA
estimation of the order of Tc/2 can translate into 37.5 m in loca-
tion error. Likewise, for a cell with a two-mile radius, an error of
1◦ in the AOA measurement can result in a location error of the
order of 55 m. For this reason, the location estimation algo-
rithms and the data fusion methods must exploit any available
information about the environment (e.g., fading conditions,
Doppler frequency, and network topology) to attain high accura-
cy. In addition, the resulting location searchers need to exhibit a
certain degree of adaptation to changing conditions (e.g., mobile
speed) so as to maintain reliable performance.
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