cations to help cope with time-variations of system

parameters, and to compensate for the lack of a priori
knowledge of the statistical properties of the input data. Over
the last several years, a wide range of algorithms has been
developed. These fall into four main groups: recursive least
squares (RLS) algorithms and the corresponding fast ver-
sions; QR- and Inverse QR-least squares algorithms; least-
squares lattice (LSL) and QR decomposition-based least
squares lattice (QRD-LSL) algorithms; and gradient-based
algorithms such as the least-mean square (LMS) algorithm.

It is practically impossible to list all the relevant references
and all the major contributors to this field. However, the
books [1]-[7], along with their extensive lists of references,
should provide an excellent idea of the main results in this
area. We shall, however, most often use the widely referenced
textbook of Haykin [1] as a guide throughout our presenta-
tion.

The methods employed to analyze adaptive filter problems
are quite varied, as becomes clear if one scans through the
available literature [1-23]. Very often, different arguments
and techniques are employed to derive different versions of
the same algorithm. This has the obvious advantage of lead-
ing to interesting explorations of new approaches. But it has
the disadvantage, in several instances, of leading to solutions
that are sometimes complex to describe, and with seemingly

! daptive filtering is gaining favor in numerous appli-
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little connection with already established resuits.

This makes software and hardware implementations rather
complicated. More importantly, perhaps, is that it also has the
disadvantage of obscuring potential connections that should
obviously exist among variants of the same algorithm; only
recently has there been some discussion of the close relations
between some of the algorithms (e.g., [3] and [20]-[25]).

Our purpose in this article is to present yet another ap-
proach, not for the sake of adding to the already long list of
available approaches, but for the sake of achieving two im-
portant goals. The first one is to show how several different
variants of the recursive least-squares algorithm can be di-
rectly related to the widely studied Kalman filtering problem
of estimation and control. Only very special instances of this
relation have been considered thus far in the literature. Ref-
erence [26] was perhaps the first to rephrase the growing
memory recursive least-squares problem in a stochastic state-
space framework, with the unknown state corresponding to
the unknown weight vector (see also [5], pp. 331-335). Vari-
ous attempts to incorporate the case of exponentially decay-
ing memory were also made, but in all of them some annoying
discrepancies remained that were overcome essentially by fiat
(e.g., [1], pp- 502-504). This lack of a direct correspondence
appears to have inhibited application of the extensive body of
Kalman filter results to the adaptive filtering problem.

However, using a simple device, we can obtain a perfectly
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matched state-space model for the case of exponentially de-
caying memory, with a direct correspondence between the
variables in the exponentially weighted RLS problem and the
variables in the state-space estimation problem. The main
benefit of this is that recursive state-space estimation prob-
lems have been extensively studied since the sixties, espe-
cially in the control engineering literature (e.g., [27-30D).
Besides the celebrated Riccati-equation-based Kalman filter-
ing algorithm, many algorithmic and implementational alter-
natives have been studied over the years. These include the
so-called information filter forms and for certain kinds of
time-variant state-space models (including those encountered
in adaptive filtering), the Riccati recursions can be replaced
by the order-of-magnitude faster Chandrasekhar recursions
[31]; moreover, all these variants have certain computation-
ally better square-root (or array) forms. The interesting fact is
that when the exponentially-weighted RLS filtering problem
is reformulated in state-space form, the now well-known
alternative Kalman filtering solutions turn out to be equiva-
lent to the various classes of adaptive filtering algorithms
derived in the last decade (Tables 1 and 2). In fact, among
others, all the algorithms in Haykin’s book [1] can be obtained
in this way.

Table 1: Most common adaptive schemes.
Adaptive Algorithm | Order- Fixed- Cost
Recursive |Order per iteration
RLS X | om®
QR and Inverse QR X O(Mz)
}FT—F,FAEST x oM)
Least-squares lattice X ) M)
QRD-based lattice X o)
|LMS X om)
Table 2: State-space estimation algorithms vs.
Adaptive algorithms.
State-Space Estimation Algorithm [Amive Algorithm(s)
Riccati-based Kalman filter RLS
Chandrasekhar form FTF and FAEST
Information form QR
Square-root covariance form Inverse QR

Recursive information form QRD- and least-squares |
lattices

MinMax or H” filter gradient RLS/LMS

Our second important goal is to present all the different
versions of the RLS algorithm in computationally convenient
square-root forms: a prearray of numbers has to be triangu-
larized by a rotation, or a sequence of elementary rotations,
in order to yield a postarray of numbers. The quantities needed
to form the next prearray can then be read off from the entries
of the postarray, and the procedure can be repeated; the
explicit forms of the rotation matrices are not needed in most

cases. This is more truly an algorithm in the sense that it
operates on a set of numbers and provides another set of
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numbers, with no explicit equations involved. The rotations
themselves can be implemented in a variety of by now well-
known ways: as a sequence of elementary circular or hyper-
bolic rotations, in square-root- and/or division-free forms, as
Householder transformations, etc. These may differ in com-
putational complexity, numerical behavior, and ease of hard-
ware (VLSI) implementation. But, if preferred, explicit
expressions for the rotation matrices can also be written
down, thus leading to explicit sets of equations in contrast to
the square-root form.

Notation

The following notational conventions will be useful to re-
member. We shall use small boldface letters to denote vectors
and capital boldface letters to denote matrices. Also, given a
positive definite matrix A, A > 0, a square-root factor will be
defined as any matrix, say A”z, such that A = (A”Z)(A”Z)*,
where the * denotes Hermitian conjugation (complex conju-
gation for scalars). Such square-root factors are clearly not
unique. They can be made unique, e. g., by insisting that the
factors be Hermitian or that they be triangular (with positive
diagonal elements). In most applications, the triangular form
is preferred. For convenience, we shall also write:

(A]/Z)* - A*/2, (AI/Z)—l :A-I/Z, (A»I/Z)* =A-*/2

Thus, note the expressions A = A /2 A*/Q, Al=ATA2
Also, we shall not confine ourselves to real data. Complex
quantities will be allowed for the sake of generality. Finally,
the symbol I, will denote the identity matrix of size nxn.

Square-Root or Array Algorithms

The square-root or array form is so important that it will be
worthwhile to explain its generic form here, and give acouple
of examples showing the compactness and simplicity it can
bring.

An array algorithm is described via rotation operations on
a prearray of numbers, chosen to obtain a certain zero pattern
in a postarray where the desired quantities can be read out.
Schematically, we have

X X X x x 000
X X X x xx 00
6:

X X X x xx x 0
X X X x X x x x

where © is any rotation matrix that triangularizes the prear-
ray. In general, © is required to be a J- unitary matrix, in the
sense that © JO" = J, where J is a signature matrix with
%1’s on the diagonal, and zeros elsewhere. The unitary case
corresponds to J = I. A rotation © that transforms the prearray
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to triangular form can be achieved in a variety of ways: by
using a sequence of elementary Givens and hyperbolic rota-
tions [33], Householder transformations {33]-[35], square-
root-free versions of such rotations (e.g., [33] and [36-38]),
etc.

Elementary Circular and Hyperbolic Rotations

Anelementary 2 X 2 unitary rotation © (also known as Givens
or circular rotation) takes a row vector X = [ a b ] and rotates
it to lie along the basis vector ey = [ 1 0 ]. More precisely, it
performs the transformation

[a b)©=[Via’+ib" 0] (1a)
The quantity Vlal? + b1 that appears on the right-hand
side is consistent with the fact that the prearray and the
postarray must have equal Euclidean norms. An expression
for © is given by
= 1 > l* p Wherepzé,aiﬂ
ViHpl? | P* 1 a (1b)
In the trivial case, a =0, we simply choose © as the permu-
tation matrix,

_{01
it
Also note that, in the special case of real data, a general

unitary rotation as in Eq. 1b can be expressed in the alternative
form:

o

where the so-called cosine and sine parameters, ¢ and s,
respectively, are defined by

N ___ P
V1 +1pP?

V1 +lpP

This justifies the name circular rotation for ©, since the effect
of © is to rotate the original vector x along the circle of
equation 2+ y2 =lal® + b2, by an angle 0, determined by the
inverse of the above cosine and/or sine parameters,
0= tan_lp, in order to align it with the basis vector e,. The
trivial case, a = 0, corresponds to a rotation of 90 degrees in
an appropriate clockwise (if 20 ) or anti-clockwise (if
b < 0) direction.

On the other hand, an elementary 2x2 hyperbolic rotation
O takes a row vector X = [ a b ] and rotates it to lie either
along the basis vector ey = [1 0] (if lal>15h 1 or along the
basis vector e, = (if la | <| b |). More precisely, it performs
either of the transformations
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[a blO=[VaP-b? 0] iflal> bl (2a)
[a b10=[0\N—a? |  iflal<Ibl
(2b)

The quantity \Ji(lal2 - Ibli) that appears on the right-hand
side of the above expressions is consistent with the fact that
the prearray, [a b], and the postarrays must have equal J-
norms. By the J-norm of a row vector x, we mean the
indefinite quantity x J x*, which can be positive, negative, or
even zero. Here,

(1 0}_ v
J—[O _l]-(le 1)

An expression for a J-unitary hyperbolic rotation © that
achieves Eq. 2a or 2b is given by:

sl
1-lpi? [P* 1

b

, a#0,lal > bl

where p= p 20)

@=; I -p
N1-1lpl? |-P* 1

where p ==, b#0,lal < bl

a
b (2d)
Also note that, in the case of real data, a general hyperbolic

rotation as in Eqs. 2¢ or 2d can be expressed in the alternative
form:

ch —sh
0= |:—sh ch :|

where the so-called hyperbolic cosine and sine parameters, ch
and sh, respectively, are defined by

1 P
A= 1-pi? o Vi-pP

This justifies the name hyperbolic rotation for ©, since the
effect of © is to rotate the original vector x along the hyper-
bola of equation g y2 =laf® - Iblz, by an angle 0 determined
by the inverse of the above hyperbolic cosine and/or sine
parameters, 6 = tanh_lp, in order to align it with the appro-
priate basis vector. Note also that the special case lal=Ibl
correspondstoarow vector X = [ a b] with zero hyperbolic
norm since lal> — 16> = 0. It is then easy to see that there does
not exist a hyperbolic rotation that will rotate x to lie along
either bases vectors.

The above expressions for the circular and hyperbolic
rotations involve square-root operations. In many situations,
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however, it may be desirable to avoid the computation of
square-roots since it is usually very expensive. For this and
other reasons, square-root and division-free versions of the
above elementary rotations were also developed and consti-
tute an attractive alternative (e.g., [36-38}). One could also
use unitary or J-unitary Householder reflections to simulta-
neously annihilate several entries in a row, e.g., to transform
[ x x x x ] directly to the form [ x> 000 ] (e.g., [33-35]).
Combinations of rotations and reflections can also be used.

Rotation Example: Modularity and Parallelizability

Consider, for example, a 4-column (real) prearray A along
with a 4x4 signature matrix J,

a b c
X x x
X X X X

R
—

X X X X -1

and assume that we are interested in applying a J-unitary
transformation © to A in order to align its first row along the
basis vector e, viz., we want

a0 00
X X X x
AO=\x ¥ ¥ X

X X XX

Then one way to achieve this, among many possible options,
would be the following: we first annihilate the b entry by
using a circular rotation that leaves unchanged the last two
columns of the prearray,

0 d
abcd]| ¢ s “l#c
X X x x S0 <o # X x
X X x x ’ =|# # x x
e i

We then annihilate the d entry by using a second circular rotation
that leaves unchanged the first two columns of the prearray,

a, 0 ¢ i a; 0 < 0

# # x x 1 # O ox ok

# # x =l # # * x
P 5 .

# # x x 174 # # x %

We finally annihilate the c; entry by using a hyperbolic
rotation, which leaves unchanged the second and fourth col-
umns of the prearray (assuming Ic,| <la, ),
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a 0 ¢ O
! ! ch, —sh, @000
# O# x x = ) &
. —sh, chy y#y
# OB o+ % ! y #y *

The parameters that define the previous rotations are clearly
given by

a b
=, 5= —S—s ,
Via?+162 7 0 lal + 2

c d

T s S| =T S—,
Vel + 1d1? Vel + a2

a) |

——, shy =
Vig,l* - IcP? Via,P = e,

chy =

The different adaptive schemes can be rewritten in terms of
square-root arrays, where the necessary operations are elemen-
tary rotations as described above. Such array descriptions lend
themselves rather directly to parallelizable and modular imple-
mentations. Indeed, once a rotation matrix is chosen, then al] the
rows of the prearray undergo the same rotation transformation
and can thus be processed in parallel. Returning to the above
example, where we started with the prearray A, we see that the
parameters of the first rotation, (c;, sp), are completely deter-
mined by the entries a and b. Once the first rotation is specified,
all the rows of A are then transformed by it, and can thus be
processed in parallel, and by the same functional (rotation) block,
to obtain the desired postarray. The procedure continues by
determining the second rotation and so on.

Two RLS Algorithms in Array Forms

To show the compactness and simplicity the array form can
bring, we display in Table 3 the usual set of equations for the
so-called FTF algorithm (the table and notation is taken from
[1], p. 591, for illustrative purposes). Table 4 shows the
corresponding square-root array form that will be derived
later. Tables 5 and 6 show the corresponding forms for the
so-called QRD-LSL algorithm (Table 5 is extracted from [1],
p. 664). As it turns out, there are clearly significant (concep-
tual, if nothing else) advantages in the more compact forms.
Some authors have deduced the compact array forms by a
careful study and reorganization of the explicit sets of equa-
tions in Tables 3 and 5 ([3], p. 465, and [22]). In our approach,
the difference is that we can immediately write down the
compact forms of Tables 4 and 6, with the equations in Tables
3 and 5 being only one among several sets of (cumbersome)
explicit equations that one could derive, if desired.

Stochastic and Deterministic
Least-Squares Problems

The application of the least-squares criterion to estimation
problems in both the deterministic and the stochastic settings
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Table 3: The FTF algorithm in explicit form.
() = ajr(n — Dusr+1(n)
Fu(m) = yu(n - Lmar(n)
Fu(n) = AFa(n = 1) + nar(n)fau(n)
Fuy(n-1)
Ym+1(n) = A= fM(n_)
I 17 ()]

= 0

Kar+1(n) _[EM(H _ l)jl + A Fu(n-1)
0

ap(n) = ap(n — 1) — fu(n) Enn—1)

¥ y(n) = ABu(n — DEarr1,m+1(n)

wm(n—1)

ay(n—1)

m(n) = [1 - “P;I(n)YMH(")EMH.MH(")] ] Ym+1(n)
RescueVariable=|1 - ‘wa(n)yw,1(n)YM+|(n)EM+1,M+1(Vl)]
bu(ny = Yu(n)¥u(n)

Bu(n) = ABu(n — 1) + ¥ u(n)bi(n)

I:RMO(M} =Kup+1(n) — Ky, me1(n)ep(n — 1)

cu(ny=culn - 1) - me[kM(j”’}

o(n) = d(n) - Wi(n = Dua(n)
em(n) = yu(n)om(n)
wa(n) = War(n = 1) + Kn(n)ema(n)

Table 4: A square-root version of the FTF algorithm.

2@ Rl i+ 0

0 n i= Citt
< |5 =

will play a central role in our development. Certainly, several
other optimization criteria can be used for estimation prob-
lems, but for signal processing one of the most important, at
least in the sense of having had the most applications, is the
linear least-squares criterion. This striking criterion was per-
haps first developed by Gauss in his work on celestial me-
chanics [39]. It was later successfully employed by Wiener
[40] in the early 1940s in the context of stationary processes
observed over infinite or semi-infinite intervals. But in the
late 1950s, interest shifted to nonstationary processes with
known finite-dimensional state-space models, where the
availability of the computationally efficient recursive Kal-
man-Bucy filter [28, 41] has essentially monopolized the field
in the last few decades. We thus include a brief overview of
the topic (e.g., [27, 29, 30}).

The Stochastic Problem

Let z be an nx1 zero-mean random vector, and let y be a
column of (N+1) zero-mean random vectors of size px1 each,

22

Table 5: The QRD-LSL algorithm in explicit form.
For time n = 1,2,... and order m = 1,2,... M, repeat
Bmi(n = 1) = ABpot(n = 2) = lepmoi(n = DI

A2BY(n -2
chm-1(n—1)= —%(‘”-—)
BnZi(n—1)
sZ.m—](n - 1)
Sbm-t(n— 1y =—"r———
Bi2i(n-1)

Erm(n) = oot (2 = Degmat(n) = spmt (=M1 fmot (1= 1)
Wit (1) = Comet (1 = DAY Bipnet (0= 1) = Spm1 (1 = 1)efm-1 (1)
Y (n=1) = com-1 (1= 1) YiZi(n = 1)

Fme1(n) = A Fror (1 = 1) + lefm1(n)1?

™ A2E2 - 1)

Cfm— =

Sl Fii(n)
e}m—l(”)

Spmo1(n) = 2

i Fi(n)

Eom(n) = Chm-1(MEpmat (= 1) = SFmet WA T hmy (n = 1)
Tpme1(n) = Crm-t (A2 T b o1 (1 = 1) + Sfm-1 (1) Epmi(n — 1)
For time n = 1,2,..., repeat
Bar(n) = ABy(n — 1) + les m(m)l?
A28l - 1)
Bif(n)
eb.m(n)
Bl#(n)
ere1(n) = cou(men(n) = sh (A pian = 1)
pir(n) = com(n)AZpi(N = 1) + spp(m)em(n)
WAL = cou(IF ()
ems1(n) = YR (WM (1)
Form=1,2,.., M, set
Tfm-1(0) = Tpm-1(0) = 0, pm(0)=0
Form=0,1,..., M, set
Bm(=1)=Fn(0)=8>0
For n=1,2,..., compute
gro(n) = epo(n) = u(n), €o(n) =d(n), yo(n) = 1.

cpm(n) =

spm(n) =

Table 6: Square-root QRD-LSL algorithm.

Set gh(0) = qu(=1) = 0, Dh(0) = Bhy(-1) = —= > 0

m
For each N 20, set fo(N) = bo(N) = u(N), Yo(N) =1 , and repeat for
M20

VA BEA(N-1)  bi(N) 34N 0
VAGBWN-1) fuN+1)| Ohv=| G a1 |
0 NEWN) bu(MBH N YA
VA BF W) fu(N+1) PPN+ 0
VAgHNY) BNy | Ot = i+ Dhre1(V+1)
0 W) NHDDT N+ WEaN+D)|

G{\/[_N{J and O’,{M/ are unitary rotations
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Relations between the RLS and Kalman Variables

The different variants of the Kalman recursions, when
applied to (Eq. 21c), will now provide different algorithms
for the solution of the RLS minimization problem (Eq.
19b). But note that the variables used in (Eq. 21c) are
scaled versions of the variables used in (Eq. 19b). For ex-
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ample, y(i) is a scaled version of d(i). So is x; relative to w.
This means that when writing down the state-space estima-
tion-algorithms that correspond to (Eq. 21¢), we should
then proceed to replace the variables of (Eq. 21¢) by the
corresponding RLS variables. This would allow us to de-
scribe the algorithms in terms of the original RLS vari-
ables. This section is meant to clarify the connections
between the RLS variables {d(i), w, u;, I1j, ®;, w; } and the
Kalman variables.

The problem of interest is to estimate the value of z by means
of a linear operation on observed values of the {y;}, say,

=Koy +Kjy, +.+ Ky yy
=[KoK; ... K, 1y=Ky (3a)
where the K| are nxp matrices, and K is thus a constant matrix

to be determined so as to minimize the trace of the mean-
square error (m.s.e.) matrix defined by

m.s.e. = E [(z-Ky) (z-Ky)"]

Here, E denotes expected value. The optimal solution is
obtained by requiring that the error variable, z - Ky, be
uncorrelated with the observation vector y, viz.,

Elz-Kyy'l=0 .
which leads to K(Eyy ) = Ezy . That is, the optimal linear
least -mean squares estimate (1.1.m.s.e., for short) of z reduces
to solving the linear system of equations,

KR, =R,,

where we have denoted the autoconelatlon matrix Eyy* by

Ry and the cross-correlation vector Ezy by R, 2y Assummﬁ

the invertibility of Ry, we get the following expression for z,

(3b)

A_p rl
=R, R,y .
An extremely important special case, which will be central to
our later analysis, occurs when the observation vector y and
the variable z are linearly related such as

(3c)

Y=Az+v. (4a)
Here, A stands for a constant matrix of appropriate dimen-
sions (N + 1)pxn)), and v is a zero- -mean random noise vector
with autocorrelation matrix R,, Ew' = = R,, and which is
assumed to be uncorrelated w1th Z, Ezv" =0. The autocorre-
lation matrix of z is also assumed to be known, Ezz" = R,
Under these assumptions, the autocorrelation matrix R, and
the cross-correlation vector R,y in Eq. 3b can be evaluated in
terms of the known quantities {A, R,, R, }. Indeed,

R,=ARA’+R, R, =RA’
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The L1.m.s.e. of z will then be given by

z= RZA* [ARlA* + R,,,]“1 y (4b)
If it further happens that R, and R, are nonsingular matrices,
then the above expression for Z can be rewritten in an equiva-
lent form that will be convenient for later analysis,
Aol atped -1 4 *n-1
I=R+ AR AT ARy (40)
In deriving Eq. 4c from 4b, we employed a very useful
matrix identity, often known as the matrix inversion lemma

([42], p. 656]). It states that if E and C are two invertible
matrices then

(E+BCD) ' =E!-E'BOE'B+Cy'DE! (5
This can be verified by multiplying the right-hand side by

(E + BCD) and verifying that the identity matrix results. The
results of this discussion are summarized in Table 7.

Table 7: Linear least mean-squares estimation:

The stochastic zero-mean case.
Given Data Ll.m.s.e of z
{zy)
{Ry, Rzy} Z=R,R;ly.
Ez=Fy=0. vy
y=Az+v Z=RA'ARA* +Ry'y
(R, Ry} or
Ez=Ey=Ev=0,Ezv* =0 _ 1.
Z=Ry=EvV=D A Z=[R;'+ A R;'ATT ARy

Non-Zero Means

What if the random variables z and y in Eq. 3a are not
zero-mean, say Fz =z, Ey =y ? The problem of interest then
corresponds to estimating z — z as a linear combination of the
entries of y —y. If we introduce the change of variables
z'=(z-1z)and y’ = (y — y), then this is equivalent to estimat-
ing a zero-mean vector z’ from a linear combination of the
entries of a zero-mean vector y’. This is precisely the setting
studied in the previous section and, according to Eq. 3b, the
solution is given by z’ = K'y” where K’ is obtained by solving
the linear system of equations

K’Ry, = Rz,y, s Ry =Ey. y*, Rl,y: =FEz yx*.

The matrix Ry is equal to the covariance matrix of y, where
by the covariance matrix of the random variable y, denoted
by cov(y), we mean E(y —) (y - y)". Also, Rz,y, is equal to
the cross-covariance vector cov(z,y) = E(z — E)(y—?)*. There-
fore, the 1.1.m.s.e. estimate of z satisfies

(Z-2) =cov(zy) cov (y) [y - ¥ (63)
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Comparing with Eq. 3c, we see that the non-zero mean case
simply corresponds to replacing z and §, by (£~E) and
(y — y) respectively, as well as replacing the autocorrela-
tion and cross-correlation matrices Ry and R,y by the
covariance and cross-covariance matrices cov(y) and
cov(z,y), respectively. In the important special case of a
linear relation between y and z as in Eq. 4a, where we now
assume cov(z, v) = 0, Eqs. 4b and 4c should be replaced
by (using y=Az+V)
A

z =
Z+cov(z) A" [Acov(n)A* + cov(v)]—l [y—Az-V]
(7a)
2 =
E+[cov71(z)+A*c0v—1(v)A]"1 A*cov‘l(v) [y—Az-V]
(7b)

The results of this section are summarized in Table 8. We now
move on to review the deterministic version of the least-
squares problem and highlight connections with the stochas-
tic point of view.

Table 8: Linear least mean-squares estimation:
The stochastic non-zero-mean case.

Given Data Llms.eof z
{zy}
cov (y), cov (2) Z=2+cov(zy) cov” (y) [y - ¥]
Ez=z,Ey=y
y=Az+v
H{cov(z), cov (v)} 2=7+cov(z) A"[ Acov(z) A~
cov(z,v) =0

1 R —
Ez2=7,Ey=5,Ev=y +cov(v)]” [y —Az-vV]
or

A -1
z=12+ [cov (z)

+A%cov i(v) AT AT cov (v)

[y - Az -v]

The Deterministic Problem

We now let z represent a column vector of n unknown parame-
ters, rather than a vector of random variables. We are further
given (N+1) noisy measurements {y;} that are assumed to be
linearly related to z as follows

Y, =A;z+v;

That is, the noise component is assumed to be additive. We
are then required to estimate z from the measurements {y;}
as we further elaborate.

The (N+1) measurements are grouped together into a
single matrix expression:

Yo A A
Yi|o A1 g4
MY Ay Vv

24
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or, more compactly,

y=Az+v (8a)
The basic distinction between the earlier relation (Eq. 4a) and
Eq. 8a is that the quantities in the latter expression are all
assumed to be deterministic, while Eq. 4a involves random
variables. This distinction will become more apparent as we
proceed.

Because of the noise component v in Eq. 8a, the observed
vector y does not lie in the range space of the matrix A. Our
objective then is to determine an estimate for z, say z, inAorder
to minimize the square of the distance between y and Az, viz.,

minlly — Azli?
2 : (8b)

The resulting Zis often called the least-squares solution, while
AZ s called the linear least-squares estimate (1.1.s.e.) of y.

The solution to Eq. 8b follows from a simple projection
argument: the vector y does not necessarily lie in the range
space of the matrix A. The orthogonal projection of y onto
this range space yields a vector y that is closest to y in the
least-squares sense, since the resulting error vector (y — ;r\)
will be orthogonal to the range of A. The orthogonality
condition is equivalent to Ay - ?) =0.Thatis(andreplac-
ing if\by Az,

A'y-AZ)=0

which implies that the least-squares solution can be obtained
by solving the linear system of equations

A*AZ=A"y

If A is further assumed to be full rank, then we can alterna-
tively write

z=(A*A) 'A%y (8¢)

A more general optimization criterion that is often used
instead of Eq. 8b is the following:

min [(z —2g) T1 ) (z — zy) +ly — Azl ; |
z (9a)
This is still a quadratic cost function in the unknown vector
z, but it includes the additional term (z — zO)*I—I‘OI (z—2y),
where T, is a given positive-definite (weighting) matrix and
Z is also a given vector. Choosing I = e Ileads us back to
the original expression. (8b)
The point is that the freedom in choosing I allows us to

incorporate additional apriori knowledge into the statement
of the problem. Indeed, different choices for I, will indicate

how confident we are about the closeness of the optimal
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solution z to the given vector z,. Assume, for example, that
we setIl = € I, wheree is a very small positive number. Then,

the first term in the new cost function (Eq. 9a) becomes
dominant. It is thus not hard to see that, in this case, the cost
will be minimized if we choose Z close enough to z; in order
to annihilate the effect of the first term. In simple words, a
“small” I, reflects a high confidence that z; is a good and
close enough guess for the optimal solution z. On the other
hand, a “large” I indicates a high degree of uncertainty in
the initial guess z,.

To facilitate the solution of Eq. 9a, we introduce the
change of variables z’ = z — zy and y’ = y — Az, Then, Eq. 9a
becomes:

min [z'*l'[ Ly - Az'u§]
"

Differentiating with respect to z’ and setting the gradient equal
to zero yields the solution

—1
2=[ng'+aa] A%y

Substituting for 7=12- zgand y’ =y ~ Az, leads to the opti-

mal solution

~1

2=+ +A"A] A" [y~ 2] 9b)
W*e also see here that instead of requiring the invertibility of
A A, as in Eq. 8c, we now require the invertibility of the
matrix [I1 51 +A”A] .. This is yet another reason in favor of
the modified criterion (Eq. 9a), since it allows us to relax the
full rank condition on A. The results of this discussion are
summarized in Table 9.

! Table 9: Linear least-squares estimation:

The deterministic case.

Optimization Problem Solution
{zy}
min, lly — Azll3 z=(A"A)'A"y
A full rank
{z.y.z0,lTo}
min,[(zfm)*l'lal(z—zu)ﬂly—f\z\lé] 2= Z9 + [1'161 ]

Io positive-definite +A'ATV AT [y - Azg]

Equivalence of the Problems

A comparison of expression (Eq. 9b) with the earlier result
(Eq. 7b) is now in order. Equation 7b provides the 1.l.m.s.e.
of z in a stochastic framework, while (Eq. 9b) provides the
least-squares solution of (Eq. 9a) in a deterministic frame-
work. But it is clear that if we replace the quantities in (Eq.
7b) by:

cov(z) =TIy, =2y, cov(v)=I, v=0
then the stochastic expression (Eq. 7b) coincides with the
deterministic solution (Eq. 9b). This equivalence plays a
central role in our analysis. It allows us to move back and forth
between the deterministic and the stochastic frameworks
rather smoothly. Table 10 summarizes the relations between
the variables in both frameworks.

‘We now proceed to assume that the observations {y; Jin the
linear model (Eq. 4a) admit an underlying state-space structure.
This would then allow us to introduce the Kalman filter as an
efficient recursive procedure for the solution of (Eq. 4b).

The Kalman Filter and Adaptive Problems

We try to keep the presentation as simple and straightforward
as possible in order to convey the main ideas. The reader is
referred to [27, 30] and the many references therein, for
further information and discussion on the subject. We shall
often limit ourselves to the results that are essential to the
discussion in future sections. We consider a px1 stochastic
process {y;} that admits an n-dimensional state-space repre-
sentation of the form

X1 = Ex+ G

y; = Hix;+v;, fori>0 (10a)

where i is a discrete-time index, F;, H;, and G; are known
nXxn, pxn,and n X m matrices, respectively, and the {r;}
and {v;} are uncorrelated zero-mean stochastic variables with
covariance matrices

Eviv;=Ri8ij, Erl.lj.":QiSij, R>0

The symbol 6‘»]- is the Kronecker delta function, which is equal

to unity when i = j,and zeroelsewhere. Wealsoassumethat

Table 10: Equivalence of the stochastic and deterministic frameworks.

Stochastic Framework

Deterministic Framework

Stochastic variables {z,y}.y = Az + v

Deterministic variables {z,y},y = Az + v

z=Fz Initial guess of z, zp
cov(z) Weighting matrix ITo
y=Az Initial guess of y, Azp

v=Ev=0,cov(v)=1
A
z

A
z

ming trace {cov (z — Ky))

min [(2 - 20) 'TTp (z ~ z0) + lly — AzIi3]

2=Z+[cov i(z)+ A*A] A" [y - AZ]

Z=zo+[ITo' + A"AT A" [y ~ Azo)
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the initial state X; is a random variable of mean EEO, and
covariance matrix Iy, and which is uncorrelated with r; and
v;, for all time instants i,

Exy =X, cov(xg) =1y, cov(xy ) = cov(Xy v;) =

A . .
Let )’2,- and y; denote the linear least-mean squares estimates
Yot b
respectively. We are interested in determining a recursive
procedure for computing the so-called innovations variables,

of x; and y; given the first i observations {y,y, ..

A A

e=y;—-y;=y;,~ Hx;
The reason for the term “innovations” is that e is the “new
information™ in the variable y; that is not in the previous

observations {yg ... y;; }. Also, itis not hard to see that the

.....

and { €y, €} canbe lmcarly related to each other forall i, i =
0,1,... =Hx.

A
. . M 9 A A
{ e;} is effectively a procedure for “updating” x; to X;, ;. An

,N. Since y ; a recursive procedure for finding the

efficient solution is given by the celebrated Kalman filtering

algorithm [27, 28, 30]. The efficiency arises from the fact that
to find ¢ ... e, takes O(N3) computations in general, while
if the {y;} have a state-space model with  states, and n <N

as is usual, then the Kalman filter requires only O(N n3)
computations to find {e ... ey}. Moreover, if the state-space

model has a special structure, the effort can be reduced to

O(N n2) computations by using the so-called Chandrasekhar
recursions. For the special forms arising in adaptive filtering,

these flop counts reduce to O(N 2) and O(N n), respectively.

The interested reader may consult the Appendix where we
have included, for the sake of completeness and illustration,
a derivation of the (covariance) Kalman algorithm.

Algorlthm The Kalman Filter The l.lm.s. estimates
y and x can be recursively computed as follows:start with

XO = X, and repeat for i 2 0,

= H.§.
X =FX+KR ! (y,-§)

lel

(10b)

where the quantities R, ; and K; are computed via the expres-
sions

R,,=H,PH; +R;, K,=FPH;

As explained in the Appendix, the quantities R, ; and P;
can be interpreted as the covariance matrices of the innova-
tions {e;}, and the state-estimation error, X; =X, — 9(,-, respec-
tively, R, ;= cov(e,).P; = cov(X;). Also K, = cov(x;,.e;). The
number of operations (i.e., multiplications and additions) that
are needed in going from index i to index (i+1) in the Riccati

recursion (Eq. 10d) is 0(n3), where n is the state dimension.

Special Case: Adaptive RLS (Fixed-Order)
Probiems

A special case of the state-space model (Eq. 10a) turns out to
be of crucial importance in our future development. For the
moment, we shall only elaborate on some of its properties and
implications.

The model of interest here is one with the following special
choices:

G,=Q,=0 R=L F,=1"21

where A is a positive scalar less than or equal to one
(0 << A< 1). That is,

-2

X =AU

yi=Hx;+v (11a)
with

Exq = Xg» COV(Xg) = Ty, Evy; =18

The associated Kalman filter equations collapse to the
following:

-1

Ry = x"z[ H [BPH +1)  @,- Hl&‘,.)} :

A _=
Xp=Xp

P, =A"'[P,- PH;HPH, + 'HP), Py =TI, (11b)

Assume now that we run the above Kalman recursions
from i=0 to i=N. We shall then end up with the l.L.m.s.e. of
Xy, given the first N observations {yg.y;....¥y },

A .
Xy, = Llm.s.e. of xy,, given {yo.¥,...¥n}

But we know from the special model (Eq. 11a) that x,,
is simply a scaled version of the initial state x; since

(10c)
and P; satisfies the Riccati difference recursion, ~ 12N+ 1)
Xypp =[] X
- *_ -1
P =FPF -KR,; Ig +G,Q; Gz » Pp=Tly (10d)  If we denote, for convenience, z=x; then
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(N+1)
[kl/z] ’,‘\N+1 = Q, the 1.1.m.s.e. of X, given{yj,....yy} -

Let us now see what is the interpretation of this observation
in the deterministic setting.

For this purpose, we expand (11a) in order to emphasize
the linear relation between z = X, and the observations {y;},

Yo Iy Hop vo
yi A, H, Vi
yz = l_]I,, ) l.lz X0 + v2
N M, | | By W | (11¢)

where we denote the matrix multiplying x, by A. The last
expression is of the same form y = Az + v, with z = x;. By
referring to Table 10, we see that the corresponding determi-
nistic least-squares problem is the following:

min| (%) ~ %) 115" (xg~%g) + ly - Axgl3]
Xy

which can be rewritten as

N
min | (%) —Xo) Ty (x%) + Y lly; — Hx I3
%o i=0 (11d)
subject to x;, = A~ 12 x,. The adaptive problem to be consid-

ered later will be shown to collapse to minimizing a cost
function of this type. Hence, its solution will be immediately
obtained by reformulating it as a state-space estimation prob-
lem with an underlying state-space model of the special form
(Eq. 11a). We summarize this basic fact as a theorem for later
reference.

Theorem: Consider a set of (N+1) deterministic data

{y:x; }20, where the y; are p X | column vectors, the x; are

nx | column vectors, and x;,;= X~ 2

X, , for a positive real
scalar, \. Consider further p x n matrices H;, a positive-defi-
nite matrix Iy and an nx 1 column vector X, The solution of

the least-squares minimization problem

. N

min s _

X (xg—x) 11 Ol(x0 —~Xp) + z lly, - H,.x,-u§
i=0

N+1)0) A

. A . .
is equal to (7\( Xy, 1 Where X | is recursively com-

puted as follows: start with Py =TT, ’,‘\O =Xy and repeat for i
=12 ...N

|
A — i —
Xisp = A E[;‘\i +PHHPH, + 1" (y, - Hi)l(\i):[
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Py = K_I[Pi ~PH[HPH, + 1" HiPijl

The result of the theorem plays a fundamental role in our
derivation. It establishes the link between the deterministic
setting of the recursive least-squares (RLS) problem and the
stochastic setting of a related Kalman filtering problem. This
link will allow us to move back and forth, and very conven-
iently, from one interpretation to another. Also, we should
highlight at this stage that, while in the statement of the
theorem the H; are matrix quantities and the yi are vector
quantities, this is really more general than what is needed to
handle the RLS problem that we treat in future sections. In
these sections, we shall focus, for ease of exposition, on the
case where the Hj are replaced by row vectors, h;, and the y;
are replaced by scalars, y(i). But it should be clear from the
result of the theorem that our development is equally applica-
ble to vector observations y; and to matrices H;.

Special Case: Adaptive Lattice
(Order-Recursive) Problems

Another special case of the state-space model (Eq. 10a) will
play a significant role in the derivation of the so-called adap-
tive lattice filters. It is identical to the model in (Eq. 11a) but
with scalar quantities. That is, the state vector x; is replaced
by a scalar (one-dimensional) state x(i), the output vector Yi
is replaced by a scalar observation y(i), the noise vector v; is
replaced by a scalar signal v(i), and the matrix H; is replaced
by a scalar i(i) (note that we use parentheses, (-), to indicate
time dependency for scalar quantities. In the vector case we
have been using subscripts),

x(i+1) = A V2x(i)

Y& = h(ix(i) + v(i) (12a)

with
Ex(0) = x(0), cov(x(0)) = n(0), EM(i)v*(j) = Sij

This is clearly a special case of the earlier model (Eq. 11a),
and the result of the previous theorem is thus immediately
applicable.

Theorem: Consider a set of (N+1) deterministic scalar data

{y(), x(i)}?io, where x(i+l)=7\_1/2x(i), for a positive real sca-
lar \. Consider further scalars h(i), a positive number T O,

and a scalar x(0). The solution of the least-squares minimi-
zation problem

N 2
min| (x(0)=x(0))" ™ (O)(x(0)—x(0) + ¥ | y(i)-h(i)x(D)|
x(0) .
=0 (12b)
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is equal to }\(N"'])/l] Q(N+l), where )’}(N+1) is recursively
computed as follows: start with p(0)=n(0), 5\((0) =x(0) and
repeatfori=1,2,.., N

-12
R(iH1) = ————— [x(i) + p(i) A" (D) Y(D)]
1 + p(i) Ih()I
. 120
1 - -7
P =17 ) (i)

To get a geometric interpretation for the above result, we
note that expression (Eq. 11c) collapses to the following:

3(0) h(0) 0)
w1 A2 (1) w(1)
o || Aaey [ XO* )
Y(N) AN BV v(N) (12¢)

and the problem then is to determine a scalar coefficient in
order to ‘‘match’’ the column vector y on the left-hand side
of (Eq. 12¢) with the column vector @, which multiplies x(0),
in the least-squares sense specified by Eq. 12b. In the special
case T(0)=oo, this is equivalent to projecting the vector y onto
the vector a leading to (cf.(8c)):

2: + a’y = the LL.m.s.e. of x(0), given [y(0), ... y(N)]

aa
Algorithmic Variants of the Kalman Filter

There are several variants to the Kalman filter recursions
(Egs.10b)-(10d). These essentially differ in the ways they
propagate the quantities K;, R, ; and P; that are needed in the
Kalman recursions. We shall not discuss these algorithmic
variants in details here, but shall rather focus on the particular
alternatives that are relevant to our subsequent discussion. For
more details, the reader may consult [27, 30] and [43]-[45].
We shall concentrate on the special model (Eq. 11a) rather
than consider the general state-space description given in (Eq.
10a). But we hasten to add that the discussion that follows can
be easily extended to models of the form (Eq. 10a). This
constitutes a significant strength of the state-space formula-
tion: it allows us, for instance, to consider more general
matrices F; in (Eq. 1la) e.g., F; = diagonal
{7\?]/2, }EIQ,...,X; ]/2}. It also allows for more general matri-

ces G;, Q; and R,. The careful reader will soon realize that
these more general cases can be handled by proper extensions
of the arguments in this paper. But we shall concentrate here
on the special model (Eq. 11a).

The results described in the rest of this section are summa-
rized in Table 11. Readers familiar with the Kalman filter may
wish to examine it briefly and go on to the next section on
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adaptive filtering. Other readers may also do this, returning
for some details to the appropriate portions of this section as
they are cited in the RLS problems later.

The (Covariance) Kalman Filter

The model in (Eq. 11a) assumes G;=Q=0, R=I and F;

=1~ "2 1. The associated Kalman filter equations are summa-
rized below for ease of reference.

Algorlthm Given the state-space model (11a), the Llm.s.
estimate x can be recursively computed via the recursions:

start with XO =Xy and Py =11, and repeat for i 20,

Ry =R+ KR (- H %)
R,;= HPH; +1, K=" 2p, iH;'k
-1 —1 g *
P, =A"P-KR, 'K, (13)

Assuming that p<< n, as often happens, the number of
operations (i.e., multiplications and addltlons) that are needed in
going from index i to index (i+1) is O(pn ), where n is the state
dlmensmn and p is the output dimension. This is smaller that the
O(n ) figure that we mentioned earlier because we are now
assuming a very special matrix F;, viz., amultiple of the identity.

The Information Filter

The recursions (Eq. 13) propagate the Riccati variable P;. In
several applications, however, the uncertainty in the initial
state xy may be high. That is, Iy = o I with ¢ >> 1, which
implies that the starting point for the Riccati recursion in-
volves large numbers. This is particularly the case in a stand-
ard least-squares minimization problem, such as Eq. 11d,
where Il is assumed to be infinite and where the problem of
interest is to solve for x; in

. 2
min lly-Axll; .

Xy

For such problems, it is preferable to propagate the inverse

of the Riccati variable, Pi_1 rather than P; itself. The resulting

algorithm is known as the information filter (see, e.g., [27,
43]). In contrast, the original Kalman filter recursions are
often called the covariance form. It can be derived from the
recursions of the previous algorithm rather immediately by
invoking the matrix inversion lemma (5).

Algorithm: The Information Filter Gwen the state-space

model (Eq. 11a), the Llm.s. estimate x can also be recur-
sively computed via the recursions: start with

A _1— _ — A
P01x0= I'[le0 and PO1 = l'IO1 , and repeat for i >0

P =M [P + HH)
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The assumed model is

Exo + Xo, cov(xg) =TI

Table 11: Algorithmic variants of the Kalman filter.

Gi=Qi=0, Ri=1 Fi=A""1

-1
Xi+1= A%, yi= Hixi + vi,

A —
0. Eviv; =18, xo=xo, Po=Tlo.

Filter Name

Expressions

The Covariance
Kalman Filter

L1 = A%+ KiRe | (yi - HX)
Re,= HPH + L K;=1"""PH]
Pui = M 'Pi- KR 'K]

The Information
Filter

P\ = AP/ + H'H]
Pilixit = A2 [P7'%; + Hiyi)
Re; ! =1- AHP: H;
Rei'ei=yi— A H X

_ — 1A
Xirt = [PRIT! (PR X1

The Square-Root
Covariance Filter

omp? ][R0
lo A2p2| i P

Rt = 27128 + Ky ilRed 21! (yi— HR)

The Extended
Square-Root
Information Filter

[A12p*2 12} G

PRy | | BB R
0 1 A HR R

A2p2 o Pi K

Rier = A7V + Koy (R eil = [PYA) (PR K1) .

The Square-Root

'Hi=Hin ¥

Chandrasekhar -1y, _ KoRe5'KS ~ 0¥ = LoSoL§
Filter " \2
R Huli] o _[Rf 0
YK, X_I/ZL,'J Kpir1 List
Rt = M2+ KoilRe, 21! (yi— H)
The Explicit H; = Hi ¥
Chandrasekhar 1 -111g - KoRe 'K — ¥ 110" = - LE'R-DLE

R, HuL® Reiv1 O
YK, ALY (Zi=| K L
Li“H Ry 0 R
I —Rej 'Hi L]

ol H— |
[~ RAL“H T

i

RKirt = A2 + KiRe, ! (3: = HY)

1 A 12 pel A
P X, =0 [P X+ Hy)l

Moreover, the inverse of innovations covariance matrix,

R, ;, and the normalized innovation Re,i—lei are given by

-1 -1 12¢y 2
i =1-AHP, H, R, e=y,— A “Hxy,,

I3

The state-estimate at any particular time-instant can be

recovered from
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171 1 A A
[Pm] [ +1 "i+1}="i+1~ (14)

Note that the information filter propa-
gates the quantity Pi_lll(\i rather than ﬁi it-
self. Also, the number of operations (i.e.,
multiplications and additions) that are
needed in going from index i to index (i+1)
is still O(pnz), where # is the state dimen-
sion and p is the output dimension.

The Square-Root Kalman Filter

The Kalman recursions (Eq. 13) propa-
gate the covariance matrix P; via a Ric-
cati difference equation. Due to roundoff
errors, however, the Riccati recursion
may not guarantee a positive-definite
matrix P;at all times i. This problem can
be avoided by using an alternative so-
called square-root array form of the Kal-
man filter equations. The array form
propagates a square-root factor of P;

viz., P,VZ. By squaring P}/Z we shall
always be guaranteed to obtain a posi-

tive-definite covariance matrix,
P,=P’P” .

Before proceeding to the derivation
of the square-root filter, we first state
and prove a simple result from matrix

theory that plays an important role in the
argument.

Lemma: Given two n X m (n < m) ma-
trices A and B. Then AA* = BB* if, and
only if, there exists an m X m unitary
matrix © (©@0* =1, ) such that A = BO.

Proof: One implication is immediate. If
there exists a unitary matrix © such that A
= BO then AA*=(BO)BO)*= B( O
©*)B*= BB*. One proof for the converse
implication follows by invoking the singu-
lar value decompositions of A and B,

A=Up[Z5 01V,
B=Ug[Zp 0]V

where U, and Ug are n X n unitary matrices, V5 and Vp are
m X m unitary matrices, and %, and Xg are n X n diagonal
matrices with nonnegative (ordered) entries. The squares of

the diagonal entries of X, (Zg) are the eigenvalues of AA*
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(BB*). Moreover, U, ,Ug can be constructed from an or-
thonormal basis for the right eigenvectors of AA* (BB*).
Hence, it follows from the identity AA* = BB* that we have
Y4=3pand Uy = Up. Let © = VgV, *. We then get 00" =
I,andBO=A.

We now use the above result to motivate the square-root
form of the Kalman filter. For this purpose, we note that the
Kalman recursions (Eq. 13) can be expressed in factored
form as

1 HP 1 0
~12 pl2 /2 =12p*/2
0 XV2P2| | PH VP
12 2y —1/2¢-%
R,” 0 ||R;"Re; 7K,

—2 572
K,Re PAll 0o Pj

The above equality fits into the statement of the lemma .
We thus conclude that there exists a unitary matrix ©; that
relates the arrays (an interesting geometrical motivation for
the existence of such rotations can be found in [43])

1 HPY? R? 0

/D
0 A2pl2 K,R P,Jr1 (153)

In fact any unitary matrix ©, that takes the prearray of
numbers

172
I HP
—172 pl2
0 AP

and triangularizes it; thus leading to a postarray of numbers
of the form

12
I HP; _{X O]

gl TIY Z
(U & (15b)

for some {X,Y,Z,} achieves the transformation (Eq. 15a). To
verify that the quantities {X,Y,Z} can indeed be chosen as

{Re’l s KR, ; -2 P, +1} » we proceed by squaring both sides
of (Eq. 15b),
1 Hp”

172 ®
o I HP; _[X0][X0
0 A2 pi2 0 A2 pi2 YZ||YZ
14 1

and comparing terms on both sides of the equality to get the
identities:

H &
XX" = I+HPH =R,
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YX' = 1 VRH =K,
7Z = 'PKR,'K =Py,

Hence, we can choose X =R, ,/2 Y=KR,; KE Kp, ,
z=pl} i+1
Kalman recursion [27, 43].

.We are thus led to the square-root version of the

Algorithm: The Square-Root Kalman Filter szen the
state-space model (Eq. 11a), the l.l.m.s. estimate x can also

be recursivelv computed via the recursions: start with
A — .
Xy = Xq and P(l)/‘) = 1'1[1)/Z , and repeat for i20,

1 HP” R,” 0

—R2pl2| T 12
(UPRES & K, P (15¢)

where ©; is any unitary transformation that produces the
block zero entry in the postarray, and

-1
A ~ 124 12
X =0 X+ K [Re,f } (yi—

The number of operanom needed in going from step i to
step (i+1) is still O(n ), the same order as the Riccati-based
algorithm.

HX) .

An Extended Square-Root Information Filter

The information filter equations of the previous algorithm can
also be expressed in square-root form, where a square-root

factor of I’,-_1
argument is essentially similar to what we have done in the

previous section, we only highlight the major steps here. We
form the prearray of numbers

is propagated rather than P;-1 itself. Since the

xvzpi—*/z ;LI/AH;«

A /2 #
X; Pi_* Yi
0 I
—12p-*2
AP 0

and choose any unitary matrix ©, that introduces a block

zero in the second block entry of the top row, say

12942 4 12¢g*
R AL < 0
A "y} *
X P Vi oY 2
0 I iTIW T\
S VvV
-12p—#2
G A

By squaring and comparing terms on both sides of the
equality
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2P 1y AR g 1o "
i i
Nokp e/ 3 */2 *
XiPi_ y? 9,- G’ szt_ Yi
0 I 0 I
PG G PG A
X 0][X o]
1Y Z||Y Z
T|W T{|WT
S V||S V
we readily conclude that we can make the following iden-
tifications:
—*/2 12 172
X=P, Y=x P, W=2"Hp]

T= Rel*‘/ZZ € REI*/’ S= Pz]-ﬁ’V:_KP.i'

Algorithm: The Extended Square-Root Information Fil-
ter Given the state space model (Eq. 11a), the l.Lm.s. estimate
X; can also be recursively computed via the recursions: start
with ;{\0 =X, P(])Q = 1—[(1)/2’ P, 2 I, _1/2, and repeat for i 2
0,

/)
)\’I/ZP;'—*/Z X I/ZI'I: Pi'H 0
—%/2
;(\?PI-_*/Z yik o= i+] i+1 'Re
! - kl/ZH Re,—*/l
A Pesn I 1+l 2
A —Pi 0 P}ﬁ _Kp‘i

(16a)

where ©; is any unitary matrix that produces the block zero
entry in the top block row of the postarray. The state estimate
is given by

z+1 =17, +Kpl|:Re_1/2 J [ Kﬂ[r l/ZAi+1:|

:+| Xn+1} and {pr +1}

are read from the entries of the second and last lines of the
postarray, respectively.

The number of operations needed in going from step i to
step (i+1) is still O(nz). The term ‘“‘extended’’ is used here to
indicate that the above array is a simple extension of the usual
form of the square-root information filter as given in [43]: the
top three block lines are standard in the square-root descrip-
tion of the information filter, while the last block line is
borrowed from the square-root Kalman filter (Eq. 15¢). An
alternative interpretation of (Eq. 16a) as one that avoids the

where the quantities {Re,i'l/Z

. . . . A A .
backsubstitution required to obtain X; from P[_mxl. (viz., to

use the so-called Faddeeva’s method) is described in [50].
An extension may also be noted here. If the covariance
matrix of the noise signal v, in the model (Eq. 11a) is not the

identity matrix but rather Ev,-v;=Ri, then the previous
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square-root arguments are still applicable and they immedi-
ately show that the array equation (Eq. 16a) becomes

PRGN NE ¢ ol (el P2 0

NPTy R | XwPE efRe™
0 I*Ri—*/z - KI/ZR,'*/ZHP J*/z

e 0 P/ K,

(16b)

Hence, the equality Re,j_l €=y~ A2 H; Q,- 1 in the third

i
prior algorithm converts to

-1 -1 12¢g A
R ¢=R [yi‘k Hi"i+1]

This modification is useful when a weighted least-squares
criterion is used., as happens in a later section.

The Square-Root Chandrasekhar Filter

All the algorithmic variants presented so far have an O(nz)
computational complexity, and this is true whether or not the
state-space model (Eq. 11a) or, more generally, the model in
(Eq. 10a) have constant parameters {F,G;,H;Q,R;}. How-
ever, one expects a computationally more efficient procedure
in the case of constant-parameter systems {F,G,H,Q,R} (see,
e.g., [44]-[45]) or in the case of time-variant models that
exhibit structure in their time-variation (see, e.g., [31]).

The Kalman recursions require the Riccati variable P; in
order to compute the covariance matrix R, 4 and the gain
matrix K;, which are in turn used to update the state estimate
according to (10b). But an alternative procedure exists in the
case of constant-parameter, as well as structured, state-space
models [31, 43], where the Re,i and K; are computed without
the need to explicitly evaluate P;.

To clarify this, we follow [31] and say that a general
state-space model (Eq. 10a) is structured if there exist n x n
matrices ‘¥; such that F;, H;, and G; vary according to the
following rules:

H=H ¥, F Y=Y F. Gy =Y,G (17,

Constant-parameter systems satisfy (Eq. 17a) with ¥, =1L
Also, the covariance matrices R;and Q; are assumed constant
for all i; (R; = R, Q; = Q). More general cases are treated in
[31].

The special model (Eq. 11a) exhibits G; = Q; =0, R;= 0
and F; =2 12§ The G; and F; obviously satisfy (Eq. 17a) for
any constant matrix ‘¥'. Hence, the model (Eq. 11a) will be
structured if a ‘P exists such that the H; matrix satisfies H;
=H;,; ¥. We shall see later that, in the context of RLS
filtering, a shift structure in the input data results in a struc-
tured model (Eq. 11a) with a particular ¥ and, hence, the
result of this section will be immediately applicable. So
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assume there exists a ‘¥ such that H;=H; | . We now verify
that this leads to an order of magnitude speed up of the

Kalman filter, for sufficiently sparse ‘¥.

The savings in computation are achieved by considering
the difference matrix P;; —¥ P;'P'*, as we further elaborate.
If this difference has rank o then we can (nonuniquely) factor
it as

P, - WPW¥s=LSL;

where L; is an n X o matrix, and S; is an 00 X ¢, signature matrix
withas many * 1’s as P, | —'¥ P; '¥'* has positive and negative
eigenvalues. We now form the prearray of numbers

R H,L,
¥K,, AL,

and choose any J = (I @ ;) -unitary matrix © ;, that block-
triangularizes the prearray,

12
R Hulil o _[x0

.y iT|Y Z
¥K,, A1,

By comparing the J-norms on both sides of the equality,

P

R(Ie H L @[I 0:| *Rel Hl+|L
iloS;|© _
wK,, 272 LY R
X071 0][X o7
Sy z||o S|y z

we conclude that we can make the identifications

12
X= Re:+l Y:Kll'+l and

ZSZ' =P, ,- VP, V" .

We can thus choose Z = L;, | and set §;,; = §; since, by
definition, P; , - P;, ; ¥* =L;, S;,; L;,,*. Note that our
argument shows that the inertia matrix S; does not vary with
i, and we can choose it equal to Sy, where S, is defined via

the factorization

=~ YR = (17Tl ~ KR, 5'KG) — FTIg¥” = LSyl

The point is that we often get o << n. The resulting arrays
then propagate an n x o factor, L;, rather than the n X n matrix
Pi.
Algorithm: The Square-Root Chandrasekhar Filter Given
the state space model (Eq. 11a), and assuming there exists an
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nxn matrix ¥ such that Hy=H; | Y, then the L.l m.s. estimate
X can also be recursively Computed as follows: let

# 12 *
R, =1+ HyllgH , Ko =A""TlgH;
and factor the difference |:X_IH0 - KORE’SIKS - ‘PHO‘{’*} as

—1 — 1y % * *
ATy - KR, K = P = LSyl

where Ly is n X a, S is an o X o signature matrix, and o, is
the rank of the diﬁ‘erence on the ]eft hand side.

Now start with xO XO, £,O = [I+H0H0H0]m

oL
and Sy as above, and \¥, and repeat for i 2 0,
R7 H,L RV1)+1 0
- 12
\PKPJ A Li Kp,i+l Li+l
(17b)

where © ; is any J = (1 ® S)) — unitary matrix that produces
the block zero entry in the postarray. Moreover,

K, [R7] o,

where the quantities Rylz and Kp,[ are propagated in the

1/2/\
X =\~

—HX)

postarray.

In many situations we get o << n. Examples will be given
later in the adaptive filter area. If the matrix ¥ is sparse
enough so that the product ‘I’KW- would require O(n) opera-
tions, then the number of operations needed per iteration is
O(n) for p << nand o << n.

The Chandrasekhar Filter in Explicit Form

We also remark that the Chandrasekhar recursions can be
alternatively expanded and rewritten in an unnormalized form
[43, 44]. This is achieved by considering the alternative
factorization

P, - ¥YP¥" =-L{“R L

where R, ;is an 0. X o. matrix that is not necessarily restricted
toa 51gnature matrix. Using the factors L{u) and R, ; one can
check that the follwing equations hold (see, e.g., [3] 45 47)).

Algorithm : The Explicit Chandrasekhar Filter Given the
state space model (11a), and assuming there exists an n X n
matrix ¥ such that H; = H; _; 'Y, then the [.l.m.s. estimate 3,(\[
can also be recursively computed as follows: let

R, =1+ HyTTgH, Ko = A~ VIIgH;

JULY 1994



and factor the difference [l_ll'lo - KORE‘EIKS - ‘PHO‘{’*] as
- - * —1
A7, ~ KoRe,olK$ - WY =- Ié)”)Rr,oL;(u)

where Lo(u) is n X o, R, ; is 0x o, and o is the rank of the
difference on the left-hand side. Now start with

QD = io, Re,(l’ Ky,O* R, (. LB") and ¥, and repeat for i > 0,

R; H, LY R, O
vk, A0y = Ky LY
; ! 0 Rr +1
LH,, R, ! (18)
where X ; is given by
-1
| RG]
1y *u \
CRGL P H, L]
Moreover,

X, =A%+ K,[Re.iT (v, HX).

It can be further verified that the above Z; satisfies the
generalized unitarity relation

+|Re; 0 _[Rejr1 O

7 i+1

We may finally note that the above recursions are also
related to the famous Levinson and Schur algorithms in
prediction theory, as discussed in [24, 25, 47]. Table 11
summarizes the different forms of the Kalman recursions that
we considered so far for the state-space model (11a).

The Recursive Least-Squares (RLS) Problem

We now move to formulate and solve the recursive least-
squares problem by invoking the equivalence result (Eq. 11d)
and by employing the state-space tools presented so far.

The core problem in adaptive filtering is the following.
Consider a sequence of (N+1) scalar data points, {d(i)}ﬁ0 ,
also known as reference or desired signals, and a sequence of
(N+1) row vectors {ui}ﬁi0 ,also known as input signals. Each
input vector u; is a 1 X M row vector whose individual entries

we denote by {uj(i) };Zl viz.,

u= [ul(i) (i) ... upy(i) J (19a)

The entries of u; can be regarded as the values of M input
channels at time i: channels 1 through M. Consider also a

known column vector W and a positive-definite weighting
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matrix Ily. The objective is to determine an M x | column
vector w, also known as the weight vector, so as to minimize
the weighted error sum:

N
—1 .
E=(w— W)*{x“"’“)r{o} w-w+ Y W) - uwl?
-0 (19b)

where A is a positive scalar that is less than or equal to one
(0<< A< 1). It is often called the forgetting factor since past
data is exponentially weighted less than the more recent data.
The special case A = 1 is known as the growing memory case,
since, as the length N of the data grows, the effect of past data
is not attenuated. In contrast, the exponentially decaying
memory case (A < 1) is more suitable to time-variant envi-
ronments. Also, the factor A “™N*V that multiplies IT  in the
error-sum expression (Eq. 19b) can be incorporated into the
weighting matrix I'. But it is left explicit for convenience as
will become apparent later (see expressions (Eq. 20a) and (Eq.
20c) below). We shall denote the individual entries of w by

twin, |

w=[w(1) w2) ... w)]

Before proceeding any further, let us provide a pictorial
depiction of the problem at hand, see Figure 1. At each time
instant i, the inputs of the M channels are linearly combined
via the coefficients of the weight vector and the resulting
signal is compared with the desired signal d(i). This results in
a residual error £(i) = d(i)-w;w, for every i, and the objective
is to find a weight vector w in order to minimize the (expo-
nentially weighted) squared-sum of the residual errors over
an interval of interest, say from i = O up to i = N.

ui)  wl uy(i) d(i)
w(1) | w(2) w (m)
A N AN
N N N
L e(i)

Fig. 1. A linear combiner

We also redraw the linear combiner of Figure 1 in a more
compact form as in Figure 2. The input data {u;} are fed into
the linear combiner one at a time: uy, followed by u,, and so
on. The reference signals {d(i)} are also fed into the combiner
sequentially starting with d(0) and then d(1) and so on. The
objective is to determine a column vector w such that the
scalar sequence generated by the inner products {w;w} fol-
lows the reference sequence {d(i)}in the sense that the (expo-
nentially weighted) squared-sum, or energy, of the resulting
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{5 ...g(1) €(0)

Fig. 2. A compact representation of the linear combiner

residuals {€(0), &(1), ...} is minimized.
The linear combiner in either Figures 1 or 2 is said to be
of order M since it is determined by M coefficients

{w() }’.Z, . However, a special case of the combiner in either

figure will be relevant while deriving the lattice adaptive
filters . It corresponds to a first-order combiner, viz., one that
compares a scalar sequence of reference signals d(i) with
another also scalar sequence of input signals u(i) via a single
weighting coefficient, say w, as depicted in Figure 3. [As a
side note, we remark that for the lattice filters that we discuss
later , the scalar sequences {d(i), u(i)} will be the sequences
of forward and backward prediction errors.]

... d(1) d(0)

=>{w]

... u(1) u(0) ... g(1) g(0)

Na
BN

-

Fig. 3. A first-order linear combiner.

The expression for the weighted error-sum (Eq. 19b) can
be rewritten in matrix form as well. For this purpose, we
introduce the residual vector ey, the reference vector dj, the
data matrix Dy, and a diagonal weighting matrix Ay

d(0)—uyw
d(1)-uyw
ey=| d2)-uw |= dy~Dyw

(le)N
(;LI/Z)N—I
A}V/Z = :
0\’10)2

1 (19d)

It then follows that

-1
E=(w- W)*[x(’v“)no} (W= +IANeNB. (19
The quantity A}VaeN is an exponentially weighted error
vector,
12 122 172
Ayey=Ay"dy— Ay Dyw.

We col{lclude from (Eq. 9a) and (Eq. 9b) that the optimal
solution w is given by

—1
(W-w)= [A(N“)na‘ +DjADy| DALy - Dy

This can be rewritten more compactly by introducing the
‘‘covariance’’ matrix @y and the ‘‘cross-covariance’ vector
SN

Oy =[ 245" + DDy |

. _
sy=DpAp dy - DNW:| (20a)

Then, the optimal solution is obtained by solving the
following (also known as normal) linear system of equations,

Dy (W W) =5y, (20b)

It is also rather straightforward to verify that @), and sy,
satisfy simple time-update relations, viz.,

Dp,y — Ay = Uy, Uy,

Snel ~ ASy = Uy [d(N“) - “N+1W] . (20c)
with @_; =TT’
only by a rank-o/r\1e matrix.

The solution w obtained by solving (Eq. 20b) is the optimal

and s_; =0. Hence, @y, and ®), differ

d(N)—uyw weight estimate based on the available data from time i = 0
up to time / = N. We shall denote it from now on by wy,
d(0) 1, (0) ux(0) .. up(0)

d(1) uy(1) uy(1) ... 1) Dp(wy — W) =5y
=1 d(2) |~ | uy(2) ux(2) ... upf(2) The subscript i in wyy indicates that the data up to, and
: : : including, time N were used. This is to differentiate it from
d(N) 1y (N) tn(N) ... 1ty (N) the% estimate obtained l:fy usipg a different numbgr of data
(19c) points. Indeed, the main objective of the recursive least-
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squares (RLS) problem is to show how to update the estimate wy,
which is based on the data from time 0 to time N, to the estimate
Wy, 1> Whichis based on the data from time O to time (N+1), without
the need to resolve a new set of linear equations of the form

A —_
Dy (Wag — W) =Sp.

Such a recursive update of the weight estimate should be
possible since the coefficient matrices @y ,nq Py of the
associated linear systems differ only by a rank-one matrix. In
fact, a wide variety of algorithms has been devised for this
end and our purpose here is to derive these different schemes
in a unified framework that is based on insights gained from
state-space estimation techniques.

The State-Space Formulation

Let us now rework the error-sum expression (Eq. 19b) in order
to reduce it to the same form (Eq. 11d) that we discussed
previously. If the A were equal to 1 then expression (Eq. 19b)
would be identical in form to expression (Eq. 11d) and we
could immediately apply the theorem stated after Eq. 11d.For
a general non-unity A, though, the expression (Eq. 19b) can
be reworked to the familiar form (Eq. 11d) as follows:

N
-1
E=(w-w' [x“"’“)no} w-w+ 3 A1) - um?

=0
o d(i)
SV [ =Wy A T SR, W2
R
N
=W (xg = %) A T (%~ %) + T 0(0) — ux;, 2
=0 21a)
where we have defined the quantities,
. dl) w _
(i) = S X, =T —3, Xg= W, Xg=W.
A N T @1b)

Note that it follows from the definition of x; that x
A2

i+l =
x;. This manipulation shows that we can always rescale

the original problem (Eq. 19b), with an exponential factor A,
to an equivalent minimization problem with A = 1, viz., (the
constant factor Ay does not affect the optimization problem)

-1 N
min| (x, - io)*[r‘no} (xo—%g) + 3 (i) - u,x,JJ
* i=0

where {Xo,y(i),u, [T N A} are known and x;, | = ?fl/zxi. This
problem is clearly a special case of the equivalence result of
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the theorem stated after Eq. 11d. We thus conclude that the
weight estimate can be recursively updated by writing down
the state-space estimation algorithm (and its many variants)
that corresponds to the following special M-dimensional
state-space model,

-2
X =A7x;
y@ =wux;+v(i), 2lc)
with

Xg=W.X) =W, cov(xy) =LAl Ev(ij(j) = 3.

This is a special case of the model (Eq. 11a) that we
considered previously: the y; is now a scalar variable y(i) and
the matrix H; is replaced by the row vector u;.

Also, an attractive feature of the scaling provided by (Eq.
21b) is that it leads to a state-space model (Eq. 21¢) with a
constant (in fact, equal to unity) noise variance,
Ev(iv=(j) = 50. This will be helpful later when we further

impose shift structure on the input channels and show that the
resulting model (Eq. 21c¢) can be regarded as structured in the
sense defined previously and for which the Chandrasekhar
recursions will be immediately applicable. Furthermore, it also
turns out, as shown in the next section, that the scaling (Eq. 21b)
leads to a simple relation between the Riccati variable, P

i+l
associated with the model (Eq. 21¢) and the inverse of the ““covari-

ance’’ matrix, (D,-_l »associated with the least-squares problem (Eq.

20b): P;, | will be a constant (viz., A7l ) times fDi_l . This means

that if we write down the Riccati difference equation for P, | then

it translates almost immediately to the widely-known RLS recur-
sion for ®,_;. Other types of scaling may be used to define

alternative auxiliary models as in (Eq. 21c). This would lead to
alternative relations between the RLS and the Kalman variables,
which can then be used to relate a Kalman-type algorithm to an
RLS-type algorithm in precisely the same way as done in the
remaining part of this paper. The scaling in (Eq. 21b) is motivated

by the simple relation that it provides between P, and <l>,-_l and

by the constant noise variance.
Relations between the RLS and Kalman Variables

The different variants of the Kalman recursions, when applied
to (Eq. 21Ic¢), will now provide different algorithms for the
solution of the RLS minimization problem (Eq. 19b). But note
that the variables used in (Eq. 21c) are scaled versions of the
variables used in (Eq. 19b). For example, y(i) is a scaled version
of d(i). So is x; relative to w. This means that when writing down
the state-space estimation algorithms that correspond to (Eq.
21¢), we should then proceed to replace the variables of (Eq. 21c)
by the corresponding RLS variables. This would allow us to
describe the algorithms in terms of the original RLS variables.
This section is meant to clarify the connections between the RLS
variables {d(i), w, u;, T, ®;, w; } and the Kalman variables.
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The Kalman recursions that correspond to the model (Eq.

21c) are given by: X=Xy =W, Py =A"'Tl,

Xiv1 = A V2R + Ker (el (22a)

where e(i) = y(i) - uix,,kl A lA"Pu, r(i)=1 +u1Pu, and
P, satisfies the Riccati difference equation

Pivt =171 [Py~ Pl 72 (] (22b)

Recall that w; denotes the estimate of w that is based on

the data {d()), Py ] from time j = 0 to time j = i. Likewise, the
state-estimate xl + denotes the estimate of the state x;, that

is based on observations {y(j)} from time j =0 to time j = i,
and they are related as

Kirt = wi/(NR)"!

With the RLS problem we also associate two residuals at
each time instant i: the apriori error e, (i), defined by

eali) = d(i) — wiwi-1
and the aposteriori error € (i), defined by
epli) = d(i) — wiwi
These residuals can be easily related to the Kalman filter

innovation e(i), which is defined by e(i) = y(i) — ug’(\i Its vari-
ance is denoted by r,(i). Now note that

(Eq. 22b) we obtain

P — 0B =i, By = AT
and it readily follows (recall (Eq. 20c)) that P51 isascaled
version of the ‘‘covariance’’ matrix ®; that we defined in (Eq.

20a). More precisely,

P =A@

If we denote the inverse of the ‘‘covariance’” matrix ®; by

l_’,3 viz., F,- = CDITI, then we also have that

P =A7'P;

[This notation is chosen to reflect the one conventional in
RLS estimation — see (Eq. 23). Otherwise a different symbol
than P would be better.]

We further denote \/X_kir;l(i) by g; which implies that

\/Xl_(p_ 0= g,-y_*/z(i) = g;. The correspondence between the Kal-

man and the RLS variables, and which follows from the
scaling (Eq. 21b), are summarized in Table 12. The entries of
the table allow us to translate a Kalman-type algorithm to an
RLS-type algorithm, and vice-versa.

Different Classes of Fixed-Order Adaptive
Algorithms

Now that we have established a clear correspondence between
the Kalman and the RLS variables, we can proceed to write
down the different variants of the Kalman recursions in terms

. A Table 12: Correspondence between the Kalman
e(®) = (i) - uixi = \j_l [d(?) = wiwi-1] = \/'_l ey eald) and RLS variables.
Kalman Variables | RLS Variables Description
On the other hand, the expression for the aposteriori error  [* d(iy(\A) Reference signal.
ep(i) leads to Xi w/(y Weight vector.
Xist Wi /(\jf yi*l Weight estimate.
ep(i) = d(i) —ww; = d@@) — (\ff)""lupl(\iﬂ APy o' =P Inverse of covariance
T i+1 — 125, i PR matrix.
= d(l) - (\[)_\r—) “t[)h X + kzre (l)e(l):l \R kp,i r;l(i) g Gain vector.
_ Kpi 1 n Normalized gain
= [d(i) - u,'wHJ — M ukirs \Geali) Ny vector.
Kp,i 1 z Normalized gain
= l:l - \/_mlgre (z):l eali) iy vector.
e() eali) Apriori error.
T | o
= 1-————|ed)=re (l)ea(l) e(i) epli) Aposteriori error.
[ 1+uPa| ' re(i)
This means that the so-called conversion factor that converts |~ 2'(0) z(i) Conversion factor.
the apriori error e,(i) to the aposteriori error ep(i), and which |0 w Initial guess.
we denote by (i) (following 1, page 578),is equal to (0. Wi =w Initial guess.
. . .. . -1 Weighti trix.
Finally, if we apply the matrix inversion lemma (Eq. 5) to 2 A~ T cletme A
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of the original RLS variables.

The RLS Algorithm

The first step is to use the correspondences of Table 12 in
order to rewrite the Kalman recursions (Eq. 22a) and (Eq.
22b) in terms of the RLS variables. This leads to the widely
known RLS algorithm (see, e.g., [1, p. 483]).

Algorithm: Consider a set of (N+1) data {u; ,d(i) }?io , where

thew;are 1 X M row vectors and the d(i) are scalars. Consider
also an M X 1 column vector w, an M x M positive-definite
matrix 11y and a scalar A (0 << A <1). The solution of the
minimization problem

mir{(w—W)*[k_(MI)HoIl(w~W)+§ AN dy-uiwl?
v =0

can be recursively computed as follows: start with
w_; =w, P_ =Il, and repeat for i > 0:

wi=wi-1 + g [d(i) — uwi—| ]
AP puf
= -
1+A Py
Pi=\"" [Py — gPiy] (23)

Then the optimal solution is W = wy. The computational
complexity of the algorithm is O(Mz) per iteration.

The equivalence between the Kalman recursions and the
RLS recursions is rather well-known in the special case A
= 1. However, surprising as it may seem, it has not been
clearly shown for A # 1. The reason is that the equivalence
is usually established by working out the solution of the
RLS problem and comparing it with the Kalman filter
equations for an appropriate state-space model of the form
(Eq.21c) (withA =1, see, e.g., [5, pp. 331-335]). However,
as noted in [1, pp. 502-504], when A # 1, a complete
equivalence of the RLS solution and the Kalman filter
recursions is not immediate. The simple, in retrospect,
device is a proper scaling of certain variables, as shown in
(Eq. 21b), along with a proper identification of the corre-
spondences between Kalman-type variables and RLS-type
variables as detailed in Table 12.

The Square-Root RLS (Inverse QR) Algorithm

We now write down the square-root Kalman filter (Eq. 15¢)
. A -— J—
that corresponds to (Eq. 21c), viz., Xy =Xg=Ww, and

P(I)/2 = 7\"1/21'1(1)/2 ,and fori>0,
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I -|®~— @) 0
="
0 ?CVZP,VZJ ko P

where ©; is any unitary transformation that produces the block
zero entry in the postarray, and

A A - —1 A
X1 =2 2R+ Ky [ré’z(i)] ) - ui)

In terms of the RLS variables, this leads to the so-called
square-root RLS algorithm.

Algorithm: Consider a set of (N+1) data {u;.d() }f-io where
thew;are 1 x M row vectors and the d(i) are scalars. Consider
also an M x 1 column vector W, an M x M positive-definite

matrix Iy and a scalar A (0 << A < 1). The solution of the
minimization problem

-1 N
minf (w—)" [ Dr] (- AN -uw?
¥ =0

can be recursively computed as follows: start with W =
w, Pi/l‘)‘ = I'l(l)/z and repeat for i > 0:

| V) —

1 =P Yy @ 0
o | O

0 b gv™"(i) P2

where ©, is any unitary rotation that produces the block zero
entry in the postarray, and

Wi=wi] + [g;y‘*/z(i)] [v’*/l(i)T[d(i) —wwiq]

Then the optimal solution is w = wy. The computational
complexity of the algorithm is O(Mz) per iteration.

The above recursions are often known as the square-root
RLS algorithm (see, e.g., [5]) but, more recently, they have
also been refered to as the inverse QR algorithm (see, e.g.,
[48, 49]). An extension of this result to the mutlichannel case
is described in [51]. The reason for the terminology is that the
recursions propagate a square-root factor of the inverse of the
‘“‘covariance’’ matrix ®;, while the conventional QR algo-
rithm that we derive in the next two sections propagates a
square-root factor of ®; itself.

The Conventional QR Algorithm

We now write down the first three lines of the square-root
information array (Eq. 6a) that corresponds to (Eq. 21¢), viz.,

Ro=% =W, PY?=2"211Y?  and fori >0,
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AP )\ V2gf P’ 0
Vi) Bi= | KPR e e 6
APl G

Ak
x; P; 2

0 1

where ©; is any unitary matrix that produces the block zero
entry in the postarray. In terms of the RLS variables, this leads
to the conventional QR algorithm (see, e.g., 1 [p. 518, pp. 534
—538). First a clarification on the notation used below in the
statement of the algorithm. The quantity Q?:P;_*/Z that appears

in the second line of the above prearray translates into
1

S

£ .
q;_; ;1L

wf_l¢}le. We then denote the term wf_lfbl-lﬁ by

q-1= i wit
It further follows from the normal equations (Eq. 20b) that
Q-1 = D5y + W

Algorithm: Consider a set of (N+1) data {ui,d(i)}?io , where
thew;are | x M row vectors and the d(i) are scalars. Consider
also an M x 1 column vector W, an M x M positive-definite

matrix Ty and a scalar A (0 << A < 1). The solution of the
minimization problem

-1 N
min] (w-w)" (A7 01o] -y TN -

w .
=0

can be recursively computed as follows: start with

w_ = W,(I)l/]z = HB*/Z,q_] = 1'161/2 w, and repeat for i 2 0:

Aolf o oo
g &G | Oi=| @ eayH)
0o 1 wd Y (24)

Then the optimal solution is W = Wy, where Wy is obtained
by solving the upper triangular system of equations:

ditwy = Qv
The computational complexity of the algorithm is O(Mz) per

(D]’://ZWN =qnN

A major drawback of a back-substitution step is that it in-
volves serial operations and, thus, does not lend itself to a
parallelizable implementation. However, this step can be
completely avoided by further invoking the last line of the
square-root information form (Eq. 16a) that we have ignored
so far. The resulting algorithm is an extended version of the
QR recursion and completely avoids the backsubstitution step
(see also [22, 24, 501). The extended square-root information
filter that corresponds to (Eq. 21c) is the following:

— — -1 -1 .
)I{\O =X, =W, P(I)/2 =A /21'1(],/‘7,P6V2 = k‘”no/z ,and fori >0,

W2p2 2y P 0
P2 V) R e a)
0 1 JERE™ L)

A2 o P3 ~Kp.i

where ©; is any unitary matrix that produces the block zero
entry in the top block row of the postarray. The state estimate
is then given by

Kiv1 =47 R+ ko [r;l/z(i)e(i)}

where the quantities kp,i and r:/ Y(i)e(i) are immediately read
from the entries of the postarray (second and last lines). This
expression allows us to update the weight estimate without
invoking a back-substitution step. In terms of the RLS vari-
ables, we obtain the following algorithm.

Algorithm: Consider a set of (N+1) data {ui,d(i)}l]-i0 , where
the w, are 1 x M row vectors and the d(i) are scalars. Consider
also an M X 1 column vector W, an M X M positive-definite

matrix Iy and a scalar A (0 << 1< 1). The solution of the
minimization problem

-1 N
minl (w=w) [ 1| T AV ) -uiwr?
¥ =0
can be recursively computed as follows: start with
W_ =W, (I>I_/2 = I'IB*/Z, CD:VZ = Hg/z A= I'[BVZW, and re-

peat fori20:

iteration. xf}f(b}ﬁ u;
122 0
The Extended QR Algorithm Vi d() !
® * .0 12,
o=| ¥ ey
The conventional QR solution determines the optimal weight 0 ] u,q:,-_*/z YVZ([)
wy by solving a triangular linear system of equations, e.g., o2 g 'Y_*/Z(i)
via back-substitution, 1 ,—*(2 0 ' =
—
R | (252)
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us(i)

a*(i)

Fig. 4. A systolic implementation of the extended QR algorithm

in a — a2 ¥ [in]?
p p= in/\/Xa

14
in out[a out]e—[\/Xa in]m[p{ _’1,]
P

we w—1ine

[4

Fig. 5. Functional descriptions of the cells in the systolic array.

ok
Wi= Wil + [gﬂ‘*’z(i)] [eZ(i)v"z(i)] (25b)
where the quantities giy"*/z(i) and e:(i)ym(i) are read di-
rectly from the second and last lines of the postarray. The
optimal solution is W = Wy, which can also be computed via

Wy = d)&*/ZqN. Moreover, the computational complexity per
step is O(M ?).

The time-update (Eq. 25b) of the weight-estimate uses
only quantities that are immediately available from the postar-
ray. This procedure admits a systolic implementation as de-
picted in Figures 4 and 5 for a thrid-order linear combiner.

The triangular array on the top rotates u;-k and \/Td)il_/% into
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<I>l-l"2 and zero. The triangular array on the bottom rotates

qlxd):s{z and zero to yield <I>l~“*ﬂ and g,-y_*a(i). The linear
array rotates d*(i) and VA ¢ q:f_l into qf and e;(i)ylm. A moti-
vation for this solution using insights from the theory of
structured matrices is provided in [50].

Therefore, the extended QR algorithm is precisely the
extended information form of the standard Kalman filter;
however this connection could not be established till the RLS
problem was properly recast into a state-space estimation
problem.

Fast Transversal Filter Algorithms

We showed in the previous sections that the RLS adaptive
algorithm, and several of its variants, can be obtained by
setting up a suitable state-space model, viz., model (Eq. 21c),
and by using variations of the state-space estimation algo-
rithm.

Now, the state-space model we set up has a very special
structure: F; = A2 L, G; =0, and R; = 1 are constant, while

u(i)

w(1
()/\
L/

w(2) A

g(i)

Fig. 6. A linear combiner with shift structure in the input channels.

H; = u; is not. The entries of the input vector u; are the values
of M channels at time i (cf. (Eq. 19a)). But it often happens
in practice that the channel inputs are not totally independent.
In fact, they are usually delayed versions of a single input
signal as follows. If we denote the value of the first channel
at time ¢ by u(i) (instead of u, (i) as we did before in (Eq. 19a),
then the input vector at time ; will exhibit a shift structure of
the form
u; = [u@) u@-1) ... u@ —M+1)] (26a)
This has a simple ll)ictorial representation as shown in
Figure 6. The term z~ represents a unit-time delay. The
structure that takes u(i) as an input and provides the inner
M
product Z u(i + 1 = j)w(j) as an output is widely known as a
=1
transversal or as an FIR (finite-impulse response) filter.
The shift structure in v; suggests that we might be able to
get fast RLS algorithms by using the extended Chandrasekhar
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recursions in place of the Riccati-based recursions. In fact this
is true, and many results in the literature can be obtained in a
more transparent (square-root array) form, and many vari-
ations and extensions derived in this way. Consider, for
instance, two successive input vectors u; and u;, q,

w=[u@u@—1) ... ui-M+2)u(i—M+1)]
irl =[G+ D u@) ... u(i =M+ 3)u(i — M+ 2)]

It is clear that the first (M — 1) entries of u; and the last (M -
1) entries of u;, | coincide. Alternatively, w; and u; | can be
related as follows:

wi=wi Z+u(i-M+1D[0...0 1] (26b)
where Z denotes the lower triangular shift matrix with ones
on the first subdiagonal and zeros elsewhere. Multiplying u;, |
by Z from the right corresponds to shifting its entries by one
position to the left. The relation (Eq. 26b) can be simplified
if we consider an alternative, but equivalent, state-space
model instead of (Eq. 21c).

More specifically, we consider the following (N + 1)
—dimensional state-space model (the model in (Eq. 21c) was
M —dimensional):

xiet =27 x;
y(i) = hixi + v(i) (27a)
with
x0= m o= m BV () =By
Al ol
cov(xy) = 0 =AT@0

and where the (N+1)-dimensional row vector h; is defined
as

hy = [u(@) u(i=1) ... u(0) 0]

That is, h; has all the input data from time O up to and
including time i. The remaining entries are filled with zeros.
This is again a special case of (Eq. 11a). It is also evident that
by extending the state with zeros, the product h;x; in (Eq. 27a)
is still equal to the product u;x; in (Eq. 21c). Moreover, the
top M entries of the state-estimate will again provide us with
the weight-estimate. But note now that the h; satisfies

hi=hi Z

which is a simpler relation than (Eq. 26b). It also immediately
implies that the extended state-space model (Eq. 27a) is
structured in the sense that we defined earlier via (17a). We
thus expect to obtain a fast algorithm for state-estimation via
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the Chandrasekhar recursions (Eq. 17b). We shall see that this
is indeed the case.

Returning to (Eq. 27a), if we write down the corresponding
Kalman recursions (Eq. 13) we obtain

Riv1 =27 VA + kirs (D) — hiki)
re(i) = 1 + hiPhi, ki=\"Phi
Pivt =47 Py Pt 7 (P,

with Py = )»_11'10®0. Due to the trailing zeros in Py and h;, it

can be easily verified that the gain vectors k; and

l_(p‘i = kl-rg*/z(i) also have trailing zeros and we express them

el

where ¢; and ¢; are M x 1. The computational complexity of

as

the above algorithm is O(Mz) operations (multiplications and
additions) per time step. However, though time-variant, the
special structure of h;, viz., h; = hi+1Z can be exploited to
reduce the operation count to O(M). This is done by invoking
the Chandrasekhar recursions. To apply the Chandrasekhar
recursions (Eq. 17b),*we first need a factorization of the
difference P| — ZPyZ . So assume P| — ZPyZ turns out to
be of low rank, say o (more on this further ahead), and let us
factor it as

LoSoLo = P — ZRyZ"

where Ly and S are (V + 1) X o and o X o matrices,
respectively. The factor Ly also has trailing zeros and we
partition it in the form

_[To
g
where io is (M + 1)xa. Letalso fli denote a row with the first

M + 1 coefficients of h;. Writing down the extended Chan-
drasekhar recursions (Eq. 17b) for the state-space model (Eq.
27a) we obtain (as anticipated in Table 4) the following

square-root algorithm: start with ’/‘\0 =X,=w, P;= X_IHO,
r;/Z(O) = [l+hOP0h3] 1/2, L, and S, as above, and repeat for i
>0,

Gy Bl i+ l) 0

0 125 ©i= Citl| =
|:Ei:| Y [IO} Livi

where ©; is any J = (1 @ Sp)-unitary matrix that produces the
zero entry on the right hand-side of the above expression.
Moreover,

(27b)
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A A C; 1 A
R =" '/Zx,-+m [20] oo-bdy

These arrays were also derived in [14, 52] by employing
an alternative state-space description with constant coeffi-
cients. However, our point of view enables certain further
deductions. Note that the state-space model (Eq. 27a) is
structured with a very special matrix ‘¥ relating h; and h;, |,
viz., ¥ = Z. But our previous derivation allows for more
general matrices ¥, which need not be restricted to the shift
matrix. Hence, our derivation is equally applicable to more
general structures in the input data, other than the conven-
tional shift structure. This readily allows us to derive faster
recursions even for more general matrices W, which is a clear
manifestation of the generality and strength of the state-space
point of view. Such extensions will be discussed elsewhere.

Normalized Fast Transversal Filters

The computational complexity of each step in (Eq. 27b) is
O(a M), where the value of o depends on the choice of I,
as we further elaborate. Let us first rewrite (Eq. 27b) in terms
of standard RLS variables. We already know that

r2(i) =y (i) and Eiz\%_kgiy_*/z(i). It remains to identify

f]m and f,,-. Recall that l;m denotes a row with the first M +
1 coefficients of h,, |. It follows that

Wit = [u(i+1) ui) u(i=1) ... u(i+2-M) u(i+1-M))

The first M entries of h;,| are precisely those of w;, |, while
its last M entries are those of u;. We can thus partition h;, | in

either of the following two forms:

bis1 =[ wn u(i+1=M) ] = [u(i+1) w) (28)

As for the matrix L;, |, we need to determine L. For this
purpose, we focus now, for simplicity, on the so-called
prewindowed case where it is assumed that no input data is

available prior to and including time i = 0 (other cases can be
found in [52]). That is, u(;) = 0 for i < 0. In this case, we get

ko=A""2Poh) = 0
Therefore, _kpp =0and P, = X_IPO, which leads to
x4 —] _1H00_ HOO_*

It is thus clear that different choices for I lead to different
values for a, the rank of Py — ZPyZ*. A simple choice here is
to let

I = diagonal {7»2’7»3,....7\,M+1 }
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This leads to a rank-two difference matrix,

1
P -7ZPZ = 0

)\‘M
0

which then implies that we can choose (compare with [1, page
600])

10

~ 1
io=|0 o ,SOZI:O 01}
0 AM”2 -

Algorithm: Consider a set of (N+1) data [ui,d(i)}f\’:o , where

the u; are | X M row vectors and the d(i) are scalars assumed
equal to zero for i <0. Consider also an M x 1 column vector
W, an M X M positive-definite matrix,

o = diagonal {12’ 73,..., AMH }

where 0 << A < 1. The solution of the minimization problem

-1 N
min | (w-w) (A Mo] (w3 A -uwr?

w
=0

can be recursively computed as follows: start with W_| =W,
70 = 1By =[u(1) 0],g,=0,

1 0 10
Lo={0 o0 ,SO{O 1}
OkMQ -

and repeat for i > 0

Y0 [uGi+1)

0 . O
i), L;
[gﬂ /Z(z)}

¥ (i+1) 0

) [giHY_*ﬂ(H 1)} VA Livi
0

where ©;is any J = (1 @ Sy) — unitary matrix that produces
the zero entry on the right hand-side of the above expression,
and L; is a two-column matrix. Moreover,

IEEE SIGNAL PROCESSING MAGAZINE 1



wi=wi-1 +[ g0 | [v‘*”(i)}'l [d(i) ~ uiwi-1]

The optimal solution is W = Wy, and the computational
complexity is O(M) per iteration.

The above recursions represent a square-root version of
fast RLS algorithms known as FTF [12] (Fast Transversal
Filter) and FAEST [17] (Fast Aposteriori Error Sequential
Technique). We may proceed to write down an explicit ex-
pression for the rotation ©); ; thus leading to an explicit set of
recursions that relate the different quantities in the arrays. But
a distinctive feature of a square-root formulation as above is
that the rotation matrix ©; need not be explicitly formed and
moreover it can be implemented in a variety of ways, as
explained before. Different choices for ©; correspond to
different procedures for achieving the desired zero pattern in
the postarray. Each choice would then lead to a different
algorithm, The discussion in [52] and [21] [pp. 254-262]is a
vivid example of how explicit rewriting of the recursions can
lead to several variants. We can not pretend here to be able to
detail all the possible implementations of these rotations. But
we instead stress the general theme and the general structure
of our descriptions: we take a prearray of numbers and rotate
it, in one of several possible ways, to obtain a desired pattern
of zeros in the postarray. The same theme will arise again
when we derive the adaptive lattice filters: a general square-
root array is derived, and then several explicit relations are
deduced from the array in later sections, thus leading to other
forms of lattice filters.

Fast Transversal Filters in Explicit Form

To illustrate the procedure, we shall show how to write down
one set of explicit Chandrasekhar recursions by invoking (Eq.
18).

Using the same diagonal matrix Tl as in the previous
section, we introduce the factorization

P - ZRZ = - L{R-HLGY

10 1 [10]T
~_loo|[1 oT 00
00 00

with the identifications (compare with [1 page 600])

ool [
0900 Reo=| 1 0,
o1l Lo 2

In terms of the original RLS variables we can then show
the following.

Algorithm: Consider a set of (N+1) data {w,,d(i) }f-io ,where

the w; are | X M row vectors and the d(i) are scalars assumed
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equal to zero for i <0. Consider also an M X 1 column vector
W, an M X M positive-definite matrix,

Iy = diagonal {?\2,)»3,...,7»,M+1 }

where 0 << A < 1. The solution of the minimization problem

-1 N
min) (w0 | Ao (W T A
w
=0

can be recursively computed as follows: start with
w_ =Wy =L =[u(l) 0].g=0,

o [10] 1 ol
if'=l00], Ro=
lLOlJ "o %‘MJ‘

and repeat for i 20

O (i + 1) u; [T

0 T (u)
_1,. L; Z
gy ()
x| w1 R.;
L S
L -
Y @@+1) 0

- {gmv_l(z’ + 1)} \/fﬁi]
0

0 Ry i+1

where

1

Y= 1= ux(i+ 1
' —R;}L?““{ “ry

u; I

} ~¥G) [ uGi+ 1) wi] L

~t) . )
and Lg ) is a two-column matrix. Moreover,

wi=wi|+ [gﬁ_l(i)] [\(_l(i)]_1 [d(i) — wwi-1]

The optimal solution is W = Wy, and the computational
complexity is O(M) per iteration.

Forward and Backward Prediction Filters; the
Conversion Factor

The Chandrasekhar recursions bring up important and inter-
esting connections with certain forward and backward predic-

tion problems, which we briefly explore here to show how
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some useful facts in recursive least-squares theory (see, e.g.,
[1, p. 573-581].) fall out rather immediately from simple
state-space arguments. [This section may be skipped on a first
reading.].

An interesting point to notice is that the Chandrasekhar
recursions (Eq. 27b) (and more generally (Eq. 17b) are only
functions of the matrices that characterize the state-space
description, viz., {F;,G;,H;,Lg, IT; .}. They do not depend on
the observed data, which appear only in the update equation
for the state-estimate, e.g., (Eq. 27c). This means that if we
have two state-space models with the same matrices
{F;,G;,H;,Lg, Iy}, but with different state-vectors and ob-
served data, then the same Chandrasekhar recursions can be
used to propagate the quantities needed to update the state-es-
timates for both models.

This motivates us to introduce two prediction problems
(the terminology of forward and backward prediction prob-
lems is further explored in a later section.). Assume we are
interested in solving the following minimization problem
(compare with (Eq. 19b))

-1

(whe = who)" [N D1 | whe - o
min N

whe + 3 A i + 1) ~ wiwh?
i=0 (292)

where, comparing with (Eq. 19b), we have replaced d(i) by
u(i+1). The resulting solution, WJM‘N, will provide us with an
Mth order forward predictor for u(N + 1) in the sense that
“waM,N will serve as an estimate for u(N + 1) in terms of the

last M inputs {u(N), u(N - 1) ..., u(N—M + 1) that are present
in up. The exact same arguments as in earlier sections will
then show that this problem can be solved by considering the
following auxiliary state-space model

=7

u(i+1) .

LALLED S N

) (29b)
with

xb= HM} Xo {Wﬂ L ES (v () =8,

-1
cov(xé)=PL Mo 0}
L oo

which has the same structure as the model we set up earlier
in (Eq. 27a). The update of the state-estimate then leads to a

time-update for the forward predictor vector: w];d No1™
w{w‘N, and to the apriori forward prediction error at time (N

+1), [u(N +1)— uNwﬁ‘,,N_l](i.e., based on the data up to time
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(N —1)). This can also be converted to the aposteriori predic-
tion error [u(N +1)- uNwﬁL N:' via the conversion factor

r;f (), which we shall denote by YR,(N) (this is to be consistent
with later notation — the superscript £ will in fact be dropped
shortly).

Similarly, we can set up a backward prediction problem of
order M by solving the minimization problem

-1
(whe—hay" [0 |

(Wht—Whi)

min N
g .
A + 3 A i - M) - wwhe?
i=0 (30a)

where, comparing with (Eq. 19b), we have replaced d(i) by
u(i — M). The resulting solution, WﬁLN , will provide us with
an M" order backward predictor for u(i — M), in the sense that
ul-w,[f,,‘N will serve as an estimate for u(N — M) in terms of the
future M inputs {u(N), u(N - 1),..., u(N — M + 1) } that are

present in uy. This can also be solved by considering the
following auxiliary state-space model

x = A b
u(i — M)

o = hix? +2(0)

(30b)

with

X6 = [wk'[:l X0 = [W”{":| , Evb(i)V*b(f) =3y,

0 0

—1 ‘|

cov(xB) = Irk Ho? B
0 0]

which again has the same structure as the model we set up earlier
in (Eq. 27a) as well as in (Eq. 29b). The update of the state-esti-
mate then leads to a time-update for the backward predictor

VECtor: w,lf,,‘ ol wﬁ,,. ~ »andtothe apriori backward prediction

error at time N, | u(N — M) — uNwﬁ,, ~N—1 | (e, based on the data
up to time (N — 1)). This can also be converted to the aposteriori
prediction error[u(N -M) - uNwl,Z4 N] via the conversion factor

7,P(N), which we shall denote by ¥2,(N) (the superscript ® will
also be dropped shortly).

But note that the values of the Riccati variables and the
innovation covariances for both state-space models (Eq. 29b)
and (Eq. 30b) are identical, since the h; and the initial condition
2! T are the same. Therefore, the same Chandrasekhar recur-
sions can be used to propagate the gain matrices that are neces-
sary for the time-update of the prediction vectors. Consequently,
the gain vectors in the following updates are the same, say Sun
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wWhin = Whinot + guw | uV + 1) — uvwhenot
whin = WHN-1 + M| u(N — M) — UNW%LN—I

These two equations are often written at different time in-
stants as (see, e.g., [1, p. 573, p.576])

WhN-1 = WhN—2 + gMN-t [u(N) - llelw)ltM,N—Z]
w;lil,N = wf’u,zv_1 + gMN [u(N—M) - uNW}l(/!,N—lJ

Moreover, the conversion factors for both the forward and the
backward prediction problems coincide since /:(N) = rf(N).
Hence,

u(N+1)—I-IN“J}£W,N= u(N-—M)—uNwﬁl,N
N+ 1)~ Whin-1 (N — M) — unwhraoi

or, equivalently,

Ta(N) = V) (31)
We can, therefore, drop the superscripts fand b from the conver-
sion factors and just write Y,(N). These are important relations
in recursive least-squares theory (see, e.g., [1, p. 580 — 581]).

Different Classes of Order-Recursive
Adaptive Algorithms

The adaptive algorithms derived so far are fixed-order solu-
tions of (Eq. 19b) in the sense that they recursively evaluate
weight estimates w; that correspond to a fixed-order com-
biner, say of order M. In other words, the size of w, and of its
successive estimates w;, was fixed and equal to M all through
the recursions. From now on we shall be dealing with weight-
vectors of varying dimensions. We shall therefore write w,,
instead of w to indicate a weight vector of size M x 1, and we
shall write w,, ; instead of w; to indicate an estimate at time ¢
of the weight vector w, of size M. Apart from these notational
inconveniences, the central theme will still prevail. We shall
also assume here, for simplicity and ease of exposition, that
the weighting matrix Il in (Eq. 19b) is very large, i.e.,
IMy— oI . This simplifies (Eq. 19b) to

N
min z ANy — wiwl?
W =0

But we shall later include finite T weighting factors into the
minimization of the resulting forward and backward predic-
tion problems.

So assume that we wish to increase the filter order, say
from M to M + 1, while still processing only the original (N+1)

data {u;, d(i)}f-io . In other words, suppose that instead of
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solving

N
| S Al g
i=0 (32a)
with
up,i=[u@) w(i—1) ... u(i—M+1)]
we are now interested in solving
[~
wopet| 2 A1) — wpg w1
i=0 (32b)
with

upr+1i = [u@) w(i—1) ... u(i—M+1)uli-M)]

Let wy, yand Wy, ydenote the corresponding solutions. The
adaptive algorithms of the previous sections give an explicit
recursive (or time-update) relation between wy, yand Wy v .
We are now interested in a recursive (or order-update) relation
between Wy, y and Wy |y

The first M components of w,,, ; 5 seem to have no simple
relation to wy, . But there is an alternative to the FIR imple-
mentation of Figure 6 that allows us to easily carryover the
information from previous computations for the order M
filter. This is the so-called lattice filter, which is based on the
following idea. Suppose that our interest in solving (Eq. 32a)
is not to explicitly determine the weight estimate w,, y, but
rather to determine estimates for the reference signals {d(-)},
say

QM(N) = upmM NWM N = estimate of d(N) of orderM
Likewise, for the higher-order problem,

QMH(N) = Up+1 NWM+ 1N = estimate of d(N) of orderM + 1

The lattice solution allows us to update E?M(N) to QMH(N)

without explicitly computing the weight estimates w,, » and
W,s,1 n- This is achieved by orthogonalizing the input data as
we explain in the next section.

Joint Process Estimation and Prediction Problems

The major step here is to note that, for all i, the input vectors
u,,; and u,,, , ; have the same first M entries. We shall now
argue that this observation allows us to reduce the minimiza-
tion of (Eq. 32a) to the equivalent problem of solving two
first-order least-squares minimization problems of the type
depicted earlier in Figure 3, and for which the special case of
(Eq. 12b) is immediately applicable.

There is no loss of generality in our argument here if we
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focus on particular values for M and A, say M =3 and A = 1,
since our purpose in this section is to motivate the need for
forward and backward residuals in simple terms. We shall
then proceed to show in the next two sections how to embed
the problem of updating these residuals into the state-space
framework; thus deriving several variants of the correspond-
ing lattice algorithms.

So assume we want to solve the following problem: mini-
mize over wy the cost function (the data {u(-)} is assumed to
be zero prior to the initial time instant i = 0, viz., u(i) = 0 for
i<0)

2
do] [u©® 0 0
wi(1)
b |_july w0 )
; : : : (3
ANy | | u(N) w(N — 1) u(N - 2) #a6) 2 (33)

As explained above, we shall denote the optimal solution by
w3 . The subscript y, indicates that it is an estimate based on
the data u(-) up to time N. Determining w; y corresponds to
determining the entries of a 3-dimensional weight vector so
as to approximate the column vector dy, by the linear combi-
nation Usw;  in the least-squares sense (Eq. 33a) where Uy
is the matrix multiplying w5 in (33a). We thus say that
expression (Eq. 33a) defines a third-order estimator for the
reference sequence {d(-)}. The resulting aposteriori estima-
tion errors will be denoted by

e30)] [do] [u© 0 1
e3(1) |_| d(1y |_| u(1) u(0) Xiﬁzi
eV | | dN) u@’) u(N - D uN - 7|2

where &5(i) denotes the aposteriori estimation error in estimat-
ing d(i) from a linear combination of the 3 most recent inputs,

3(i) =d(i) — w3 iwW3 N

Let ?13 = [83(0)...83(1\1)]Tand recall from the discussion,
prior to expression (8¢) that the aposteriori residual vector
53 has to be orthogonal to the data matrix Us, viz., U;a3 =0.

We also know that the optimal solution ws » provides an
estimate U, w5 , that is the closest element in the range space
of Uj to the column vector d .

Now assume that we wish to solve the next-higher order
problem, viz., of order M = 4: minimize over w, the cost
function

d(0) u(0) 0 0 0 wa(l)
any | [ w0 0o
dv-1) u(]\;—l)u(l\}—Z) u(/\;—3) u(N.—4) w4(3)
d(N) UN) u(N=1) u(N=2) u(N=3) | L ,
(33b)
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This statement is very close to (Eq. 33a) except for an extra
column in the data matrix U, that multiplies w: the first three
columns of U, coincide with those of Uz, while the last
column of U, contains the extra new data that are needed for
a fourth-order estimator,

0
0
Us=|Us ...
u(N —4)
u(N - 3)

The problem in (Eq. 33b) requires us to linearly combine
the four columns of U, in order to compute the fourth-order
estimates of {d(0), d(1),...,d(N)}. In other words, it requires
us to determine the closest element in the range space of
Uy to the same column vector dy. We already know what
is the closest element to d in the range of Us, which is a
submatrix of U,. This suggests that we should try to de-
compose the range space of U, into two orthogonal sub-
spaces, Viz.,

Range(Us) = RanggU3)® Rangem)

where m is a column vector that is orthogonal to Us,
Ugm = 0. The notation Range (U3) © Range(m) also means

that every element in the range space of U, can be expressed
as a linear combination of the columns of U; and m.

But this decomposition can be easily accomplished by
projecting the last column of U, onto the range space of its
first three columns and keeping the residual vector as m. This
is precisely a Gram-Schmidt orthogonalization step and it is
equivalent to the following minimization problem: minimize

over Wg
2
0 w©0 0 0
0 wWl) wO o |[wh)
T : w(2)
WIN= L w(N-1) uN-2) uN=3) | | wh(3)
UN=D| | wNy uN-1) u(N-2) 2 (34a)

This is also a special case of (Eq. 32a) where we have
replaced the sequence {d(0),...,d(N)} by {0,0,0,u(0), ....u(N -
4), u(N - 3)}. We shall denote the optimal solution by Wg,N .
The subscript N indicates that it is an estimate based on the
data u(-) up to time N. Determining wg‘N corresponds to
determining the entries of a 3-dimensional weight vector so
as to approximate the last column of U, by a linear combina-
tion of the columns of Us, viz., U3wl3’, 5 - in the least-squares

sense. Note that the entries in every row of the data matrix Uy
are the three ‘‘future’’ values corresponding to the entry in
the last column of U,. Hence, the last element of the above
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linear combination serves as a backward prediction of u(N -
3)in terms of {u(N),u(N - 1),u(N - 2)}. A similar remark holds
for the other entries. The superscript b stands for backward.
We thus say that expression (Eq. 34a) defines a third-order
backward prediction problem. The resulting backward apos-
teriori prediction errors will be denoted by

b3(0) 0 u(0) 0 0 ,
b3(1) 0 w(ly w0 O win(l)
e N o R R N A R T
by(N-1) | [UN=4)| | w(N-1) u(N-2)u(N-3) wh N (3)

b3(N) u(N-3) u(N) u(N—1)u(N-2)

where b(i) denotes the aposteriori backward prediction error
in estimating u(i - 3) from a linear combination of the future
3 inputs,

b3(i) = u(i — 3) — w3, Whn

Letbs =[b3(0)...bs (N)]T and recall from the discussion
in Section 3.2, prior to expression (Eq. 8c), that the
aposteriori backward residual vector by has to be or-
thogonal to the data matrix U;, U3by=0, which thus
implies that it can be chosen as the m column that we
mentioned earlier, viz.,

Range(U4) =ranggUs) @ Range(b3) (34b)

Our original motivation for introducing the aposteriori
backward residual vector b; was the desire to solve the
fourth-order problem (Eq. 33b), not afresh, but in a way so as
to exploit the solution of lower order; thus leading to an
order-recursive algorithm. -

Assume we have available dy and bs, which are both
orthogonal to U;. Knowing that by leads to an orthogonal
decomposition of the range of Uy as in (Eq. 34b), then
updating d; into a fourth-order aposteriori residual vector d,,
which has to be orthogonal to Uy, simply corresponds to
projecting the vector dy onto the vector bj.

_Toclarify this, assume we pose the problem of projecting
d; onto b, which is equivalent to asking for a scalar coeffi-

cient @5 so as to minimize

lids — @3bsli3

This is clearly a standard least-squares problem (recall Eq.
12¢). The optimal solution for the scalar ¢, is given by
1 e~
" bids.
b3b3
~ A
Let x denote the resulting residual vector: x = dy — @3b;. It is

A
¢3=

clearly orthogonal to bs. The claim is that x can be taken as &4.
To verify this we need to show that x is orthogonal to Uy, viz.,

UZX =0, or equivalently,
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00 . i'"(N-dHu"(N-3)

Now sz is clearly zero since x is a linear combination of
d; and b; and both vectors are orthogonal to Us. As for the

coumn [0 O ... u(N—4) u(N - 3)]T, it is also orthogonal
to x because it is in the range space of U, and, consequently,
it can be expressed as a linear combination of b; and the
columns of Uy. The vector X is orthogonal to both by and Uj.

We thus know how to update d; into dy by projecting d,

onto b;. To proceed with this order update procedure, we need
to know how to order-update the backward residual vector as
well. That is, we need to know how to go from b to by. This
can be determined by following similar arguments, which
motivates us to introduce the forward prediction problem:

minimize over w’; the cost function

2
o | o 0|0
i E : wh(2)
uerl)| Ly uv - DN =2 [ |

As explained before, we shall denote the optimal solution by
w’; ~ - The subscript  indicates that it is an estimate based on

the data u(-) up to time N. Determining w’; N corresponds to

determining the entries of a 3-dimensional weight vector so
as to approximate the column vector

u(l)
u(2)

u(N.+ 1

by a linear combination of the columns of U, viz.,
U3w’; - Note that the entries of the successive rows of the

data matrix Uj are the past three inputs relative to the
corresponding entries of the column vector. Hence, the last
element of the linear combination U3w§N serves as a
forward prediction of u(N + 1) in terms of {u(N), u(N - 1),
u(N - 2)}. A similar remark holds for the other entries. The
superscript f stands for forward. We thus say that expres-
sion (Eq. 35a) defines a third-order forward prediction
problem. The resulting aposteriori forward prediction er-
rors will be denoted by

AW ] Tun ] w0 0 0 Trp,
H@ o) w2 | _|uD) w© 0 :ZZ;
SOD] 1D | 1) un-2) | [4G)

where f3(7) denotes the aposteriori forward prediction error in
estimating u(i) from a linear combination of the past 3 inputs,
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F3) = u(@) — w3 why

Now assume that we wish to solve the next-higher order
problem, viz., of order M = 4: minimize over WZ the cost

function
7 2
u(1) w©® 0 0o o ||waD)
w2 | |u) w0 0 0 ||
: : H : E “}2(3)
u(N+1) u(N)u(N—l)u(N—Z)u(N—3) w£(4) ,
(35b)

We again observe that this statement is very close to (Eq. 35a)
except for an extra column in the data matrix Uy, in precisely
the same way as happened with d, and b;. We can thus obtain

f, by projecting f; onto b; and taking the residual vector as
f,.

min If3 — n3b3li3
ns

This is clearly a standard least-squares problem. The optimal
solution for the scalar 14 is given by

M3 = % b3f3
b3bs

andfy=1£; - ﬁ3b3 Also, using the orthogonality condition we

can easily relate the norm of the resulting error vector f, to
that of the previous error vector f5. Indeed,

413 = £38 = f41f3 — N3bs]

= f; f; sincefy is orthogonalto by
A

f3f; — n3f3b,

IE5b, 1
b1

1513 —
(36a)

. A .
where in the last equality we used the expression for 13. It is
thus clear that the forward residual error decreases in norm
with increasing prediction orders. Similarly, the backward

residual vector b; can be updated to b, by projecting b; onto
f3,

min b3 ~ E3f313

&
and we get
ko 2
bl = i3 — 12203!
1if313 (36b)
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Two First-Order Linear Combiners

We argued in the previous section that if we are given the
forward and backward residual vectors f3 and bs, then the
higher-order forward residual f, can be obtained by simply
setting up a first-order least-squares problem, viz., by project-
ing f5 onto bs. This is equivalent to saying: use the entries of
the forward vector f3 as reference signals and the entries of
the backward vector by as input signals in a first-order com-
biner, as anticipated earlier in Figure 3. The diagram is
repeated in Figure 7 with the appropriate signals.

Likewise, the backward residual vector by can be updated
to b, by simply projecting b onto f5. This is again equivalent
to the following. Use the entries of the backward vector b; as
reference signals and the entries of the forward vector f; as
input signals in a first-order combiner, as we also anticipated
in Figure 3. The diagram is again repeated in Figure 8 with
the appropriate signals, where we have denoted the scalar
weights in Figures 7 and 8 by 15 and &;, respectively. It is

also clear from the definition of the residual vectors f; and by
that, in the general case, the initial conditions should be:

u(1) u(0)
fo=| “P | b=\ D
u(N+1) u(N)

That is, fo(7) = by(7) = u(j) for all j = 0.

The following statement summarizes the discussion so far,
but for general values of M, N and A. [We shall concentrate,
for the time being, on the fundamental problem of updating
the forward and backward residuals. The update of the esti-
mation residuals {g,,(-)} follows immediately and will be

considered later.] .

Theorem: Consider a set of data points {u(i)} {10 and letuyy;

denote an M x 1 row vector of the form
upi=[u(@) u@—1)...u(i-M+1)]

Define the aposteriori forward residual vector of order M

fu(1) u(1) w0
fy=| M2 W) e gp
fM(N +1) u(]\".+1) uMN

where “fM,N is the optimal solution of the minimization

problem (recall the definition of the weighting matrix A}V/Z in
(Eq. 19d))

min IIAK? [uf - UMw'fuJ 3
wh
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. B(2) 1)

.. by(1) b,(0) [ | Vs

= M [ 142) 1.(1)

N

Fig. 7. A first-order linear combiner: updating the forward residual
errors.

o E@) (1) {5

--b,(1) by(0)

Fig. 8.A first-order linear combiner: updating the backward resid-
ual errors.

where u” = [u(1) u(2)...u(n+1)]T
Define also the aposteriori backward residual vector of order
M as

bm(0) 0 upM,0

by =

o

N =1y | = ¥ = M= 1) |~ | mpane
bm(N) u(N-M) umMN

where wi,, N Is the optimal solution of the minimization

problem

min IIA/IV/2 [ub - UMW]bv[:I II%
Wit

where u” = [0 ... u (N-M-1) u(N-M)] T

Then the residual vectors can be order-updated by solving the

Sollowing two first-order least-squares problems.
A

frrr1 =t —Mambas, baser =bpyr— ngM (37a)

where ﬁ M and éM are optimal solutions of the following:

The initial conditions are fy(j) = by()) = u(j) for all j.

More generally, we may replace (Eq. 37b) by the minimi-
zation criteria (with u > 0)

[ ¥+ D) 3 o
min as = nadl” + 3 AN G + 1) - b ()
MM L =0 (38
min —X(NH) = 2 il N-j 2
en| 1Ear—Eml” + Y AN 1ban(s) — Engfnn(i + 1)

L =0
(38b)

where we have added a positive weighting factor u and initial
guesses ﬁM and EM. The resulting N, and éM are then used
to update the residuals in (Eq. 37a). It is often the case, though,
that 1y, = &,,=0, which will be assumed hereafter, without

loss of generality. Also, W is often chosen as a very large
positive number, which reduces (Eq. 38a) and (Eq. 38b) to
(Eq. 37¢).

Two First-Order State-Space Models

The result stated in the previous theorem reduces the problem
of order-updating the prediction residuals to the solution of
two first-order least-squares problems: in one case the for-
ward residuals are used as the reference signals and the
backward residuals are used as input signals, while in the
other case the roles of the residuals are reversed.

This fits nicely into the setting anticipated earlier in Eq.
12b. Indeed, we can set up two first-order state-space models
that correspond to the solution of the above order-update
problems (Eq. 38a) and (Eq. 38b), in exactly the same way
that we argued for Eq. 12b.

Define the state-variables

.MM . _ &M
1Oy 0T Gy

as well as the normalized signals

oM (i)
yi€i) 5 » (i) Wy

Then the appropriate models are

N
min Y AN GG + 1) - nasbaa ()i G+ D=A"206)  xai+ 1) =1 o)
™o Y1) = bp(Dx1(@) + vi(d), y2(i) = faur(i + Dxa(i)+ va(i)
N (39
s 1 X = X = = _l =
min z AN lbwtGi— 1) — Engfiti + 1)|2 with x,(0) =x,(0) *0, cov(x;(0)) =A™ 'p = cov(x,(0)), and
Em =0 (37b)  Evi(v () = Evy(i)vy(j) = Sij-
If we now proceed to write down the different variants of
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the Kalman recursions that correspond to the above two
state-space estimation problems, and then translate the vari-
ables to the corresponding quantities in the least-squares
setting, we get different variants of adaptive lattice filters. The
argument follows precisely what we did earlier. For this
reason, we shall try to be brief.

QR-Decomposition-Based Least-Squares Lattice
(QRD-LSL) Filters

We start by writing down the extended square-root informa-
tion form that corresponds to each of the first-order state-
space models in (Eq. 39), thus leading to extended QR arrays
in exactly the same manner as we did earlier in Eq. 25a. The
resulting square-root arrays turn out to be central to the
derivation of different variants of adaptive lattice algorithms.
Indeed, we shall see in the next three sections that other lattice
versions discussed in the literature can be regarded as alter-
native rewritings of these square-root arrays. [This should
come as no surprise since the arrays correspond to the ex-
tended square-root information filter form, and this form is
clearly equivalent to the other variants of the Kalman filter —
more on this further ahead.]

To begin with, the two-column array for the order-update
of the forward residuals is (apart from the notational differ-
ences, this is a specialization, for the time instant i = N and to
the scalar case, of the array (Eq. 25a) that we wrote earlier for
a general least-squares problem)

VADAN-1) b
VRgH(N=1)  fuN+1)
@bM,N
0 1
1 abn,
_ oM WN-D 0 |
LAY 0
. N+ 1
aM(Ny f*M—H/E +D
YM+1(N)

bu(NY®R*(N) AN

o2y - v

(40a)

where we have defined the scalar ‘‘covariance’” and “‘cross-
covariance’’ quantities (cf. (Eq. 20a))

N
BN) = AU+ Ao, D1y =
i=0
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N
TNy = 3 Kb fuGi+1), sii-1) =0
i=0

shiv)

b _ =1y =0
qm(N) PN gm(=1)

and g Z,,(N) denotes the normalized gain gﬁ,,(N)y;ﬁ (N).
The second entry of the second row of the postarray is denoted
by f;‘w H(N+1)y;ﬁ(N). We recall from (Eq. 25a) that it should

be the product of an apriori error and the square-root of the
conversion factor or, equivalently, the product of an aposteriori
error and the inverse of the square-root of the conversion factor.
We have used this second interpretation to write

fL +1(N+1)y;;ﬁ (N) since f;:,, +1(N+1) denotes the aposteriori er-
ror. Also, the term v,,, (V) is used to denote the conversion

factor of order (M + 1), whose inverse converts the aposteriori
forward residual fy,, | (N+1), of order (M + 1) and at time (N+1),

to the corresponding apriori forward residual, say

Ul (N + Dyt (N) = fu+1 (N + 1) (40b)

We could have clearly written (xx,, +[(N+1)y/1w/i1(N) instead

of j;,, 41 (N+] )y;;fl (N). This would have allowed us to express

the recursion in terms of apriori residuals rather than aposte-
riori residuals, and vice-versa. This explains the origin of
existing variants of lattice algorithms that work either with
apriori or aposteriori errors (or combination of both). It is a
matter of choice. Two explicit examples to this effect are
considered in the next two sections.

Correspondingly, the two-column array for the order-up-
date of the backward residuals is

I VADIF(N) f*M(N+1)7

VAGHN)  B(N)

Ohr+1
0 1
'\lﬁ o) 0 |
_ WV + 1) 0 _
GV D) bari(N+ 1)

VAN

fu(N + DORAN+ 1) AN+ 1)

O (N) —ghN+ 1)
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where we have defined the scalar “‘covariance’” and ‘‘cross-
covariance’” quantities (cf. (Eq. 20a))

N+1

Dhv+ 1) = A3 AN Gy, Dha(0) =

=l

N+1
SN+ 1) = 3 A TG - 1), sha(0) = 0
J=1

N+ 1)
MN+1) = ———, gu(0)=0
@ off N+ 1) s
and §£,,(N+l) denotes the normalized gain

SN+ VG + 1),
Also, the term Y, {(NV+1) is used to denote the conversion

factor, whose inverse converts the aposteriori backward re-
sidual by, (N + 1), of order M + 1 and at time (N+1), to the

corresponding apriori backward residual, say (recall (31))

Bt t(N + 1)y 1N+ 1) = bys1(N + 1).

The normalized residuals fy, (N + 1)¥y;(N) and
By (N + )Y, 3(N + 1) are often called angle-normalized
residuals and will be denoted by }L+](N+]) and

5;4 +1(N + 1), respectively. A justification follows by observ-

ing that, in the case of real data, the 2 X 2 rotation matrices
can be expressed in terms of sine and cosine parameters, say

b cs
GM’A’ ) [ }
-sc

Then the third line of the array (Eq. 40a) shows that the
square-root of y,. | (V) is equal to the cosine parameter.

It is also straightforward to see that we can rewrite the
above arrays so as to propagate the angle-normalized residu-
als instead of the aposteriori residuals themselves. This is a
matter of convenience as we readily check. Define the diago-
nal matrix of conversion factors,

T'u = diagonal {yp(0),yar(1),... 50}

and the vectors of forward and backward apriori prediction
errors, respectively,

1 M M

then £,,=T",0,, and by, =T7,B,,. Thus projecting f;, onto
by, is equivalent to projecting I';,0,, onto I'y,B,,, viz.,

minllAN(fa7 — Niarbaa)li3 = minl AN Tar(oas — nasBanli3
(41a)

We can therefore introduce the following equivalent state-
space models, which are essentially identical to (Eq. 39) but
use the apriori residuals instead,

i+ 1) =10
y2i) = o + Dxa(i) + vali)

x1G+ D=2 "2x00),
y1(8) = Bam(i)x1(8) + v1(i),

(42)
with
s_omi+ D) B
y1() o » y200) Wy

cov (x,(0)) :K_luzcov(xz(O)) no and (recall our earlier
remark prior to expression (Eq. 16b)

EviViG) = Eva(v3() = (i)

Writing down the extended square-root information filters
for each of the above models will then lead us to a square-root
version of the so-called QRD-LSL algorithm (compare with
[1, p. 664], [22, p. 1158] and [19] — we are, for the time being
and for simplicity, ignoring the joint process estimation part.
This is discussed further ahead where we show that it simply
corresponds to adding one more line to the arrays). It should
also be clear that not all the lines of the two arrays are really
necessary to order-update the prediction residuals. They are
nevertheless kept for completeness. For example, the last line
in each of the arrays given below are not explicitly used in the
description of the QRD-LSL in [1]. Also, although we are
exhibiting the arrays in terms of angle-normalized quantities,
they can as well be written in terms of unnormalized quanti-
ties as in (Eq. 40a). In other words, apriori or aposteriori
prediction errors can also be used by appropriately modifying
the arrays.

Algorithm: The solutions of the minimization criteria (Eq.
38a) and (Eq. 38b), along with the order update relation (Eq.
37a) for the forward and backward residual errors, can be
recursively updated as follows: with

E)%Z(—l) = 5{\{!2(0) = \/L—u,f—lk,;(—l) =0= :A,,(O), (W is usually a

start

oar(1) Bum(0) large positive number). For each time instant N = 0 do:
o = ; , Bu=| Set fo(N) = bo(N) = w(N) and yo(N) =1,
am(N+1) Bar(N) repeat for each order M = 0,1,2,..., Max -1,
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CEBRN-1) B

WGHWN -1 fuN+1)

T
0 Vi (V)
| =_spn2
—P N-1 0
L\[x M ( ) |
@ iAW) 0

| aM™ s+ D
bu(N® 1”°(N) W)

Ny
RB R0 TN+ D)
VRGN BN |
@fM,N+1
0 Y(N)
1=
_\/f M (N) 0 |
SR2N+ 1) 0
FHN+1) bari(N+1)

N+ DB N+ 1) YR+ 1)
@3N+ 1) —“FMN+1)

(@ JN.BYWN), 55,

E{V,(N),a ﬁ,,(N), (_]J;M(N)} are defined as before except with

angle-normalized residuals. The unitary matrices 62,1 N and

where the quantities

aM,NH can be determined by the requirement that the (1,2)

entries in the corresponding postarrays must be zero.

Least-Squares Lattice (LSL) Filters Using
Aposteriori Residuals

Let us now elaborate on our earlier claim that the arrays of the
above algorithm are indeed central to the derivation of other
variants of adaptive lattice algorithms. That is, we shall verify
that by expanding the above arrays we get different lattice
versions. But we shall also later show, and in order to be
consistent with the spirit of our formulation, how to get these
other lattice versions by invoking the other forms of the
Kalman recursions, other than the extended square-root infor-
mation form that we used to derive the prior algorithm .

To obtain an explicit set of equations for the least-squares
lattice algorithm that uses aposteriori residuals, we simply
compare (some of the terms) on both sides of the the arrays
of the above algorithm, by squaring, as we did, fore.g., in the
derivation of the square-root Kalman filter. This first leads to
the following expressions in terms of angle-normalized re-
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siduals:

BN+ 1) = ADA(N) + Fur(N + DI
SN + 1) = 5 3a(N) +F (N + 1B m(N)

BNy (v
=B wst (V+HDWE (VDN + DB FNVHDS AN + 1)
2
YN + 1) = yp(N) — lﬁflf(Ni‘*‘l)’
O -p(N+1) (@3a)

and

D (V) = AD 5N - 1) + BN
5 3V = X5 BV = 1rbis(N) 7 (N 1)
TN DN =Fatet(N + DYEEIN) + ba(N)® 2 (V) §a(N)

lbm(N)) 2

Ym+l(N)=YM(N)_ EX,I(N)

(43b)

If we now replace fj(N+ DYI2(N) by fi(N+1) and

Bppt (N + 1YY (N + 1) by by, (N + 1) we get the following

so-called LSL algorithm using aposteriori errors, (e.g., [22]
and [1], p. 619]).

Algorithm: The solutions of the minimization criteria (Eq.
38a)and (Eq. 38b), along with the order update relation (Eq.
37a) for the forward and backward residual errors, can be
recursively updated as follows: start with

) ZZ(—I) = 5{&2(0) = \]ﬂ (W is usually a large positive num-

ber), andgﬁ,,(()) = 0. For each time instant N > Q do:

Set fo(N) = bo(N) = u(N) and yo(N) = 1,
repeat for each order M =0,1,2,... Max — 1,

2
BN + 1) = 1D M(N) + Ya N+
Ym(N)
2
B 5N = AB Gy — 1) + LM
YM(N)
ShN + 1) = Ashe(N) + fM—(A:er();)M(M =SHN) =S N+ 1)

PN+ 1) = (N + 1) + ba(NRh i (N + 1)
Bagst(N + 1) = bat(N) + fu(N + Dk 1 (N + 1)

k{v1+1(N+ l):_EM
D 1(N)

Ky 1 (N + ]):_%“Ll)
Dy(N+1)
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Ibp(N)1?

Ym+1(N) = Ym(N) - B bW

It is worth pointing out that, for L — o, the expressions for
6’;4(N) and an(N + 1) can be interpreted as weighted ener-

gies of the backward and forward residuals, respectively. It
thus immediately follows from (Eq. 36a) and (Eq. 36b) that
they satisfy the following simple order-update relations:

Is bvy?

SN+ 1) =DhN+ 1) - .
D@ M(N)

(44)
Ish (N+ 1)
@}, (N+1)
These can then be used to order-update (rather than time-up-
date) the residual energies in the above algorithm, which
coincides with the form given in [1, p. 619], for instance.
The above lattice algorithm could have also been immedi-
ately obtained from a state-space point of view as follows:
instead of applying the square-root information filter to the
auxiliary models (Eq. 42), we simply write down the explicit
information filter (Kalman filter). For example, the update
expression for the inverse of the Riccati variable leads to the

afn+l = EZI(N ) -

time-update recursions for 5{”(N + 1) and @ ZI(N) as shown

in the statement of the prior algorithm above, since we already
know that the inverse of the Riccati variable corresponds,
apart from scaling, to the “‘covariance’’ matrix in the least-
squares setting (recall the correspondences in Table 12).

As for the order-updates for the forward and backward
residuals, these are simply the expressions for the computa-
tion of the the aposteriori errors. Consider, for example,
0y, (N + 1) and the associated state-space model (Eq. 42).

The Information filter provides us with the normalized apriori
error,

re' (Ne(N) = Yu(N) [y1(N) = VABMN)ZI (N + 1)]

In terms of the least-squares variables, the normalized

error r;l(N)e(N) is equal to the aposteriori forward residual

e Spi @V +1) and we get, by invoking the correspon-

Y

dences of Table 12,  that fi, N+ 1=
SN +1) = by (N, y, i.e., we replaced y(N) by
0N + DANAYY and (N + 1) by My, p/ (VAL The esti-
mate of the scalar weight 1, MmN 18 often denoted by the
(negative of the) so-called reflection coefficient k{w N+ 1)

in the statement of the LSL algorithm. Hence, ka WV +1)is
nothing but (apart from the sign) the state-estimate at time
(N+1). Indeed, k]f‘,,+|(N+ 1) is defined as the ratio

Ky (N + 1) = =5 5 (N)/® b (N), which is precisely the solu-
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tion of the normal equations associated with the first-order
least-squares problem that updates the forward residual:

@ 4V [f KV + 1) =5 h) 5)

That is, &, ;(N + 1) is equal to both (VA)™'%,v + 1)

and M, 5 (recall again the correspondences in Table 12).
Moreover, the update for Pi_+ll§i 1 prior to Eq. 14 converts to

the update for the sﬁ,(-) and sﬁ}(-).

Lattice Filters Using Apriori Residuals with Error
Feedback

Therefore, the LSL recursions given above correspond to the
explicit recursions of the Information form. In particular, the
reflection coefficients are computed as the ratio of the *“cross-
covariance’” and the ‘‘covariance’™ quantities, as suggested
by (Eq. 14). But we argued above that the reflection coeffi-
cients are nothing but (apart from the sign) the state-estimates.
Hence, we can alternatively use the Kalman recursions to
recursively update each one of them. For example, instead of

computing k’,fml(N + 1) as the ratio —E@(N)/Eﬁ,uv), we use
the state-estimate update that follows by applying the Kalman
filter to the auxiliary model (Eq. 42). This gives the followin:
equation,
_ Maav+ D)
( ; A IN+1

Khr1(N) 1 fur (V1)
—7\,_1/2 M+ 7[1/2 _ * N‘MH
W m>k4(N—1)BM( LWy

or, more compactly,

Ba(NYaaz+ 1 (N + Dyyprei (V)
ADH(N - 1)

Rhtst (N + 1) = Khga (V) —
(46)

If we now replace vy, ,(N) by

(V)
DR
then the above time-update for the reflection coefficient col-
lapses to the usual expression encountered in the literature

Ym+1(N) = YM(N) -

and given below. A similar update follows for kﬁ,,H(N +1).

Using these updates for the reflection coefficients and rewrit-
ing the previous algorithm in terms of the apriori residuals
leads to the following so-called LSL algorithm with error-
feedback (see, e.g., [1, p. 633]). Again, we can as well rewrite
the expressions in terms of aposteriori errors, thus leading to
a version of the algorithm that uses the aposteriori residuals.
In the previous section we exhibited an example of a lattice
filter that uses the aposteriori errors. We therefore exhibit
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here, for the sake of illustration, an example of a lattice filter
that uses the apriori residuals.

Algorithm: The solutions of the minimization criteria (Eq.
38a) and (Eq. 38b), along with the order update relation (Eq.
37a) for the forward and backward residual errors, can be
recursively updated as follows: start with

k,,(—l)=5fM(O) kffl,,(O) 44 1(©0)=0, (U is usually a

large positive number). For each time instant N 2 0 do:

Set o(N) = Bo(N) = u(N) and Yo(N)=1,
and repeat for each order M =0,1,2,..., Max - 1,

DN + 1) = MDh(N) + (Wlow(N + DI
BN = ABY(N - 1) + (V) Bu ()P

OM1(N + 1) = opg(N + 1) + Bra(NRhs 1 (N)
Bar1(N + 1) = Baa(N) + oV + DRSE1(N)

o (N + 1) = Khga 1 (V) ——_YA;;(—N)BMMOCM+1(N+ 1
BtV + 1 = ) - 20— v DBy + 1)
Dh(N+1)

(V) Bar(V)
YL () = ) — D)
D p(N)

Normalized Least-Squares Lattice (LSL) Filters

The LSL filters considered in the previous two sections
involve the propagation of two reflection coefficients, viz.,

sM(N+l)

Bhn

which can also be time-updated via relations of the form (Eq.
46). However, a normalized version of the recursions of the
prior algorithm involving the propagation of a single reflec-
tion coefficient can also be derived [8].

For this purpose, we employ a proper normalization of the
forward and backward reflection coefficients and define the
normalized reflection coefficient p,,, (N + 1) (we shall jus-

, BN+ 1) =— =

RN+ 1) =—
M+1(N+ 1) (I)MN-}—I)

tify this definition, and the resulting expressions, in terms of
state-space arguments further ahead),

3 P

N+1
5”(N+1)k£4+1( +1)

pM+I(N+ 1) =

Sk

q)ﬁ(NH)

K700

We see that p,, (N+1) is a scaled version of both

Kyra(V + 1)}
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sMN+1)

IJM+1(N+ 1) and kM+1(N+ 1). We also define the ‘‘covari-

ance-"’ or ‘‘energy-’'normalized residuals,
= MN+1) = bu(N)
FMN+1)==7——, DMN)=—
o7 720y

These normalizations allow us to reduce the number of
recursions in the previous algorithm. It will turn out, for

example, that the recursions for the covariances ® iAN) and

{W(N + 1) can be dropped. Note for instance that the order-

update relations (Eq. 44), with the help of (Eq. 45), can be
reexpressed in terms of the normalized reflection coefficient,

By N+ 1) =D, (N + 1) [1 — PV + 1)|2],

@, N+ 1=, ) [1 —Ipay (N + DI }

Also, using the time-updates for either of the reflection coef-
ficients in the prior algorithm we can obtain a time-update for

the normalized coefficient p,, (N + 1). Forexample, starting
with

Kyl (N+ 1) = ka+1(N)~ 1)

Bu(N)opts1(N + 1)
)

and multiplying both sides by the ratio ®5A(NVDLZ(N + 1),
leads to the following sequence of easily verifiable identities,

PM+1(N+ 1)
[
_ M (N) |kf
 Bffvs
=(1-

BMMM(MaM+1(N+1ﬂ|
(V) J

ofr) B
JFN + 1) DRAN-1)

b (N)Iz‘ P 1(N)

—b MN)F (N + 1)

12

= - §
= (1= B uAHE T 7 Pu+1(N) = Bia(N) TN + 1)

1
[1 By M(N)|2:|
We therefore get

PM+I(N+1)= [1 -5 M(M|2]*/2 pm+1(N) [1 - ?M(N)lz]vZ

- B MN)m(N + 1)

which incidentally is the famous Yule’s PARCOR update
formula discussed in [11].

Similary the recursions for the forward and backward
residuals of the algorithm prior to Eq. 44 reduce to recursions
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for the corresponding ‘‘covariance’’-normalized residuals, as
stated below.

Algorithm: The solutions of the minimization criteria (Eq.
38a) and (Eq. 38b), along with the order update relation (Eq.
37a) for the forward and backward residual errors, can be
recursively updated as follows: start with p,(0) =0 , and for
each time instant N 2 0 do:
= u(N) = u
Set fo(N) = :*g—“ , bo(N) = = EZN) ,
of*(v) (V)
repeat for each order M = 0,1,2,..., Max - 1,

pu+1(N+1)

_ 9 */2 = 2 172 =, _
 =[1-BaOP ] patetN) [ 1AtV RN Foa(N+ 1)
fust(N+ 1) B
- [1— |Z_5M(N)|2J -2 F‘M(N+1)+BM(N)pM+|(N+ I )]p;fﬂ(m 1)

M+1 (N + 1) _
= [1-1?M(N+1)12} -2 [EM(N)+7M(N+1)pZ4+1(N+1)]pXi+1(N+1)

where we have defined

‘ 3 12
phrsi(N+ 1) =[ 1~ IparaiV + DF|
Note that the initialization requires apriori knowledge of
the quantities <I_>{)/2(N) and 58/2(N). But recall that 68(1\’) is,

by definition, related to the energy of the input signal up to
time N, viz.,

N
BB =AM L T AN R,
=0

A similar remark holds for the quantity 56/2 (N). The above

algorithm, therefore, needs to be supplied with estimates for
these quantities.

We further remark that the above recursions can also be
interpreted as resulting from state-space estimation algo-
rithms. Indeed, and following similar steps to what we did in
(Eq. 41a), while reducing the original optimization problem
on {fy.,by} to an equivalent optimization problem on

{04y, By}, we can also reduce the optimization problem on
{fs. by} to another equivalent optimization problem on
{T‘M, l—iM}. The estimation equations for the corresponding

state-space models will then lead to the above recursions: the
update for the state-estimate will lead to the recursion for

state-space models that correspond to the ‘‘energy’’-normal-
ized variables {T,;, by,} is that (A times) the associated Riccati

variables at time N + 1 is equal to unity. This is because the
inverses of the Riccati variables are the ‘‘covariances’’ or the

“‘energies’’ of the (normalized) sequences [?M(-)} and

{(By()}.

Other Forms of Lattice Filters

It is clear from the derivation so far that the variety of
algorithms that can be written down is essentially a matter of
taste as well as patience. The central theme though is always
the same: once the recursive least-squares problem has been
collapsed to two smaller first-order problems, then the solu-
tions can be readily obtained by constructing two first-order
auxiliary state-space models and then writing down the dif-
ferent estimation algorithms.

Indeed, the different variants of the Kalman state-space
estimation algorithms lead to different relations among the
variables of the forward and backward prediction problems.
Any properly chosen collection of these relations will then
lead to a valid lattice algorithm. For example, the QRD-LSL
algorithm uses some of the lines in the extended information
array. The LSL filter with aposteriori errors uses the explicit
information filter equations, while the LSL filter with error
feedback uses a combination of the information and the
Kalman filters.

Yet a fourth variant in [20 p. 887] can also be rederived by
choosing an appropriate collection of the rows of the arrays
of the Algorithm stated after (Eq. 42), along with one of the
order-updates in (Eq. 44), as we readily verify. It follows from
the third lines of each of the arrays that the last expressions
in (Eq. 43a) and (Eq. 43b) hold, viz.,

(N + P
N+ 1= -
Yar+1( ) =vM(N) (D;fv;(N+l)
2
Yot () = yaaN) — 22Oy = 1
DN

We thus conclude that the forward and backward residuals
satisfy the following relation

If+1(N + DI b (N + DP
DN+ 1) DN+ 1)

_ N+ D 1o

- b
Pari (N + 1), as was the case with &,,, (N + 1), while the PN +1) DN 47a)
expressions for the innovations lead to the updates for
Tt N+ 1) and By, (N +1). An interesting aspect of the and that
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M 5 12
-3 'b_"(N) !
=~ B

VAN =

It further follows from the second and third lines of the
first array of the algorithm that

SN+ 1) = fage1 (N + 1) + (N Dy 2Ngh() - (47b)
It is then easy to see that expressions (Eq. 47a)-(Eq. 47b) and
(Eq. 44) can be alternatively expressed in the square-root
form,

BN+ g

54
AN+ 1) baN) | EMN

PHAN+1) N

N+ 1) 0

T N+ 1) b (NHD
DN + 1) PFAN+H)

since, by definition, YM(N) <I> (N) (N) Here Zj,:IN is a
unitary rotation that produces the zero entry in the (1,2)
position of the postarray.

We thus obtain the following so-called Hybrid QR/Lattice
least-squares algorithm. The equations are spelled out explic-
itly in order to facilitate the comparison with [20 p. 887].

Algorithm: The solutions of the minimization criteria (Eq.
38a) and (Eq. 38b), along with the order update relation (Eq.
37a) for the forward and backward residual errors, can be
recursively updated as follows: start with

@%z(—l) = 6';/,,2(0) = %H (WL is usually a large positive num-
70(N) = Eo(N) =

ber),  gof=1)=0=gh0), and
YoM = 1.
(1) For M =0,1,2,...Max - 1 do:

[Vagitav = 1) T+ 1) O =] @) T+ 1) |

u(N)

(2) Compute D2 (N + 1),

| VA0 ux(¥) FtasN+1) | Ot =[ @4 1) 0]

(3) For M = Max -1, Max -2,....0 do:
[ @y + 1) @) | Show=[ @M+ 1)0 ]

N+ 1
(4a) Compute @L)'

D2 (N+1)

as (x denotes an irrelevant
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-£5(1) £(0)

b(1) b,0)—=>{ 0,

{3 .. .&,(1) £,(0)

Fig. 9. A first-order linear combiner for joint process estimation.

entry),

[ 0 y}\fax(N) } %mml = M
DN+ 1)

(4b) For M = Max - 1,Max -2,...,0 do:

bum+1(N+1)

MmN +1)  bu(N)
DHAN + 1) ()

o[ v+ )
TM’N [@ﬁ”’wﬂ) OB N+

(5) Compute Yy (N),

12
Max—1

b 2
Wy =| 1~ 3 KN
1o Ok

(6) For M = Max -1,Max - 2,...,0 do:
CVAGE { D) YM-Z+1(N):||:@M,N} -
iAW)

The unitary matrices 62,, yand 6{,, N+1 Gre determined by

the requirement that the (1,2) entries in the corresponding
postarrays must be zero.

Other combinations of equations clearly exist, and the search
for the most appropriate combination is not closed. We do not
attempt to exhaust all the possibilities, but we do stress a central
theme: the existing adaptive schemes have been derived at
different places in the literature and at different times. The varied
aspects of the recursions highlight the varied approaches to the
problem. Each approach ends up with a set of recursions that
very often does not look similar to other available sets. But the
point of view taken in this article shows that the different
adaptive solutions correspond in fact to using different combi-
nations of a group of estimation equations, either in explicit or
square-root forms. The entire group of equations is not needed
per se since it contains more than enough relations. But different
selections of the equations will lead to different algorithms. The
question of which of these different possibilities is the best needs
further exploration; moreover, it can be that what is best depends
on the constraints arising in different situations.
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The Filtering or Joint Process Array

We now return to the estimation of the sequence {d(:)}. We
argued in the section on Joint Process Estimation and Pre-
diction Problems that if we are given the backward residual
vector by and the third-order estimation residual vector ds,

then the higher-order estimation residual vector dy can be

obtained by simply setting up a first-order least-squares prob-
lem: use the entries of the residual vector dy as reference

signals and the entries of the backward vector b as input
signals in a first-order combiner, as we anticipated earlier in
Figure 3. The diagram is repeated in Figure 9 with the appro-
priate signals.

This again fits nicely into the setting anticipated in Eq. 12c.
Indeed, we can set up a first-order state-space model that
corresponds to the solution of the above order-update prob-
lem, in exactly the same way as we argued in the lattice case.
This leads to the following square-root array for joint process
estimation:

Algorithm: Consider the minimization problem

min| AVTY 2 N N—j 2
o Tkle + 3 X lem() — OMbmG)!
=0

where {€,,(j) }jl\io denote the entries of the MY order apos-

teriori residual vector dy,. The angle-normalized aposteriori
residuals [EM(]') = EM(j)yX,}/Z(j)} can be order-updated as
follows: start with 5%2(—1) = \]L_}\ ijf,,(—l) =0, (U is usually
a large positive number). For each time instant N 2 0 do:

Set Bo(N) = u(n), €o(N) = d(N),and Yo(N) = 1.
Repeat for each order M =0,1,2,...Max - 1,

—d _
N .
sy = Y, MW IB(emG) . sh(-1)=0.
=0

and the unitary matrix 6]?,, y is defined by the requirement
that the (1,2) entry in the postarray must be zero.

Note that the above array uses precisely the same rotation
as the first array in the QRD-LSL algorithm. Hence, the
second line in the above array can be included as one more
line in the first array of the algorithm; thus completing the
algorithm to also include the joint-process estimation part.

We can as well expand the above array in order to obtain
an explicit update relation of the form (see e.g., [1, p. 619]),

_d
ene i) =) - 220y
D(N)
) = — 1) + 2 NIEM)
Ym(N)

The Least-Mean Square (LMS) Algorithm

The derivation so far in the paper has been concerned with
exact recursive solutions that minimize the cost function (Eq.
19b). Consider, for simplicity, a specialization of (Eq. 19b)
withw=0Ilp— I, and A =1,
N
miny" ld(i) — wiwl®
Y=o

(48)

which is clearly a quadratic cost function in the unknown w.
The RLS solution propagates successive estimates of w,

wi=Wi-| + g [d(i) —wiwi-1], w-1=0,

. N .
VL ®IAM = 1) biN) , _
using a gain vector g; that is computed in terms of a variable
\ffc;ﬁ( N-1) Efvl( N P; that satisfiezs the Riccati difference equation (Eq. 23). This
O N requires O(M”) operations per iteration.
0 Y}V/{l( N) There is yet another celebrated class of adaptive algo-
rithms that is based on steepest descent ideas (see, e.g., [6]).
_l_aﬁbfz N=1) 0 Tl.le.se algorithms are panigularly appealing due to their sim-
VVT ] plicity and O(M) computational efficiency, albeit at the price
of slower convergence. In them, the weight vector is updated
5%2(1\/) 0 along the direction of the instantaneous gradient of the quad-
_ ;ﬁ ™) ;X/I A0 ratic cost function thus leading to a weight update of the form
ba(N) P T
M(_Nj*bg (N) Ykﬁl ) Wi = Wil + o [d@) — wwi-1], w-1=0 (49)
Dy N)  —gm(N)
where |L is a so-called step-size parameter. This was dubbed
where we have defined by Widrow and Hoff [53] as the LMS (least-mean-square)
algorithm. Though the name is a bit misleading, this is per-
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haps the most widely known and most widely used adaptive
filtering algorithm, and in diverse areas that range from
channel equalization, to spectral estimation, to control theory,
to antenna arrays, and no doubt other areas as well. This is
because of its simplicity and proven robustness to distur-
bances and model errors. No rigorous proof of these good
properties seems to have been found.

In the last decade, in the field of robust control (see, e.g.,
[55, 56]) there has been extensive studies of a different

performance criterion, known as the H™ (or minimax) crite-

rion. Very few exact H solutions are known, so it may be of
additional interest to researchers in adaptive filtering that it
has been recently shown that the LMS algorithm is optimal

under the A" criterion; this was again done by using an
appropriate state-space model [54]. We can not enter into this
topic here, but we may attempt to give the flavor of the results
following the line of reasoning suggested in [57], where
several (local and global) optimality criteria are further estab-
lished for a wide class of gradient-type algorithms.

The argument that follows is intended to show that the
weight estimates provided by the LMS algorithm guarantee
the following bound

2
N0 luw — wwiy |
wliw = w3 + SXolv(i)i?

(50a)

The numerator is the sum of the energies of the residuals
(u;w —ww,_;) over 0<i<N. For each instant i, the difference

LAt

(u;w — u;w,_,) represents the error in estimating u;w by using

u,w;_,. Likewise, the sum in the denominator consists of two

terms: the energy of the noise signal over the same interval of
time and the (weighted) energy of the weight error due to the
initial guess. If we denote by 7 the operator that maps the

disturbances {v(-)}fio and the initial uncertainty

p_m(w - w_,) to the residuals {uw ~ u[w[_l}fio , then the
inequality in (Eq. 50a) states that the 2-induced norm of T is
always bounded by one. This explains the robust behaviour
of the LMS algorithm: it shows that the energy of the residuals
is always guaranteed to be upper bounded by the energy of
the disturbances and the initial uncertainty.

A simple proof of (Eq. 50a) is the following [57]. Assume

we are given noisy measurements { d(i)}ﬁo s
d(i) = wmw + v(i)

and that we are interested in finding a recursive update for the
weight vector w so as to meet a certain optimality criterion.
But let us for the moment ignore any optimality criterion and
Just note the following: if we pick any positive real number pt
50 as to satisfy the inequality
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O<u SL*

uy (50b)
and then choose ar will any vector q as an estimate for the
unknown weight w, then it is always true that the following
inequality holds

lu;w — u,-ql2

<1
wliw — qii3

(50c)

This follows from the condition on p and by noting that
luiw — wigl® = lugw — QI” < lhuiliBitw — gli3.

The quantity in the numerator of (Eq. 50c) is the square of the
error in estimating w;w by using u;q. Likewise, the quantity in
the denominator of (Eq. 50c) is the square of the distance
between the true w and the estimate q.

It is also certainly true that if we increase the denominator

by any positive value, say Iv(i)lz, then the ratio is still bounded
by 1,

lojw — uiql2

<I.
ulw — gl + ()P (50d)

The inequalities (Eq. 50c) and (Eq. 50d) are valid for any
data u, as long as [l satisfies (Eq. 50b). That is, they are valid
for any choice of q. They are thus certainly valid for a q that
is generated by the LMS algorithm (Eq. 49). So if we replace
q by w;_; we also get

[u;w — u,'wi_ll2

wliw = w2 + @) (51a)
One might then wonder in what sense does the LMS recursion
alter (Eq. 51a)? It turns out that it allows us to further tighten
the inequality [57]. More precisely, it allows us to conclude
that the following also holds,

[u;w — u,'le2

<1
W w — wistl - liw = willd + ()2 (51b)

Comparing (Eq. 51b) with (Eq. 51a) we see that the denomi-
nator of (Eq. 51b) is smaller since the positive term

i lw - wiII% is being subtracted from the denominator of (Eq.

51a). But although the denominator got smaller, the ratio is
still guaranteed to be bounded by one. A simple proof of (Eq.
51b) follows by noting that the inequality holds if

Wl — wisill3 = p7lw = willd + )P = lww — wwi P20

But the quantity on the left-hand side can be easily seen, after
replacing w; by the LMS update (Eq. 49), to be equal to
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(1- uuiuf)ld(i) - ul-wi_llz, which is clearly always nonnega-
tive.

So assume now that we run the LMS recursion up to time
N and that

n 1

SN o

mi
O<ps< .
0<i wu

Then the inequality in (Eq. 51b) holds for each time instant ,
ie.,

luiw — wwi_113 < 0w — wistl3 — p”tiw — willd + vl

for every 0 <i < N. Summing over { we conclude that we must
have

N N
3 huiw — wiwi 11 < lw = woil3+ Y (i)
=0 i=0

which proves our earlier claim in (Eq. 50a). Extensions of this
result to other classes of gradient-type algorithms, along with
convergnece proofs, are provided in [57].

Concluding Remarks

The main point to stress here is that by a proper recasting of
the original adaptive problem into a state-space form, we can
derive many known adaptive filtering algorithms very di-
rectly and in computationally effective square-root versions.
Even more interesting is the fact that insights gained from this
formulation allow for immediate extensions. This is due to
the fact that state-space models have a rich and long history
and lend themselves rather easily to different types of manipu-
lations and derivations. This constitutes a significant strength
of the state-space formulation. It allows us, for instance, to
consider more general matrices F; in (Eq. 11a) rather than the

F=\" 1/21, e.g.,

F; = diagonal {A| 12 Ay 12 I l/2}. It also allows for more

general matrices G;, Q; and R;, and for more general shift
structures in the input signals via different choices of the
matrix ‘¥ in the extended Chandrasekhar recursions. Indeed,
different choices for ‘¥, as well as F;, would allow us to
consider alternative windowing schemes for the data. These
extensions will be discussed elsewhere.

We have focused here on the single channel RLS problem,
where the reference sequence {d(-)} and the input sequence
{u(-)} were assumed to be scalar quantities. But we have
noted in several places that the approach extends rather im-
mediately to cases where the reference and input sequences
consist of vector quantities (see, e.g., [25, 32]). We may
remark that a strength of the multichannel square-root array
formulation is that though the arrays naturally have block
entries, the elementary rotations or reflections can be applied

particular choice for
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to the scalar entries, thus simplifying implementation issues
(e.g., no matrix inversions will be necessary). Finally we may
remark that the discussion in the last section can also be
formulated in a state-space framework, but with the random
variables allowed to exist in a certain indefinite metric space
(see, e.g., [58]).
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APPENDIX

A Derivation of the Riccati-Based Kalman Filter
The innovations are

ei=yi—yi = Yi"(fli;(\i"'(’\i)
A ~ A
= yi— Hx;=HX; + vi

~ A .
where we have defined X; = x; — x;. If we compute the covariance
of the innovations using the above equation we readily see that

Re,i = cov(ei) =Ri + HPH; ,

where we have defined the error covariance matrix,
P, = cov(X;). For well-posedness, we need the positive-defi-
niteness of the covariance matrix of the observations ¥;» which
is easily seen to imply that the R, ;have to be positive-definite.

The Kalman filter can now be readily derived by using the
orthogonality of the innovations and the state-space structure.
Thus we first write

i
A —1
Xi+1 = E cov(Xi+1,€))cov (eje;.

0

To seek a recursion we decompose the above as
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i
A —1 -1
Xit1 = 3, cov(xi+1 €)Re; € + KiRe,i €/,
=0
where we have defined K; = cov(x; H,ei). Now

cov(xir1.e) = Ficov(x;, &) + Gicov(n,e;)
= Fjcov(x;, HX; + vi) + 0
= F;cov(X;, HX;) + 0 = F,‘P,'H;'k

Note also that the first summation can be rewritten as

i1 i-1
— —1 A
F; 2 cov(x;.¢j)Re,; ! e+Gi Z cov(ri.e)Re,; € =Fix;+0
j=0 j=0

Combining these facts we find
A A —
Xi+1 = FiXi + KiRe,i le;.

It now remains to find a recursion for P;. To this end, note that
if we define the covariance matrices II;=cov(x;) and

= COV()/(\I-), then the orthogonality of the projection and error
yields, P, =TI, — ¥,. Using the state-space equation (Eq. 10a)

it is easy to find the following recursion for IT,,
it = F I F + GQIGT .

. . . A A -
Likewise, from the recursion x;, | = Fx, + K,Re’i 1e,- one ob-
tains,
—1 *
L1 = FIF + KRei K .
Subtracting the above two equations yields the desired Riccati
recursion for P,

P = FPF + GQGi- KR 'K/ .

Of course, the K; and Ry, ; can be computed in other ways as

shown in Algorithmic Variants of the Kalman Filter via
square-root arrays or, when the model has special structure,
via the Chandrasekhar recursions.
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