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Abstract—In this letter, we present a simple approach to the
steady-state and tracking analyses of the sign algorithm that avoids
the explicit use of the independence assumption.

Index Terms—Adaptive filter, least mean square (LMS), inde-
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I. INTRODUCTION

CONSIDER noisy measurements that arise from the
linear model

(1)

where
unknowncolumnvector that we wish to estimate;
accounts for measurement noise and modeling errors;
row input (or regressor) vector.

The most popular adaptive algorithm for the estimation of
is the least mean squares (LMS) algorithm, which is given by

where
estimate for at iteration ;
step size;
so-called output estimation error;

;
complex conjugate transposition.

In high speed data communications, the symbol interval may not
be long enough to execute an iteration of the LMS algorithm.
This makes multiplication-free variants of the LMS algorithm
very convenient for these applications. Among these variants is
the sign algorithm (SA) [1], [2], which is given by1

(2)
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1For real data,sign(x) = 1 if x > 0,�1 if x < 0, and 0 ifx = 0. For
complex data, the sign function is defined assign[a+jb] = (1=

p
2)(sign[a]+

j sign [b])

In addition to its simplicity, the SA possesses many other advan-
tages such as high robustness and convenient tracking properties
[3].

An important performance measure for an adaptive filter is
its steady-state mean square error (MSE), which is defined as

where denotes the weight error vector. Under
the often realistic assumption that

A1) The noise sequence is iid and statistically inde-
pendent of the regressor sequence .

We find that the MSE is equivalently given by

(3)

Another assumption that is widely used in the literature for eval-
uating (3) is to assume, in addition to A1, that the regression
vector is independent of (see, e.g., [2]–[7]). With this in
mind, one proceeds to determine a recursion for the variance of
the weight error vector . Then the MSE is computed
by using the steady-state value of this variance . In
this letter, we present a more direct approach, which avoids the
explicit use of the independence assumption and the need for
evaluating .

II. FUNDAMENTAL ENERGY RELATION

We start by defining the following so-calleda priori anda
posterioriestimation errors

Using the data model (1), it is easy to see that the errors
are related via . If we further

subtract from both sides of (2) and multiply by from the
left, we also find that the errors are related
for nonzero via

(4)

Substituting (4) into (2), we obtain the update relation
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By evaluating the energies of both sides of this equation, we find
that (see [8] and [9])

(5)

When 0, it is obviously true that

(6)

Both results (5) and (6) can be grouped together into a single
equation by defining

in terms of the pseudo-inverse of a scalar, so that we obtain

(7)

No approximations or assumptions are needed to establish the
energy conservation relation (7). It is an exact relation that
shows how the energies of the weight error vectors at two
successive time instants are related to the energies of thea
priori anda posterioriestimation errors.

III. STEADY-STATE ANALYSIS

In this letter, we are interested in knowing what performance
we can expect from the filter if it reaches steady state. Thus,
by taking expectations of both sides of (4) and noting that

in steady state, we get

Using (7), the above collapses to the following relation in terms
of only (recall that ):

(8)

Expanding (8), terms involving cancel out, and we obtain
the equality:

(9)

where . This equation can now be solved for
the desired MSE, which is given from (3) by

. We stress that (9) is anexactrelation that holds
withoutany approximations or assumptions (except for the as-
sumption that the filter reaches steady-state). The procedure of
finding the MSE through (9) avoids the need for evaluating

. This is because in steady state and in view of the en-
ergy-preserving relation (7), the effect of the weight error vari-
ance is canceled out.

To proceed, we introduce the assumption that the signals
and are jointly Gaussian in steady state (so that and

are jointly Gaussian). This assumption is reasonable for
sufficiently small step sizes and in steady-state operation (which
is the state we are interested in). To see this, assume the original
data and are Gaussian. This does not imply that
is Gaussian, because depends on the data in
a nonlinear fashion through . However, if we assume that

is a constant (and not a random variable), then will be
Gaussian. This suggests that in steady-state operation and when
the step size is small enough that the weight error vector varies
slowly with time, we can expect the Gaussianity assumption on

to be reasonable.
With this Gaussianity assumption, we can now proceed to de-

termine the MSE of the sign algorithm. We may remark that
earlier works in the literature have already studied this same
problem and arrived at an expression for the MSE [4], [6]. This
was achieved in [4] as follows. First, a transient analysis is per-
formed in order to derive a recursion for the variance of the
weight error vector . The derivation of this recursion
requires a certain independence assumption in addition to the
Gaussianity of . Second, the steady-state value of the weight
error variance is used to evaluate the MSE. In this
letter, by focusing on the steady-state operation of the filter right
away, and by relying on the energy relation (7), we avoid the
transient analysis and the independence condition. The deriva-
tion in the sequel relies solely on the Gaussianity assumption of

and in steady state.
Using A1 and Price’s theorem for both real and complex-

valued data [10],2 we obtain

(10)

Substituting into (9) and solving for ,
we find that

(11)

where . This is the same result that was ob-
tained in [4] by taking the limit of . Here, we have
obtained it more directly and without explicitly using the inde-
pendence assumption.

IV. TRACKING ANALYSIS

In a nonstationary environment, the data is assumed
to arise from a linear model of the form ,
where the unknown system is now time variant. It is often
assumed that the variation in is according to the model,

, where denotes the random perturbation
[3], [6]. The purpose of the tracking analysis of an adaptive filter
is to study its ability to track such time variations. To evaluate
the tracking performance of the SA, we first redefine the weight
error vector as , and thea posterioriestimation
error as . Then satisfies

(12)

If we further multiply (12) by from the left, we obtain that (4)
and (5) still hold for the nonstationary case, while (7) becomes:

(13)

For mathematical tractability of the tracking analysis, we im-
pose the following assumption, which is typical in the context

2For two jointly Gaussian random variablesx andy, we haveE(xsign(y)) =
2=� � (1=� )E(xy).
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of tracking analysis of adaptive filters (see, e.g., [3], [6], and
[7]).

A2) The sequence is a stationary sequence of indepen-
dent zero-mean vectors whose autocorrelation matrix

is positive definite. Furthermore, is
mutually statistically independent of the sequences
and .

Using (4) and A.2, it is straightforward to verify that the variance
relation (8) should now be replaced by

Comparing the above with (8), we see that both expressions
differ by the single term . This indicates that the MSE
in the nonstationary case can be obtained almost by inspection
from the result for the stationary case. Indeed, expanding the
above equality we obtain [compare with (9)]

(14)

Using (10), we find that the MSE is still given by (11), where
is now given by

This is the same result obtained in [6] by repeating the analysis
of [4]. Here, we have obtained the result in a more direct way
by simply comparing the energy relations (9) and (14) for the
stationary and nonstationary cases.

V. CONCLUDING REMARKS

We may remark that the approach of this letter can also be
applied to more general adaptive schemes (see, e.g., [11]–[13]).
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