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Mean-Square Performance of Data-Reusing
Adaptive Algorithms

Hyun-Chool Shin, Member, IEEE, Woo-Jin Song, Member, IEEE, and Ali H. Sayed, Fellow, IEEE

Abstract—This letter provides a unified mean-square perfor-
mance analysis of the class of data reusing adaptive algorithms.
The derivation relies on energy conservation arguments, and it
does not restrict the regression data to being Gaussian. Simulation
results show that there is a relatively good match between theory
and practice.

Index Terms—Affine projection algorithm (APA), data-reusing
adaptive filters, energy conservation relation.

I. INTRODUCTION

AFFINE projection (APA) and data-reusing LMS
(DR-LMS) or normalized DR-LMS (NDR-LMS) al-

gorithms have desirable convergence properties and com-
putational costs. Several variants of APA and DR-LMS or
NDR-LMS have been devised independently from different
perspectives [1]–[4].

For APA algorithms, the mean-square error, tracking, and
transient performances have been studied in [5], [6], and the ref-
erences therein. However, the transient behaviors of DR-LMS
and NDR-LMS are not as widely studied. The available results
have progressed more qualitatively than quantitatively [9],
[10]. In addition, although APA and DR-LMS or NDR-LMS
algorithms have common features in that block errors and block
regression data are used for updating the filter coefficients,
each algorithm is usually studied separately in the literature
under different assumptions. Such distinct treatments tend to
obscure commonalities that exist between APA and DR-LMS
algorithms.

In this letter, we provide a unified treatment of the conver-
gence performance of DR-LMS and NDR-LMS algorithms,
which can be used to clarify the common features among APA,
DR-LMS, and NDR-LMS. To do so, we first introduce a uni-
form cost function from which APA, DR-LMS, and NDR-LMS
can be motivated as instantaneous gradient approximations
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depending on the choice of a certain weighting matrix. Subse-
quently, the performance analysis is pursued using the energy
conservation approach of [8, ch. 6 and 9] and in a manner
similar to what was done earlier for APA in [6]. A feature of the
analysis is that it does not restrict the regression data to being
Gaussian.

Throughout the letter, the following notations are adopted.
Weighted Euclidean norm of a vector, i.e., .

Tr Trace of a matrix.
diag Diagonal matrix of its entries .

Kronecker product of matrices and .
vec Stacking the columns of a matrix A.
vec Writing vec for an column vector

results in an matrix whose entries are
obtained from .

det Determinant of a matrix.
Largest eigenvalue of a matrix.
Set of positive real numbers.

II. DATA-REUSING ALGORITHMS

Consider reference data that arise from the linear
model

(1)

where is an unknown column vector that we wish
to estimate, accounts for measurement noise, and

denotes row input (regressor) vector
with a positive-defi-

nite covariance matrix .

A. DR-LMS and NDR-LMS Adaptive Algorithms

The DR-LMS and NDR-LMS algorithms for estimating
take the forms

(2)

(3)

respectively, where is an estimate for at itera-
tion is the step size,
diag , and usually,

...
...
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B. Unified Cost Function

These algorithms can be motivated as instantaneous gradient
approximations as follows. Consider a cost function of the form

(4)

for some general positive-definite weighting matrix . The gra-
dient vector of with respect to is

(5)

Replacing the expected value in (5) by its instantaneous value
(i.e., removing the expectation sign), we can motivate the sto-
chastic gradient algorithm

(6)

where is the step size that controls the convergence of the
adaptation process. Different choices of the parameter result
in different algorithms. For example, if we choose as the iden-
tity matrix , then the DR-LMS algorithm (2) is obtained. Also,
by choosing , we get the NDR-LMS algorithm (3).
Likewise, the choice results in APA

where it is assumed that is invertible. The equation in (6)
covers data reusing over pairs, not covering the case where
the same data matrix is repeatedly used [7].

III. MEAN-SQUARE PERFORMANCE ANALYSIS

We now examine the mean-square performance of general
adaptive algorithms of the form (6). To do so, we rely on the
energy conservation approach of [8, ch. 6 and 9], which was
used in [6] to study the performance of APA algorithms. Thus,
note that (6) can be rewritten in terms of the weight-error vector

as

(7)

Now introduce the a priori and a posteriori weighted estimation
errors

(8)

for any Hermitian positive-definite matrix to be chosen later;
different choices for allow us to answer different questions
pertaining to the mean-square performance of the filter [8], [11].
If we multiply both sides of (7) by from the left, we find
that

(9)

Solving for and substituting into (7), we get

(10)

If we equate the weighted Euclidean norms of both sides of (10),
we find that

(11)

where , and using (8), the crossed terms are
eliminated since they are identical on both sides. Note that no
approximations have been used to establish the energy relation
(12).

Although we have started with the generalized adaptive form
(6), the resulting weighted energy relation (12) is fortunately of
the same form as [6, eq. (36)]. This is because in the relation
(9) between and , the matrix is included. This is the
authors’ intention to make the remaining analysis similar to [6].
Thus, here we will briefly describe the remaining manipulation,
focusing on the main results. Note that the symbols for notations
look similar, but the actual definitions are different from [6].

A. Weighted Variance Relation

In transient analysis, we are interested in the time evolution
of , for some desirable choices of (e.g., or

). The following is the often realistic assumption.
A.1: The noise is independent and identically dis-

tributed (i.i.d.) and statistically independent of the regression
matrix .

Neglecting the dependency of on past noises, ex-
pressing in terms of , and taking expec-
tations of both sides, relation (12) gives

(12)

where
, and

. The expectation in (12)
is difficult to evaluate due to the dependence of on and
of on prior regressors. One common way to overcome
this difficulty, especially for small step sizes, is to assume the
following.

A.2: is independent of .
In this way, in recursion (12) reduces to

with expectations appearing in .
Using the following property of the Kronecker product of ma-

trices, vec vec and introducing the
vector notations vec and vec , we find that

(13)

where coefficient matrix is given by

(14)

with . We can rewrite the recursion for
in (12) by using the vectors instead of the matrices

as follows:

(15)

where, for the last term, we used the fact that

Tr
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where vec . For compactness of notation,
we drop the vec notation from the subscripts and keep the
vectors, so that the above is simply rewritten as

(16)

Also we obtain the following result for the evolution of the mean
of the weight-error vector:

(17)

B. Mean-Square Stability

From (17), the convergence in the mean of the adaptive filter
is guaranteed for any satisfying

(18)

Moreover, as in [6], recursion (16) is stable if, and only if, the
matrix is stable. Thus, let and

so that . The following
holds (see [8, ch. 9]).

Theorem 1 (Stability): Under conditions A.1 and A.2, the
convergence in the mean-square sense of the class of adaptive
filters (6) is guaranteed for any in the range

where

C. Steady-State Behavior

As in [6] and [11], assuming the step size is chosen to guar-
antee filter stability, recursion (16) becomes in steady state

(19)

which is equivalent to

(20)

Assume that we select as the solution to the linear system
of equations vec . In this case, the weighting
quantity that appears in (20) reduces to the vector of unit entries.
Then the left-hand side of (20) becomes the filter mean-square
deviation (MSD), and (20) leads to

MSD vec (21)

In a similar way, since , we can
determine the excess mean-square error (EMSE) by evaluating

, where the weighting factor is vec , i.e.,

EMSE vec (22)

IV. SIMULATION RESULTS

We illustrate the theoretical results presented in this letter
by carrying out computer simulations in a channel estimation
scenario. The unknown channel has 16 taps and is randomly
generated. The adaptive filter and the unknown channel are as-
sumed to have the same number of taps. The input signal is

TABLE I
MEAN-SQUARE STABILITY BOUNDS OF DR-LMS (� = I)

TABLE II
MEAN-SQUARE STABILITY BOUNDS OF NDR-LMS

(� = diagf1=ku k ; . . . ; 1=ku k g)

Fig. 1. Simulated MSE of DR-LMS and NDR-LMS as a function of the step
size. (a) DR-LMS. (b) NDR-LMS.

obtained by filtering a white, zero-mean, Gaussian random se-
quence through the system



854 IEEE SIGNAL PROCESSING LETTERS, VOL. 12, NO. 12, DECEMBER 2005

Fig. 2. Learning curves of DR-LMS for colored Gaussian input using � =

0:005 for K = 2 and K = 4 [Input: Gaussian ARMA(2, 2); System: FIR
(16)].

Fig. 3. Learning curves of NDR-LMS for colored Gaussian input using � =

0:01 for K = 2 and K = 4 [Input: Gaussian ARMA(2, 2); System: FIR (16)].

As a result, a highly correlated Gaussian signal of which the
eigenvalue spread is around 105 is generated. The measurement
noise is added to such that the signal-to-noise ratio
(SNR) is 30 dB. The simulation results shown are obtained by
ensemble averaging over 100 independent trials. In Tables I and
II, we evaluate the stability bounds from Theorem 1 for the
DR-LMS and NDR-LMS algorithms. This fact is numerically
verified in Fig. 1, where simulated MSE curves are plotted as a
function of the step size. Fig. 2 shows the learning curves of
the DR-LMS algorithm for colored Gaussian input. The step
size is set to . Fig. 2 shows how close the simula-
tion results are to the theoretical results, where and were
evaluated via ensemble averaging. In Fig. 3, the learning curves
for the NDR-LMS algorithm are shown for . Fig. 4
shows the steady-state MSE curve of the NDR-LMS algorithm
for colored Gaussian input as a function of the step size. The step
size varies from 0.01 to 0.3. This range guarantees stability as
mentioned before. The theoretical results are calculated using
(22), and the simulation results are obtained by averaging more
than 1000 instantaneous square errors steady state and then aver-
aging 200 independent trials. The simulation results are in good
agreement with the theoretical results for small step sizes, but
they deviate from the theoretical value for larger step sizes and

Fig. 4. Steady-state MSE curves of NDR-LMS for colored Gaussian input in
stationary environments for K = 2 and K = 4 [Input: Gaussian ARMA(2, 2);
System: FIR (16)].

larger . This is because of the independent assumption A.2.
The steady-state MSE curve of the DR-LMS algorithm has a
similar behavior to Fig. 4.

V. CONCLUSION

In this letter, we performed a mean-square performance anal-
ysis of the class of data-reusing adaptive algorithms, such as
DR-LMS and NDR-LMS, without restricting the distribution of
the input data to being Gaussian. The arguments were based on
the energy conservation approach of [8], and they bring forth
commonalities between this class of algorithms and affine pro-
jection methods.
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