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An Invariant Matrix Structure
in Multiantenna Communications
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Abstract—This letter shows that the matrix structure with 2 2
Alamouti sub-blocks remains invariant under several nontrivial
matrix operations, including matrix inversion, Schur complemen-
tation, Riccati recursion, triangular factorization, and QR factor-
ization.

Index Terms—Alamouti code, invariant matrix structure, ma-
trix structure, matrix inversion, QR factorization, Riccati recur-
sion, Schur complementation, triangular factorization.

I. INTRODUCTION

ABASIC building block in multiantenna space–time-coded
communications is the Alamouti structure [1]–[3]. A 2 2

Alamouti matrix is defined by [2]

(1)

for some possibly complex scalars . The purpose of this
letter is to highlight some interesting properties of block ma-
trices involving 2 2 Alamouti sub-blocks. It turns out that the
Alamouti structure remains invariant under several nontrivial
matrix operations, including matrix inversion, Schur comple-
mentation, Riccati recursion, and even triangular and QR fac-
torizations. These properties are useful because they can be ex-
ploited to derive efficient receivers for multiantenna communi-
cations (see, e.g., [3], [5], and [6]).

A. Some Basic Properties

To begin with, every matrix of the form (1) satisfies the well-
known relation

where denotes the 2 2 identity matrix. It follows that the
inverse of an Alamouti matrix is another Alamouti matrix since

Note also that the sum, difference, or product of two Alamouti
matrices is another Alamouti matrix. Moreover, the sum of an
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Alamouti matrix and its complex conjugate is a scaled multiple
of the identity, i.e., , where the identity
matrix can be seen as a special case of the Alamouti structure
(corresponding to ).

B. Block Matrices

More generally, let be a block row vector, and let be a
block matrix with entries

...
. . .

...

where the individual sub-blocks and are each 2 2
Alamouti. Then, the following properties are trivial to establish
in view of the basic properties of Alamouti matrices.

1) The matrix consists of 2 2 Alamouti sub-blocks.
The first block entry of is given by

which consists of the sum of products of 2 2 Alam-
outi matrices. Hence, the result is again 2 2 Alamouti.
A similar argument applies to the other block entries of

.
2) is a scaled multiple of the identity.
3) The matrices , and are Hermitian with

diagonal 2 2 sub-blocks that are scaled multiples of the
identity matrix and with off-diagonal sub-blocks that are
2 2 Alamouti matrices, e.g., for

then

where the individual are 2 2 Alamouti, and the
scalars are non-negative.

II. INVARIANCE UNDER INVERSION

AND SCHUR COMPLEMENTATION

A less obvious property is the fact that the Alamouti structure
for block matrices is preserved under matrix inversion, as the
following statement specifies.

Lemma 1 (Invariance Under Inversion): The inverse of a
block square matrix with 2 2 Alamouti sub-blocks is another
block matrix with 2 2 Alamouti sub-blocks.
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Proof: We establish the result by induction. Consider first
a matrix with 4 sub-blocks, i.e., let so that is 4 4
and given by

where , and are all 2 2 Alamouti matrices.
Then, can be found in terms of the sub-blocks of by
using the block matrix inversion formula [4]

(2)

where

denotes the 2 2 Schur complement of with respect to .
Clearly, all the sub-blocks in are 2 2 Alamouti because
they are obtained via sum or product or inversion combinations
of 2 2 Alamouti matrices. Therefore, the result of the lemma
holds for .

More generally, consider a matrix
with 2 2 Alamouti blocks, and assume it has already been

established that the inverse of its leading block matrix
has the desired structure (i.e., with 2 2 Alamouti blocks).

We partition as

with , and now being the upper-
left, upper-right, lower-left, and 2 2 lower-
right matrices, respectively. Then, we apply the block matrix in-
version expansion (2) again to conclude that has Alamouti
sub-blocks.

Lemma 2 (Invariance Under Schur Complementation): The
Schur complement of with respect to any leading
block has a similar structure with 2 2 Alamouti sub-blocks.

Proof: Partition as

(3)

with , and now being the upper-
left, upper-right, lower-left,
and lower-right matrices, respec-
tively. The Schur complement with respect to is given by

. Clearly, from the previous lemma,
has 2 2 Alamouti sub-blocks. Then, is obtained via

the sum or product or inversion combinations of matrices with
2 2 Alamouti sub-blocks, and we conclude that has 2 2
Alamouti sub-blocks as well.

III. INVARIANCE UNDER MATRIX FACTORIZATIONS

Another interesting property of block matrices with 2 2
Alamouti sub-blocks is that their triangular and QR factors will
exhibit a similar structure. We establish the result first for block
triangular factorizations.

Lemma 3 (Invariance Under Triangular Factoriza-
tion): Consider a block matrix with 2 2 Alamouti
sub-blocks. Assume can be factored as , where

is block-diagonal with 2 2 sub-blocks and is lower
(upper) triangular with 2 2 identity matrices along its diag-
onal. Then, the sub-blocks of are 2 2 Alamouti, and the
matrices and have 2 2 Alamouti sub-blocks in their
lower (upper) triangular parts, e.g.,

where all 2 2 sub-blocks are Alamouti (similarly for ).
Proof: Decompose the matrix as follows [4]:

(4)

with denoting its 2 2 Alamouti upper-left block of , and
denoting the Schur complement of with respect to ,

namely, . From Lemma 2, we know
that has 2 2 Alamouti sub-blocks, and and have
2 2 Alamouti sub-blocks in their triangular parts with identity
sub-blocks on the main diagonal. We proceed by decomposing

similarly (where is 2 2 Alamouti)

(5)

where and have 2 2 Alamouti sub-blocks in their tri-
angular parts, and is assumed to be invertible. Likewise,
has a block structure with 2 2 Alamouti sub-blocks. Then

(6)

Equation (6) can be rewritten as

(7)

If we continue the factorization procedure in the same fashion,
we arrive at

(8)

where are lower (upper) triangular block matrices with
the identity matrix along their diagonals and 2 2 Alamouti
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sub-blocks in their lower (upper) triangular parts. Likewise,
is a block diagonal matrix with 2 2 Alamouti sub-blocks.

Lemma (Invariance Under QR Factorization): Consider a
block matrix with 2 2 Alamouti sub-blocks. Assume is
factored as , where is square unitary, and is upper
triangular with positive diagonal entries. Then, is a block ma-
trix with 2 2 Alamouti sub-blocks. Likewise, is a block ma-
trix with multiples of along its diagonal and with 2 2 Alam-
outi sub-blocks in its upper triangular part, e.g.,

where all 2 2 sub-blocks are Alamouti.
Proof: The result follows from the following two obser-

vations. Given 2 2 Alamouti matrices

then there exists a 4 4 unitary matrix with 2 2 Alamouti
sub-blocks such that

(9)

where is a positive constant defined by
, and .

Indeed, set

(10)

which consists of 2 2 Alamouti sub-blocks. Then it can be
verified that is unitary and that it achieves the required trans-
formation (9).

Likewise, given and as above, there exists a 4 4 unitary
matrix with 2 2 Alamouti sub-blocks such that

(11)

Indeed, set

(12)

Now, the QR factorization of can be achieved by successive
application of the above results. We illustrate the procedure as
follows. Without loss of generality, we assume the matrix has
nine Alamouti sub-blocks. Each 2 2 sub-block is denoted by
the capital letter X. The first step would involve using a unitary
matrix to achieve the transformation

X X X
X X X
X X X

X

X X X
X X X

where the prearray is , and has the form

X X
X X

with 2 2 Alamouti sub-blocks. All sub-blocks X X in the
post-array that results from the application of will be 2 2
Alamouti. The next step involves using a second unitary matrix

to achieve the transformation

X

X X X
X X X

X X X
X X X

where has the form

X X

X X

with 2 2 Alamouti sub-blocks. Again, all sub-blocks X X
in the post-array that results from the application of will
be 2 2 Alamouti. The next step involves using a third unitary
matrix to achieve the transformation

X X X
X X X

X
X X X

where has the form

X X
X X

with 2 2 Alamouti sub-blocks. The last step involves using a
fourth unitary matrix to achieve the transformation

X
X X X

X
X X

where has the form

X X

where X denotes the rightmost 2 2 Alamouti sub-block on
the last block row of the prearray.

The combination would, therefore, result
in the transformation

X X X
X X X
X X X

X
X X

or, equivalently, , where and . It is
easy to conclude from the structure of the individual that the
unitary matrix has 2 2 Alamouti sub-blocks.

IV. INVERTING A TRIANGULAR FACTOR

Given a triangular factor with 2 2 Alamouti sub-blocks, its
inversion can be carried out in a manner that involves only the
product and inversion of 2 2 Alamouti sub-blocks. Consider
first a 4 4 upper-triangular factor of the form

(13)
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where is 2 2 Alamouti. Using the matrix inversion formula
[4]

(14)

it follows that

(15)

Now, the inversion of larger matrices can be computed itera-
tively by reducing its inversion to smaller dimension blocks as
above. Thus, consider an upper triangular matrix , and parti-
tion it as follows:

(16)

where and have scaled multiples of along their diag-
onals and 2 2 Alamouti sub-blocks in their upper triangular
parts. Likewise, has 2 2 Alamouti sub-blocks. Moreover,

denotes the leading 4 4 submatrix of . We already know
how to evaluate the inverse of , as indicated by (15). Applying
the matrix inversion formula (14) to , we get

(17)

Thus, the inverse of now requires knowledge of . In order
to compute , we partition as

(18)

where denotes its leading 4 4 submatrix with scaled mul-
tiples of along the diagonal. Note again that we already know
how to evaluate the inverse of , as indicated by (15). Applying
the matrix inversion formula (14) to gives

(19)

In other words, the inverse of requires knowledge of ,
and the procedure can be continued in this manner.

V. INVARIANCE UNDER RICCATI RECURSION

We illustrate the application of some of the above properties
in the context of block RLS filtering (e.g., for either channel
estimation or channel equalization applications), which involves
update equations of the form (see, e.g., [5] and [6])

(20)

where is a vector, and is a regression data matrix.
It is assumed that the data matrix consists of 2 2 Alam-

outi sub-blocks, which is a common situation in multiantenna
communications involving space–time-coded transmissions. In
this case, it turns out that the Alamouti structure is preserved

by the Riccati recursion for , as the following statement
indicates.

Lemma 5 (Invariance Under Riccati Recursion): Assume
the initial condition is chosen as a matrix with 2 2
Alamouti sub-blocks. Then, all successive matrices will
have the same structure, with Alamouti sub-blocks, for .

Proof: The result follows by induction. It is easy to see
that will have 2 2 Alamouti sub-blocks since
both and have this structure. Therefore, will have
the same structure by Lemma 1. It follows that

will have the same structure since is obtained as the sum and
product combination of matrices involving 2 2 Alamouti sub-
blocks. The argument can now proceed by induction to establish
the conclusion of the lemma for .

VI. CONCLUSION

We showed that matrix structures with Alamouti sub-blocks
remain invariant under matrix inversion, matrix Schur comple-
mentation, triangular and QR factorization, and Riccati recur-
sions. We may remark that a 2 2 Alamouti matrix can be re-
garded as the matrix representation of a quaternion [7], which
brings up useful connections with the study of matrices with
quaternionic entries. Most of the earlier works in the literature
on quaternionic matrices has been concerned with the charac-
terization of the eigenspace of such matrices and their Schur
decomposition (e.g., [7]–[10]). Such results can be useful for
multiantenna communications as well [10].
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