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Parameter Estimation in the Presence
of Bounded Modeling Errors

S. Chandrasekaran, G. H. Golub,Honorary Member, IEEE,M. Gu, and A. H. Sayed,Member, IEEE

Abstract—We formulate and solve a new parameter estimation
problem in the presence of bounded data uncertainties. The
new method is suitable whena priori bounds on the uncertain
data are available; its solution guarantees that the effect of the
uncertainties will never be unnecessarily overestimated beyond
what is reasonably assumed by thea priori bounds.

I. INTRODUCTION

T HE CENTRAL problem in estimation is to recover, to
good accuracy, a set of unobservable parameters from

corrupted data. Several optimization criteria have been used
for estimation purposes, but the most important, at least in
the sense of having had the most applications, are criteria
that are based on quadratic cost functions. The most striking
among these is the linear least squares (LS) criterion, which
enjoys widespread popularity as a result of its attractive
computational and statistical properties. But many alternative
optimization criteria have been proposed over the years in
order to improve the performance of standard LS estimators
in the presence of data uncertainties (e.g., [1]–[4]). Among
these we may mention regularized LS, ridge regression, total
LS, and robust (or H ) estimation. They all allow, in one way
or another, for the incorporation of somea priori information
about the unknown parameter into the problem statement.
They are also more effective in the presence of data errors
and incomplete statistical information about the exogenous
signals (or measurement errors). Nevertheless, these variations
can still unnecessarily overemphasize the effect of noise and
uncertainties and can, therefore, lead to overly conservative
designs.

In this paper, we formulate and solve a new parameter
estimation problem with prior bounds on the size of the
allowable corrections to the data. A detailed analysis of the
new problem, and comparisons with earlier approaches, can
be found in the extended paper [5]. Variations and recursive
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solutions can be found in [6] and [7]. Here, we only wish to
report the main ideas and results.

Let be a given full rank matrix with
and let be a given vector. The quantities
are assumed to be linearly related via an unknown vector of
parameters , , where explains
the mismatch between and . We assume that the “true”
coefficient matrix is , and that we only know an upper
bound on the perturbation , say Likewise,
we assume that the “true” observation vector is , and
that we know an upper bound on the perturbation , say

. We pose the problem of finding an estimate that
performs “well” for any allowed perturbation . That
is, we would like to determine, if possible, anthat solves

(1)

Any particular choice for would lead to many residual
norms, one for each possible choice
of in the disc and in the disc . We want
to determine the particular value(s) forthat minimizes the
maximum possible residual norm. It turns out that this problem
always has a unique solution except in a special degenerate
case in which the solution is nonunique.

The problem also admits an interesting geometric formula-
tion. For this purpose, and for the sake of illustration, assume
we have a unit-norm vector, , with no uncertainties
in it ( ; it turns out that the solution does not depend on

). Assume further that is simply a column vector, say,
with , and consider (1) in the following setting:

(2)

The situation is depicted in Fig. 1. The vectorsand are
indicated in thick black lines. The vector is shown in the
horizontal direction and a circle of radiusaround its vertex
indicates the set of all possible vertices for . For any
that we pick, the set describes a disc of center

and radius . This is indicated in the figure by the largest
right-most circle, which corresponds to a choice of a positive

that is larger than one. The vector in that is
furthest away from is the one obtained by drawing a line from

through the center of the right-most circle. The intersection
of this line with the circle defines a residual vectorwhose
norm is the largest among all possible residual vectors in the
set .

1070–9908/97$10.00 1997 IEEE



196 IEEE SIGNAL PROCESSING LETTERS, VOL. 4, NO. 7, JULY 1997

Fig. 1. Geometric construction of the solution for a simple example.

It can be verified that the solution can be obtained geomet-
rically as follows: Drop a perpendicular fromto the lower
tangential line . Pick the point where the perpendicular meets
the horizontal line and draw a circle that is tangent to both
and . Its radius will be , where is the optimal solution.
Also, the foot of the perpendicular on will be the optimal
. The segment denotes the optimum residual (it has the

minimum norm among the largest residuals). More details can
be found in [5].

II. A N ALGEBRAIC SOLUTION

It can be shown that problem (1) reduces to the equivalent
minimization problem (of a convex cost function) as follows:

(3)

Note, in particular, that this problem formulation is signifi-
cantly distinct from a regularized LS formulation, where the
squaredEuclidean norms are used rather
than the norms themselves!

The solution to this minimization problem is given as
follows [5]. Introduce the SVD of
partition the vector into where
and , and define the function

(4)

Further define and
. Then two cases are possible.

First Case, Does Not Belong to the Column Span of:

1) If then the unique solution is .
2) If then the unique solution is

, where is the unique positive root of the
secular equation .

Second Case, Belongs to the Column Span of:

1) If then the unique solution is .
2) If then the unique solution is

, where is the unique positive root
of the secular equation .

3) If then the unique solution is
.

4) If then there are infinitely many solutions
that are given by , for any

.

Note that the expression can be
regarded as the exact solution of a regularized LS problem of
the form

with squared Euclidean distances. In this sense, the solution to
the original problem (3) (with norms only rather than squared
norms) can be seen to lead to automatic regularization. That
is, the solution first determines a regularization parameter
and then uses it to solve a regularized least-squares problem of
the above form. The scalarcan be determined by employing
a bisection-type algorithm to solve the secular equation, thus
requiring , where is the desired precision.

III. V ARIATIONS

There are several variations that submit to algebraic solu-
tions. We only mention two examples:

Uncertain Weights:Consider the min–max problem

It reduces to

and the optimal solution can be shown to satisfy

where satisfies a secular equation similar in form toin
(4). The details will be published elsewhere.

Multiplicative Uncertainties: Consider the min–max prob-
lem

It reduces to

if

otherwise

(5)
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and the optimal solution can be shown to be a scaled version
of the least-squares solution, viz.,

where is given by (5), shown at the bottom of the previous
page, where and .

IV. CONCLUDING REMARKS

Several extensions are possible. For example, if only se-
lected columns of the matrix are uncertain, while the
remaining ones are known precisely, the problem can be
reduced to the formulation (1)—see, e.g., [5] and [6]. Also,
weighted versions with uncertainties in the weight matrices
are useful in several applications, as well as cases with more
general multiplicative uncertainties. Recursive solutions are
also of interest, and results in this direction appear in [7].
We should also mention related work in [8], where the authors
have independently formulated and solved an estimation prob-

lem similar to (1) by using (convex) semidefinite programming
techniques.
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