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Abstract. This paper provides a time-domain feedback analysis of the robustness performance of
Gauss-Newton recursive methods that are often used in identification and control. These are recur-
sive estimators that also involve updates of sample covariance matrices. Several free parameters are
included in the filter descriptions while combining the covariance updates with the weight-vector up-
dates. One of the contributions of this work is to show that by properly selecting the free parameters,
the resulting filters can be made to impose certain bounds on the error quantities, thus resulting in
desirable robustness properties (along the lines of Hy, filter designs). It is also shown that an intrinsic
feedback structure, mapping the noise sequence and the initial weight error to the a-priori estimation
errors and the final weight error, can be associated with such schemes. The feedback configuration is
motivated via energy arguments and is shown to consist of two major blocks: a time-variant lossless
(i-e., energy preserving) feedforward path and a time-variant feedback path. Emphasis is further given
to filtered-error variants that give rise to dynamic time-variant feedback loops rather than memoryless
loops. Such variants arise in ITR modeling.

Zusammenfassung. Dieser Artikel prisentiert eine Robustheitsanalyse im Zeitbereich von rekur-
siven Gauss-Newton Verfahren wie sie oft bei der Systemidentifikation und im regelungstechnischen
Bereich auftreten. Es handelt sich hierbei um rekursive Schatzer, die implizit die Zeitkovarianzmatrix
des Anregungssignals invertieren. Die Filterbeschreibung beinhaltet verschiedene freie Parameter sowohl
fiir die Bestimmung der Parameterschitzwerte als auch der Zeitkovarianzmatrizen. Ein Beitrag dieser
Arbeit besteht darin zu zeigen, dafl bei sorgfaltig gewdhlten freien Parametern die Fehlergrofien des
resultierenden Filters beschriankt bleiben, wodurch die gewiinschte Eigenschaft der Robustheit (gemaf
der H,, Terminologie) erzielt wird. Auflerdem wird gezeigt, daf} fiir diese Schitzverfahren stets eine
riickgekoppelte Struktur existiert, welche die Storsequenz und den Initialschitzfehler auf die a-priori
Fehler abbildet. Die Riickkopplungsstruktur wird durch Energiegréfien motiviert und besteht aus zwei
Blocken: einem zeitvarianten, verlustfreien (also energieerhaltenden) Vorwértspfad und einem zeitvari-
anten Riickwirtspfad. Ferner werden Algorithmusvarianten mit gefiltertem Fehler beschrieben, die statt
zu einer geddchnisfreien zu einer dynamischen Riickkopplung filhren. Solche Varianten treten bei der
Modellierung von IIR Filtern auf.



1 Introduction

This paper provides a time-domain feedback analysis of the class of Gauss-Newton recursive schemes,
which have been employed in several areas of identification, control, signal processing, and communica-
tions (e.g., [6, 14, 16, 17, 19, 31]). These are recursive methods that are based on gradient-descent ideas
and employ sample covariance matrices to control the update directions. Their descriptions involve two
update relations: one for the update of the weight estimate and the other for the update of the inverse
of the sample covariance matrix. An important special case is the exponentially weighted recursive-
least-squares (RLS) algorithm (e.g., [9, 24]), which employs a decaying exponential weighting in the
covariance update. But other possibilities exist and in this paper several free parameters are included
in the filter descriptions while combining the covariance updates with the weight-vector updates. These
parameters allow for a reasonable degree of freedom in setting up filter configurations, and one of the
contributions of this work is to show that by properly selecting the free parameters, the resulting filters
can be made to impose certain bounds on the error quantities. These bounds are further shown to
result in desirable robustness properties along the lines of Hy, filtering [7, 8, 23, 29].

Intuitively, a robust filter is one for which the estimation errors are consistent with the disturbances
in the sense that “small” disturbances would lead to “small” estimation errors, no matter what the
disturbances are. This is not generally true for any adaptive filter: the estimation errors can still be
“large” even in the presence of small disturbances.

The robustness issue is addressed here in a purely deterministic framework and without assuming
prior knowledge of noise statistics. This is especially useful in situations where prior statistical informa-
tion is missing since a robust design would guarantee a desired level of robustness independent of the
noise statistics. In loose terms, robustness would imply that the ratio of the estimation error energy to
the noise or disturbance energy will be guaranteed to be upper bounded by a positive constant, say the

constant one,
estimation error energy

<1. 1
disturbance energy (1)

The disturbance energy may include the energies of the measurement noise, modeling uncertainties,
errors in initial weight guess, etc. From a practical point of view, a relation of the form (1) is desirable
since it guarantees that the resulting estimation error energy will be upper bounded by the disturbance
energy, no matter what the nature and the statistics of the disturbances are. In this case, the algorithm
will not unnecessarily magnify the disturbance energy and, consequently, small estimation errors will
result when small disturbances occur. One of the contributions of this work is to show how to select the
parameters that define a Gauss-Newton update in order to guarantee such robust behavior. This can be
contrasted with results in stochastic settings where stability and convergence statements are often given
in the mean and mean-square sense. In such settings, even for the simple LMS algorithm, a constant

step-size p that is bounded by twice the inverse of the maximal eigenvalue of the autocorrelation matrix



can still lead to blow up in a practical experiment (see, e.g., [21]).

To address the above issues, the paper suggests a time-domain approach that proves to be useful
in both the analysis and design of robust estimators. It highlights and exploits an intrinsic feedback
structure that can be associated with Gauss-Newton schemes, mapping the noise sequence and the initial
weight error to the a-priori estimation errors and the final weight error. The feedback configuration is
motivated via energy arguments and is shown to consist of two major blocks: a time-variant lossless
(i.e., energy preserving) feedforward path and a time-variant feedback path.

Although the feedback nature of these, and related recursive schemes, has been pointed out in
earlier places in the the literature (see, e.g., the discussions in [14, 17]), the feedback configuration in
this paper is of a different nature. It does not only refer to the fact that the update equations can be
put into a feedback form (as explained in [4, 13, 18]), but is instead motivated via energy arguments
that also explicitly take into consideration both the effect of the measurement noise and the effect of
the uncertainty in the initial guess for the weight vector. These extensions are incorporated into the
feedback arguments of this paper because the derivation here is interested in a formal study of the
robustness properties of Gauss-Newton schemes in the presence of uncertain disturbances. This is
especially useful when the statistical properties of the disturbances are unknown.

In this regard, the feedback connection provided herein is shown to exhibit three main features that
distinguish it from earlier studies in the literature: the feedforward path in the connection consists of
a lossless (i.e., energy preserving) mapping while the feedback path consists either of a memoryless
interconnection or, in the case of filtered-error variants, of a dynamic system that is dependent on the
error filter. Also, the blocks in both the feedforward and the feedback paths are allowed to be, and in
fact are, time-variant.

It is then shown that the feedback configuration lends itself rather immediately to stability analysis
via a so-called small gain theorem, which is a standard tool in system theory (e.g., [11, 32]); it provides
contractivity conditions that are shown to guarantee the [o—stability of the algorithms, with further
implications on the convergence behaviour of the estimator. This is demonstrated by studying the
energy flow through the feedback configuration and by exploiting the lossless nature of the feedforward
path.

Emphasis is also given to filtered-error variants that are useful in ITR modeling and in noise control
applications (e.g., [2, 5, 12, 15]). Such variants give rise to dynamic time-variant feedback loops and
a procedure for computing optimal step-sizes in order to guarantee robustness and improved speeds of

convergence is suggested. Simulation results are included to support the theoretical conclusions.

1.1 Notation

We use small boldface letters to denote vectors and capital boldface letters to denote matrices. Also,

(1%}
*

the symbol denotes Hermitian conjugation (complex conjugation for scalars). The symbol I denotes



the identity matrix of appropriate dimensions, and the boldface letter 0 denotes either a zero vector or
a zero matrix. The notation ||x||? denotes the squared Euclidean norm of a vector, and A'/? denotes a
square-root factor of A, viz., any matrix satisfying A'/2A*/2 = A. For convenience, we shall also write
(A1/2)x = A*/2 (AY/?)~t = A~1/2 (A~1/2)* = A=*/2. Thus note the expressions A = A/2A*/?
and A~! = A=*/2A~1/2_ Also, all vectors are column vectors except for the so-called input data vector

denoted by u;, which is taken to be a row vector.

2 Gauss-Newton Recursive Methods

There is an abundant literature on the analysis and design of Gauss-Newton methods, especially in the
area of parametric system identification (see, e.g., [10, 16, 17, 31]). Here we only wish to briefly review
this class of algorithms before proceeding into a closer analysis of their behaviour.

We consider a collection of noisy measurements {d(i)}, that arise from a linear model of the form

(we use subscripts for indexing of vector quantities and parenthesis for indexing of scalar quantities):
d(i) = w;w +v(i) , (2)

where v(7) denotes measurement noise or disturbance (or modeling errors/uncertainties) and u; denotes
a row input vector. The column vector w consists of unknown parameters that we wish to estimate. In

this paper we focus on the following so-called Gauss-Newton recursive estimator.
Algorithm 2.1 (Gauss-Newton Procedure) Given measurements {d(i)}},, an initial guess w_1,

and a positive-definite matriz Iy, recursive estimates of the weight vector w are obtained as follows:
w; = wig + p() Piuf (d() —uiw;y), 3)

where P; satisfies the (Riccati) update

1 P;,_jufu;P;_
i =0 ifl_ﬁ , P_g =T, (4)
(Z) B(i) + uiP,-_luZ-

and {\(7), u(i), B(i)} are given positive scalar time-variant coefficients, with A(7) < 1.

The effect of the coeflicients {\(¢), (), 5(¢)} on the performance of the algorithm (3)—(4) will be
studied in later sections. In particular, conditions will be derived for choosing these parameters in order
to guarantee that small disturbance energies will necessarily result in small estimation error energies
(and, hence, in robust filters).

Note that by applying the matrix inversion formula (e.g., [9]) to (4) we obtain that the inverse of

P; satisfies the simple time-update
Pl = @) P+ 6(0) uiu. (5)

K3

This establishes that P; is guaranteed to be positive-definite for A(z), 3(7) > 0 since I > 0.
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2.1 The RLS Algorithm

An important special case of (3) is the so-called Recursive-Least-Squares (RLS) algorithm (see, e.g.,
[9, 24]), which corresponds to the choices 3(7) = u(z) = 1 and A(i) = A = cte. In this case, the Riccati

recursion (4) reduces to

*
P;_iu;j uiPi—l)

P, = \U(P,_,—
! ( it )\+uiPi,1u;f‘

which also implies that
Pz’—l ll;r

Pu =—-"">_.
it A+ uiPi_lu;.*
Using this last equality in (3) leads to the update equation

*
Pi_lui

AP ) T

w; = W;_1+

which is the standard form of the RLS algorithm.

2.2 Error Signals

The difference [d(¢) — w;w;_1] in (3) will be denoted by &,(i) and will be referred to as the output
estimation error. The following error measures are also useful for our later analysis: W; denotes the
difference between the true weight w and its estimate w;, W; = w — w;, e,(4) denotes the a-priori
estimation error, e,(i) = u;W;_1. and e, (i) denotes the a-posteriori estimation error, e,(i) = w; W;.

It follows from the update equation (3) that the weight-error vector w;_; satisfies the recursive
equation:

w; = W1 — p(i)Piulég(i) . (6)

It is also straightforward to verify that the a-priori estimation error, e,(¢), and the output estimation
error, €,(i), differ by the disturbance v(i), i.e., €,(¢) = e,(¢) + v(7). Hence, the update relation (3) is
also equivalent to

wi = w1 + p(i) Piu [eq(4) +v()], (7)

If we further multiply (6) by u; from the left we obtain the following relation (used later in (21))

between ep (i), (i), and v(3),

ep(t) = [ 1 — p(i)wiPiuj | eq(2) — p(i)uiPiuj v(i). (8)

3 A Time-Domain Analysis

We now pursue a closer analysis of the Gauss-Newton recursion (3) in order to highlight an important
feedback structure that is implied by the algorithm. This structure plays an important role in our
discussions and serves as a basis for the robustness analysis provided herein.

Our purpose in this and the following two sections is threefold:



1. to show that certain local and global energy (passivity) relations can be associated with the

Gauss-Newton recursion (3);
2. to employ these relations in order to highlight a feedback structure;

3. to derive conditions on the parameters {A(3), 1(¢), 8(¢)} in order to guarantee that the feedback

structure will behave as a robust filter.

3.1 Local Passivity Relations

To begin with, the following result is immediate from the time-domain update recursion (6) — see

Appendix A for a proof.

Lemma 1 (Energy Relation) The following equality holds for all i:

TP+ [0(6) — B0)] [ea ) >+ 5(5) [ 1 — p6)wiPsul] Ea(i)[2 = AWy PT Y Fi s +u() [0() - (9)

Expression (9) relates five “energy” terms:

1. The weighted energy of the current weight error w;, namely, W} Pz._lv"vi, where the weighting is

with respect to the inverse of P;.

2. The weighted energy of the previous weight error w; _;, namely, )\(i)v'v{_lP;_llv'vi,l, where the

weighting is with respect to the inverse of A=1(i)P;.
3. The weighted disturbance energy, (i) |v(i)|’.

4. The weighted a-priori-error energy [u(i) — 8(3)]|ea(i)|® (assuming p(i) > B(i); more on this

condition later).
5. The weighted output-error energy, p(i) [ 1 — p(i)u;P;ul] €, (2)|>.

Equality (9) therefore allows us to study how the energies of the error terms propagate as the algorithm
progresses. In particular, it follows from (9) that the following energy sum (which appears on the

left-hand side)
WIP Wi + [u(i) — B(0)] lea(d)|”
can be larger, smaller, or equal to the energy sum on the right-hand side,

@)W PrL Wy + (i) o),

depending on whether the term p(i) [ 1 — p(i)u;P;ul] |€,(i)|? is negative, positive, or zero, respectively.
This is summarized in the following statment where we have introduced the notation zi(i) = (u;P;u})=*

(the inverse of the weighted energy of the input data).



Lemma 2 (A Local Passivity Relation) Consider the Gauss-Newton recursion (3). It always holds
that

<1 for 0 < p(i) < @(i),

— 1 for uGi) = A0, (10)
>1 for p(i) > a(3).

WP, Wi + () — B()) lea(B)[
@)W P Wiy + p(i) |v(i) ]

[Such relations also arise in the case of instantaneous-gradient-based algorithms (i.e., algorithms that

avoid the propagation of Riccati variables P;, as detailed in [25, 28]].

Interpretation

The first two bounds in the above lemma admit an interesting interpretation that highlights a robustness
property of the Gauss-Newton recursion (3). To clarify this, assume that 3(i) < (i) in order to
guarantee that the factor (u(i) — 8(i)) |eo(i)|” can be interpreted as an energy term.

In this case, we can interpret the first two bounds in the lemma to state the following: if the adap-
tation gain u(7) is chosen according to u(¢) < i(z), then no matter what the value of the denominator
in (10) is, the numerator will always be smaller than the denominator. Intuitively, the denominator
consists of the sums of the “disturbance” energies, namely, noise and previous weight error, while the

numerator consists of the sums of the energies of the current weight error and the a-priori error,
oty —1 ~ . . N2 N~k 1 o~ . N2 . . .
WiP; W, + (uli) — B6)) leali) P < MOV Py Wiy + (i) 0@ i p() < AG). (A1)

This is a desirable robustness property in the sense that it guarantees that if the “disturbance” energy
1i,. 1
A2 (i)g]

P, %,
Contraction
u(i) v(i) = T /(i) — B(4) eald)

Figure 1: A local contraction mapping.

is small then the resulting estimation error energies will accordingly be small (more on this in the next

section). It establishes, as shown in Fig. 1, a contractive map from

(VADP % 1, /(Yo (i)} (12)
to
(P Wi, /(i) — B(i)ea(i)}- (13)

[In simple terms, a map that takes z to y, say y = T'[z], is said to be contractive if for all z we have
IT[]||* < ||z||2. That is, the output energy does not exceed the input energy]. The symbol ¢~ in the

figure denotes a unit delay.



3.2 A Global Contraction Mapping

Since the contractivity relation (11) holds for each time instant 4, it should also hold globally over an

interval of time. Indeed, assuming p(i) < f(:) over 0 <3 < N, it follows from (11) that

N N
WAPY W 4+ Y (u(i) — BEANFIN e, (1)]F < ANONE Py 4+ ) T @AY ()7, (14)
=0 i=0
where we have employed the notation Al = []7_. A(k), with AIN+LN] = 1.

This relation has essentially the same structure as the one in (11), except for the additional scaling
of the terms |e,(i)|? and |v(i)|? by AN = \(i + 1)A(i +2)... \(N). It can as well be interpreted as

establishing a contractive mapping from the signals

{ NONITI 2 4\ /u(0)V AN (0), ..., w/N(N)U(N)} (15)

to the signals

{V/((0) = BON VNNt (0), ..., v/ ((N) = BIN)Jea(N), Py i } (16)

In other words, assume we stack the entries of (15) into a column vector and the entries of (16) into
a second column vector, and let Ty denote the mapping that maps the first vector (15) to the second
one (16). The entries of this mapping can be determined from the update relation (6) and from
the definitions of the a-priori estimation errors e,(-). The specific values of these entries are not of
immediate interest here except to say that it can be verified that 7x turns out to be a block lower

triangular operator of the form

V(1(0) = B(0)) VAL Ney (0) z VAN 2%,
V@) = BO)IVAENe (1) | |z 2 V/(0) VNN (0) an
P;,l/2v~vN | T T T =z ] w(N)v(N)
Tw

[For example, the first block entry of 7y, which relates e,(0) to W_;, can be easily seen to be
w/%uoﬂé/ ?]. The contractivity of 7y means that its maximum singular value is always guaran-
teed to be upper bounded by one,

7(Tw) < 1. (18)

The quantities in (15) involve the disturbances, i.e., noise and initial uncertainty in the guess for
w. The quantities in (16), on the other hand, involve the resulting estimation errors e,(-) and wy. In
loose terms, the statement (18) establishes the following interesting fact: the Gauss-Newton algorithm
(3), under the assumption (i) < u(z) < f(7), always guarantees that the weighted error energy due

the initial disturbances will not be magnified.



As a special case, assume A(i) = wp(i) = B(¢) = 1 (which corresponds to an RLS problem in
the absence of exponential weighting). Then the above conclusion implies that the mapping from
{v(-),Hal/zv'v,l} to {PJ_VI/zv'vN} is always a contraction. That is,

N

WP Wy < W I IWog + D ()
=0

which is a well-known result in least-squares theory [17].

4 The Feedback Structure

We now employ the above local and global passivity relations in order to highlight a feedback structure
that can be associated with Gauss-Newton recursions. This structure will be helpful in determining more
relaxed conditions on the parameters {u(¢), A(z), B(¢) } for robustness and also for suggesting choices for
the adaptation gains that would result in faster speeds of convergence.

We have argued above that if the adaptation gains are chosen such that (i) < u(i) < f(é) then
robustness (or contractivity) is guaranteed in the sense that the “resulting weighted energies” will never
exceed the “weighted disturbance energies” (cf. (11) and (18)). The term “robustness” is used in this
paper to indicate that a ratio of suitably defined weighted energies is bounded by some positive number.
The analysis in the earlier sections guarantees that for the choice 8(¢) < (i) < f(i), the ratio of the
energies of the signals in (15) and (16) will be bounded by one. However, the condition on (i) can
be further relaxed at the expense of guaranteeing energy ratios that will be bounded by some other
positive number (possibly larger than one), say

weighted error energy

< K, (19)

disturbance energy
for some constant K (to be determined). This is also a desirable property since it means that the
disturbance energy will be at most magnified (or de-magnified) by a factor of K. Hence, from a practical
point of view, it will mean that small disturbance energies can not result in relatively substantial error
energies.

These issues will be clarified in this section, along with procedures for choosing the adaptation gains
w(7) in order to result in faster speeds of convergence. The latter point will be addressed by studying
the energy flow through the feedback structure.

But before proceeding to a discussion of the feedback structure, we first state the following two

useful facts (proofs of which can be found in Appendix B). The first lemma provides a lower bound for

(i)

Lemma 3 (A Lower Bound on [i(i)) Consider the Gauss-Newton algorithm (3) with the free posi-
tive parameters {\(i), u(i),8(i)}. Define (i) as before, viz., (i) = (w;P;u)~1. It always holds, for

nonzero vectors u;, that () > B(2).



The second lemma rewrites the Gauss-Newton update equation (3) in an alternative convenient
form by using (8), which is rewritten here as
: u(7) N k(G
_(1_+@ _ sl 20
eati) = (1= 20 ) eafi) - Ao (20)
Lemma 4 (Alternative Update Form) The Gauss-Newton algorithm (3) can be rewritten as fol-
lows:

w; = wi_1 + () Piujleq (i) — ep(d))]. (21)

The alternative form (21) shows that the original weight-update equation (3) can be rewritten in
terms of a new step-size parameter ji(¢) and a modified “noise” term that we denote by 4(z), and which
is equal to —e,(¢) (compare with (7)).

If we now follow arguments similar to those prior to (10), we readily conclude that the following
equality holds for all u(¢) and v(i) since the adaptation gain in (21) is now equal to f(7) itself, as
required by the second condition in (10),

wiP W + (B(0) — B(0)) |ea (D)’
)\(i)‘i’f71pz:11ﬁifl + A(9) |ep(i)|2

=1. (22)

The quantities {W;, W;_1,¢e,(i), P;,P;_1} in the above ratio are exactly the same as those in the
ratio (10). However, the normalizing factor (i) is now replaced by fi(i) and the noise term v(i) is
now replaced by the a-posteriori estimation error e,(i). Moreover, in view of the auxiliary result of
Lemma 3, the difference [z(i) — 4(i)] is now always nonnegative. Hence, the term (f(i) — 8(i)) es(3)|”
can be interpreted as an energy term regardless of any condition on the original {(z), 5(7)}.

Relation (22) therefore establishes that the local map, denoted by T ;, from

(VAP 2w 1, V(e (i)} (23)

to
_l ~ — . . .
{P; 2Wi, /(1) — B(i)ea(t)}, (24)
is always lossless, i.e., it preserves energy (compare with the signals in (12) and (13) where the mapping

was contractive and not lossless). The lossless map can be explicitly seen to be given by (in terms of

A(2))

NS IR E 1 .1
(A6) = AU ea) | _ [2959]" wpl, 0 MP e |
P, 2w 30 APt lPE - i nliapl 1% (5) (i)

: P, 2 I-a()Piufw] P2 A 2(i) a2(i)P?u B »

~
Ti

10



This map involves the a-posteriori estimation error e, () or, equivalently, the modified noise distur-
bance —7(3). But since ep(i) (or 9(3)) can be expressed in terms of the original disturbance v(i) and

the a-priori estimation error (cf. (20)),

A3 (0)o(i) =

pli) . ( u(i)> IFUR

——v(1) | 1 — —= ) 12(7)eq(2) - 25
20 (1) F10) (1)ea(t) (25)
then the lossless map from (23) to (24) can be expressed as a feedback map that involves the original
weighted disturbance y/f(-)v(-). This is shown in Figure 2. The feedback loop consists of a memoryless

(or static) system that performs the scaling by (1 — p(3)/a(%))/+/1 — B(i) /a(4)

>
o=

—~~
.
p—

'QI
—

A

,_.

N

Figure 2: A time-variant lossless mapping with gain feedback.

Comparing Fig. 2 with the earlier Fig. 1 we see that the main differences are i) in representing
the contractive map of the earlier Fig. 1 as a feedback interconnection of a lossless system with a
memoryless system and ii) in scaling the input and output signals v(:) and e, (i) differently, where
w(i) is now replaced by (7). Intuitively, the configuration of Fig. 2 shows how the different error and
disturbance signals {W;, W;_1, e,(%),v(:)} in a Gauss-Newton recursion are connected. It highlights an
implicit feedback structure that consists of two simple blocks: a lossless block that preserves energy
and a static block with no memory. The feedback structure also explicitly incorporates the noise v(%).

The point now is that such feedback configurations lend themselves rather immediately to stability
and robustness analysis via tools that are standard in system theory, such as the Small Gain Theorem

[11, 32], as we now verify.
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5 [y—Stability and the Small Gain Theorem

The purpose of this section is to derive conditions on the adaptation gain u(7) in order to guarantee
that the overall system of Fig. 2 is [;—stable. By this we mean that it maps a finite energy sequence
{V/B() v(-)} to a finite energy sequence {+/7i(-) — B(-) e4(-)} in a sense precised in (27) below. In other
words, while the choice 8(i) < u(7) < fi(¢) guarantees the contractivity property (18), with the signals
defined in (17), the more relaxed condition on u(z) that is derived further ahead in (30):

i) will guarantee the /o—stability of the mapping in Fig. 2, which involves the alternative signals
{VE() v(-)} and {\/A(-) — B(-) eq(-)} with f(7) replacing p(i) (see (28) and (29) below), and
ii) will also allow us to conclude, under an additional condition on 3(7), that the original mapping

in (17) has a 2—induced norm that is bounded by another positive number (generally different

from one).

In either case, the point is that we can relax the condition on u(z) and still conclude that a relation of
the form (19) can be established.

The main result is stated below (a proof of which can be found in Appendix C — the proof is based
on the triangle inequality of norms).

Define
©(%)

_ 0] _ p(0)
A(N) = oA, 0 and y(N) = orgnz'af}(\r O (26)

a(0)
That is, A(N) is the maximum absolute value of the gain of the feedback loop over the interval of time
0 < i < N. Likewise, y(NN) is the maximum value of the scaling factor p(z)/f(i) at the input of the

feedback interconnection.

Theorem 1 (lo—Stability) Consider the Gauss-Newton recursion (3). If A(N) < 1 then

k3

N
(B(5) = BENAEHLN [eq (i) * <
=0

N
1 .
0,N]% -1z () \[i+1,N V(2
=AM \/)\[ IWw_1P~;w_1 +7(N) ;:0 (i)l Hw(@)? | . (27)

Interpretation

The terms {(a(i) — B(:))A\F1N e, (0)]?, a(i)Ai+1N|y(4)[2} that appear in the expression (27) are
essentially the same as the ones that appear in the earlier expression (14), except that u(z) is now
replaced by fi(¢). Therefore, expression (27) is still a relation that compares the energies of two weighted
sequences. Moreover, the energy of the sequence {fi(i)A\“+"|v(4)[2} is further scaled by y(NN). Relation

(27) then shows that the sum of the energies due to the weighted disturbances (noise and initial weight

12



error) can at most magnified by 1/[1 — A(N)]. In particular, if the right-hand side energy in (27) is
bounded (finite) and if the gain 1/[1 — A(N)] is finite, then relation (27) also means that the map from

{/NHLNIAC) (), VARNIPF ) (28)

to

{YAFNIE() = B(0) ea()} (29)

is lo—stable (it maps a finite energy sequence to another finite energy sequence).

The difference [1 — A(N)] is positive and smaller than one in view of the restriction on A(N),
which is necessarly less than one. Therefore, the gain 1/[1 — A(N)] can become large only when A(N)
approaches 1, but is otherwise reasonable for other values of A(N). For example, A(N) = 0.9 leads to
a magnification factor of 10.

In fact, the condition A(N) < 1 can also be interpreted as a manifestation of the so-called small
gain theorem in system analysis [11, 32]. In simple terms, the theorem states that the [»—stability
of a feedback configuration (that includes Figure 2 as a special case) requires that the product of the
2—induced norms of the feedforward and the feedback operators be strictly bounded by one. Here, the
feedforward map has 2—induced norm equal to one (due to its losslessness) while the 2—induced norm
of the feedback map is A(N), which therefore needs to be less than one.

Tt is also straightforward to verify that A(N) < 1 is equivalent to requiring that u(i) be chosen in

the interval:

(%)

If B(i) is further assumed to satisfy (i) < p(i) then it also holds that the map from

(e o, VAT be |
(VA0 = 60) a0}

(i-e., with fi(-) replaced by u(-), as in the original relations (14) and (17)) is l2—stable in the following

0<u(i)<ﬂ(i)(1+ 1—@). (30)

to

sense. Define

~ o<i<n (i) — BG)’
d

This measures how far are the differences [u(i) — ()] and [a(¢) — B(7)] apart from each other (see

Appendix C for a proof of the following result).

Theorem 2 (l;—Stability) Consider again the Gauss-Newton recursion (3). If

B(5) < i) < i) (1 . % ) . (31)

13



holds, then

k3

N
(1(8) = BEDAFHLN [eq (i)* <
=0

AEN) VO Ph_y 4412 (N) ivju(i)/\["“’N]Iv(i)|2 (32)
1—A(N) I =0 .
Interpretation

We see that by allowing u(i) to assume larger values than [i(i), as suggested by (31), the gain factor
that was one in (14) and (18) is now changed to ¥*/2(N)/[1 — A(N)]. How big or how large is this gain
depends on how close or how far is A(IV) from one and also on the value of (V). Relation (32) tells us
how much the (weighted) estimation error energies in a Gauss Newton recursion are magnified relative
to the (weighted) disturbance energies.

Therefore, we conclude from the last two theorems that a sufficient condition for the energy am-
plification to remain bounded is to choose the adaptation gains as indicated in the statements of the
theorems (cf. (30) or (31)).

Notation
Before proceeding further, it will be convenient here to introduce a matrix notation that will be helpful

in the sequel. Define the diagonal matrices

My = diag {:u’(o)vu(l)aau(N)}a MN = diag {ﬂ(O),ﬂ(l),,ﬂ(N)}, (33)
By = diag {8(0),5(1),...,8(N)}, Anx = diag {AON ALV X(N)}, (34)

and the vectors

€N = [€4(0),€5(1), . ea(N)], vy = [v7(0),07(1), ..., v*(N)]. (35)

That is, My is the diagonal matrix with the adaptation gains along its diagonal. Likewise, My has
the (inverse of the) input energies along its diagonal. The e, v and vy are column vectors with the
a-priori estimation errors and the noise sequence, respectively.

Correspondingly, the matrix [I— By My ]~ 3 [I—-MyMj ] is diagonal with the gains of the feedback
loop along its diagonal. Likewise, the matrix M Nﬁ; is diagonal with the input gains u(7)/f(i) along
its diagonal.

If we denote the 2—induced norms of the matrices [I — B NMJ_Vl]_% I-M NM;,]L] and MyMy' by

|- BaMy T I - MAML |

and MM |

2,ind 2,ind
respectively, it then easy to see, due to the diagonal structure of My and My, that these norms are

given by A(N) and y(IV), respectively,

AN) = |1~ ByM L - MAMY )

and y(N) = HMNMJ_\,1

2,ind 2,ind
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The [y —stability condition then amounts to guaranteeing a contractive feedback map,
~——1,_1 —
I-ByMy | 2[I-MyMy |

The map is memoryless in this case: it consists of a diagonal matrix that simply scales the input

sequence {1/AITLNI(G() — B())) ea(-)}. We shall see later, especially in the context of filtered-error

variants, that a more involved dynamic feedback map arises.

6 Energy Propagation and Convergence Speed

The feedback structure, and the associated lossless block in the direct path, provide a helpful physical
picture for the energy flow through the system. To clarify this, let us ignore the measurement noise
v(7) and assume that we have noiseless measurements d(i) = u;w. The weight-error update equation

(6) can then be easily seen to collapse to
= [I — p(@)Piuju;] W, g, (36)

where the M x M coefficient matrix [I — p(i)P;u}u;] is simply a rank one modification of the identity
matrix. It is known in the stochastic setting that for Gaussian processes [1], as well as for spherically
invariant random processes [20], the maximal speed of convergence for gradient-type algorithms is
obtained for u(i) = [(i), i-e., for the so-called projection LMS algorithm (with P; replaced by the
identity matrix) [33]. We now argue that this conclusion is consistent with the feedback configuration
of Figure 2 in the case of Gauss-Newton methods.

Indeed, for u(i) = @(i), the feedback loop is disconnected. This means that there is no energy
flowing back into the lower input of the lossless section from its lower output e,(-). To understand
the implications of this fact, let us study the energy flow through the system as time progresses. At
time ¢ = —1, the initial energy fed into the system is due to the initial guess Ww_; and is equal to
w* ,P_1Ww_;. We shall denote this energy by E,(—1). Now, at any subsequent time instant i, the
total energy entering the lossless system should be equal to the total energy exiting the system, viz.,

A3 Ey (1 — 1) = Ey (i) + E.(7), or, equivalently,
Ey(i) = A@)Ey(i — 1) — Ee(1), (37)
where we are denoting by E. (i) the energy of /(i) — 8(i) eq(i) and by E,, (i) the energy of P, %v'vi,
E.(i) & (86) — BO0)ui%i 1 ?, Bu(i) & ;P w

Expression (37) implies that, for A\(i) < 1, the weight-error energy is a non-increasing function of time,
ie., Ey(1) < Ey(i — 1) for all 5. Strict inequality is guaranteed if E, (i) # 0. This is in general the case
especially when the input vectors u; satisfy some persistence of excitation conditions. Note also that

the so-called forgetting factor A(z) plays an important role. The smaller the () the smaller the E,, (7).
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But what if u(i) # [(i)? In this case the feedback path is active and we now verify that the
convergence speed is affected since the rate of decrease in the energy of the weight-error vector is now
lowered. Indeed, for u(i) # (i) the feedback path is connected and, therefore, we always have part of
the output energy at e, (-) fed-back into the input of the lossless system. More precisely, if we let E; (1)

denote the energy term [i()|9(4)|?, then the following equality must hold (due to energy conservation):
A(Z)Ew(l - 1) + Ej (7‘) = Ew(l) + Ee (7‘)

at any time instant ¢. Also, the feedback loop implies that

2

=

1— bl
O _| E,3) < E.(),

since we are assuming a contractive feedback connection. Therefore,

T

Ey(i) =

_ #()
Bu(i) = M) Fu(i = 1) = | 1= | =L | Beli) = AD)Bui = 1) = () E (),
L= 5

e
where we have defined the coefficient 7(7) (compare with (37)). It is easy to verify that as long as
(i) # (z) we always have 0 < 7(¢) < 1. That is, 7(2) is strictly less than one and the rate of decrease
in the energy of w; is lowered, thus confirming our earlier remark. Simulation examples are included
in a later section.

Finally, what if the measurement noise v(-) is nonzero? In a deterministic setting, the samples
v(-) can assume any values. In particular, we can envision a noise sequence that happens to assume
the special value v(i) = —e, (7). In this case, the update relation (6) collapses to w; = w;_; and,
hence, w; = w_; for all time instants . This means that no improvements over the initial guess are
obtained and, consequently, convergence will never be attained if w_; # w. In other words, no sensible
statements can be made about the convergence of the algorithm if no restrictions are imposed on the
noise sequence v(-). However, it is known, form theoretical as well as experimental results for stochastic
noise sequences, that the noise does not affect the rate of convergence but rather the steady-state value.
This is consistent with the feedback configuration of Figure 2 where it is clear that the fine structure

of the feedforward and the feedback paths are independent of the specific values of the noise sequence;

it only depends on {u(:), A(7), 3(2)} and u;.

7 Filtered-Error Algorithms with Gauss-Newton Update

The feedback loop concept of the former sections applies equally well to Gauss-Newton algorithms that
employ filtered versions of the output estimation error, €,(i) = d(i) — u;w;_;. Such algorithms are

useful when the error €,(i) can not be observed directly, but rather a filtered version of it, as indicated
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in Figure 3. The operator F' denotes the filter that operates on é,(:). It may be assumed to be a
finite-impulse response filter of order MF, say

Mp—1

F(gY)e@)] = Flz(i)] = > fizG—3).

3=0
It may also be a time-variant filter, in which case the coefficients f; will vary with time, say f;(i). A
typical application where the need for such algorithms arises is in the active control of noise (see, e.g.,
[5, 12, 15]). In the sequel we shall discuss two important classes of algorithms that employ filtered error
measurements; the filtered error Gauss-Newton algorithm for transversal filters and its counterpart for

adaptive IIR filters, also called the Pseudo Linear Regression (PLR) algorithm.

Flea(i)]

Figure 3: Structure of filtered-error adaptive algorithms.

7.1 The Filtered-Error Gauss-Newton Algorithm

The so-called filtered-error Gauss-Newton algorithm (FEGN) retains the input vector unchanged, viz.,

it uses an update equation of the form
w; = w1+ p()Piug Fld() —wiw; 1] = wi_y + p(0)Piuj F[é.(1)], (38)

where the difference [d(i) — u;w;_1] is further filtered by F. We can repeat here the same feedback
analysis as in the previous sections. This will establish a similar feedback structure to the one in Fig. 2,
except that the feedback loop will now be dynamic; the impulse response of the filter F' will also enter
into the composition of the feedback loop.

Since the discussion in this section follows rather closely the development in the earlier sections, we

shall be brief and will only emphasize the differences that arise in the current context.
7.1.1 The Feedback Structure for Filtered-Error Gauss-Newton Algorithms

Following the discussion of Appendix B that led to (21), we get the following sequence of equalities

wi = Wit + p(i)Psui Flea(i)] + (i) Py} Flo(i)]
= Wiy + ()P Flea(i)] + p(i)Pou} Flo()] + A(0)Piufeq(i) — a(i)Piuieq (i)
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= wiis + A(0)Piuteq(i) + Piul[u6) Flo()] — fii)ea(i) + u(i) Flea ()]
= wisy + A(0)Piu [ea (i) + 3(3)] (39)

where we have defined the modified noise sequence {o(-)},

A(0)o (1) = p(@) Flo(@)] — A(d)ea(d) + (i) Flea(d)], (40)

and i '(i) = u;P;ul.

Expression (39) rewrites the filtered-error update relation (38) in a form similar to the original
Gauss-Newton update (3) (i-e., without an explicit filtering operation by F'). This is achieved by
redefining a modified noise sequence ¥(z) that incorporates the action of the filter F', as well as by
employing an adaptation gain that is equal to f(7).

Based on this rewriting, and using the same arguments following Lemma 4, we readily obtain that
the following equality should hold for all i:

WiP; Wi+ (B0) — B) lea () _ |
NQYWi P i + () [000)

(41)

This again establishes that the map from {{/\(3)P,_ 1w, 1, VE()5(i)} to {P, * wz, (i) — B(i)eq ()},
denoted by T, is also lossless, and that the overall mapping from the original disturbance +/fi(-)v(:)

to the resulting a-priori estimation error /fi(-) — 8(7) eq(-) can be expressed in terms of a feedback
structure, as shown in Figure 4, which now explicitly includes the action of the filter F' in the feedback
loop.

We further remark that the notation,

1

_ k() F[] 1
JioB0 VA VED - B0
that appears in the feedback loop should be interpreted as follows: we first divide 1/fi(i) — 8(7) eq(¢) by

e ), followed by the filter F' and then by a subsequent scaling by \/"ﬂ Likewise, the term

ﬂ(z) v(i ) is first divided by +/fi(%), then filtered by F' and finally scaled by \;%

The feedback loop now consists of a dynamic system. But we can still proceed to study the

lo—stability of the overall configuration in much the same way as we did in Section 4. Similar arguments
will lead to a sufficient condition for stability that we now exhibit. For this purpose, we use the
convenient vector and matrix quantities as in (33)-(35) and also define a vector ¥ similar to vy but
with the entries (-) instead of v(-).

We further define the lower triangular matrix Fy that describes the action of the filter F' on a

sequence at its input. This is generally a band matrix since Mgp < M, as shown below for the special
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Figure 4: Filtered-error Gauss-Newton algorithm as a time-variant lossless mapping with dy-

namic feedback.

case Mp = 3,
_ / -
fi Jfo
Fn=|f2 fi Jo

fo fi fo

It is thus immediate to verify that the successive outputs of F[e, ()] can be obtained by simply computing

the matrix-vector product F e, n. Also, if the filter F' were time-variant all that changes is that the
matrix F will not be Toeplitz anymore. Instead, its first diagonal will consist of the values of the first
coefficient fo(-) at the successive time-instants, and so on.

The following result follows from precisely similar arguments to those in the proof of Theorems 1

and 2 in Appendix C. Define

1 — — 1 N §
A(N) = HMJZV(I — MpyMy' Fy)[My — By % and (N) = HMN2 MyF M, ’

2,ind 2,ind
Here, A(N) is the 2—induced norm of the feedback loop whose action is described by the matrix
-1 - —

MyI- MNMNIFN)[MN — By]~ 7. Likewise, y(N) is the 2—induced norm of the filter at the input

— 1 — 1
of the feedback structure and whose action is described by M > MyFyMy2.

Theorem 3 Consider the filtered-error Gauss-Newton recursion (38). If A(N) < 1 then

N
(B(5) = BE)AFHLN [eq (i)* <
=0

k3

N
1 )
- 0,Nlv* P 1w (D AEHLN o ()2 | .
A | VYRR () D NN () (42)
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Moreover, if we further have B(i) < u(i) then

N

D (1) = B@NHLN e (5)]* <
=0
71/1(33 VAN P 49V \lZu AHLNT )2 | (43)

We thus see that the major requirement is for the feedback matrix
1 — 1 — 1
M3 (I—-MyMy Fy)My —By] 2

to be contractive. We shall denote this matrix by Gy. It can be easily seen to have the following

triangular form (it also has a band of width Mp):

1—,';(—3;1‘0 )
1-80)
£(0)

B () f1 15 fo
(1l n(0)—8(0
G o VA /2(0)—B(0) 120 (14)
B w(2) fo N w(2) 1 1-£Gfo
VARVE0)—B0)  /AR)YEL-BO) \/1_%
i

The entries of Gy depend on four parameters: the step-sizes u(¢), the 3(7), the energies of the input
sequence [i(i), and the error filter F'. Several special cases may be of interest. For example, the special

case F' =1 (i.e., no filter) immediately leads to

o) _u(N)
) ]
0

_ _ _ B(N)
V1 V-
which is precisely the case we encountered earlier in Section 4. A sufficient condition for the contractivity
of Gy was seen to choose p(2) such that 0 < p(i) < f(3)(1 + /1 — B(¢)/A(2)). Another special case is

F =g ! (ie., asimple delay). The filtered-error Gauss-Newton recursion (38) then collapses to

Gy = diag

w; = wi_1 + p(i)Puj é,(0 — 1). (45)

The corresponding Gy is given by (since fo = 0 and f; = 1)

lﬁ( ) 0
0
1=Z@
n(1)
_ E(1) 1
a(0)—B(0) _ B
Gy = VR i (46)
©(2)
_ w(2) 1
VAE(2)-B(1) \/1_@
£(2)
(0]
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We see that Gy can not be a contractive matrix since, for example, its leading (0,0) entry is not less
than one, because of (i) < (i) [if a matrix is contractive, then all its principal leading submatrices
have also to be contractive]. This is consistent with results in the literature where it has been observed
that the delayed-error algorithm usually leads to unstable behaviour.

We also see from the general expression for Gy in (44) that a simple gain filter F' = fy with a
negative fo leads to a non-contractive G. We consider in the next section another important special

case.

7.2 The Projection Filtered-Error Algorithm

The projection filtered-error algorithm employs a special choice for the step-size parameter, viz., a

scaled multiple of the reciprocal input energy,
u(i) = a p(i), o>0. (47)

This leads to an update recursion that is often referred to as a projection update,

*
Piui

w; =Ww;_1 +a
uz-Piu;?‘

F[eq(d)]-

In this case, it can be seen that the contractivity requirement now collapses to requiring the contractivity

of Gy, where Gy is now given by

1—afo @
-5
_on/E(1) 1—afo
V/A(0)—-B(0) \/1,% ‘ (48)
__ay/B(2) __ay/a(2) 1—afo
z(0)—B(0 n(l)—8(1 2
VE(0)—B(0) VE(1)-B(1) \/1_%

We further assume that the (weighted) energy of the input sequence u; does not change very rapidly
over the filter length Mp, ie., i(:) ~ p(i —1) =~ ... = (i — Mp). This is a reasonable assumption
since, as mentioned earlier, we often have Mr < M. We also assume that the 3(i) satisfy 8(i) = Bfi(4)
with 3 < 1. [A particular choice with o = 1 and 3 = 0.5 will be discussed later in the context of the

PLR algorithm]. In this case, Gy collapses to
Gy ~I-aFy, (49)
and the contractivity of [I — oF 5] can be guaranteed if we choose the a so as to satisfy
mgx‘l —aF(e9)] < 1. (50)

This is equivalent to requiring that F(e’?) should lie inside a circle of center (1,0) and radius 1/a.

Thus, the smaller the step-size o the wider the circle and, consequently, the easier for the condition
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to be met. This also suggests that, for faster convergence (i.e., for smallest feedback gain), we should

choose « optimally by solving the min-max problem:

min max|1—aF(ejQ)‘. (51)
a Q

If the resulting minimum is less than 1 then the corresponding optimum «a will result in faster conver-

gence and also in an overall robust system (cf. (43)).

7.3 A Note on the Pseudo Linear Regression Algorithm

Another case of filtered error variants that arises in IIR modeling is the so-called Pseudo-linear-regression
algorithm [3, 30]. In this case, the filter F' in the feedback path takes the special form (see also the

discussion in [22])
1
S 1-A@gY)

for some unknown recursive filter A. The results of this paper are also applicable to this case. In

F(g™)

particular, [5-stability would require the following contractivity condition

__1 —1 —_— 1
HM;V(I — MyMy'[I - Ay] )My — By]

<1,
2,ind

where the matrix Ay is lower triangular (as in the definition of Fy) and describes the action of the
unknown filter A(g~!).
Assume, for example, that 5(i) = y1(2) and p(:) = v2/(i), with ;3 < y2 < 1. The condition then

simplifies to choosing the two parameters y; and 72 so as to satisfy
1 1
MR Iy = Y2[I = AN]7Mp [l2,ind < v/ -

A sufficient but conservative condition is to require

ming<i<n /()
maxo<i<n V(i)

which establishes a dependency on the time-variations in the input vector energy.

I — Y2l — AN] " 2 ing < V71

Other choices of the adaptation gains have been shown to lead to results independent of these
variations (see [26]). The above condition is still dependent on the (usually unknown) filter A(g~!).
However, if we could choose u(z) = (1) = fi(4), then the scaling factor /(i) — 3(2) of the a-priori error
sequence would become zero and the feedback-path will have no effect on the overall stability. But,
unfortunately, fi(7) is a function of 3(¢) and they can only become equal for A(7) = 0. The choice of the
projection step-size helps here, if u(i) = ji(i) and 8(i) = Bf(i). In a recent paper [3], the following
choices were proposed

B=0.5 a=1, \4)=0.54,

with the intent of minimizing the a-posteriori error. In this case, (i) — 8(i) = 1/(1 + g~1(i|i — 1))

does not become zero, but u(i) = () and the feedback loop gain becomes zero in the unfiltered case.
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The forgetting factor A has been chosen to be 1 — 3(7), since this choice is advantageous for fixed-point

realizations. The elements of the Riccati matrix P; can then easily be bounded.

8 Simulation Results

In the following simulations we demonstrate several of the points raised in our previous discussions. We
considered the following two error-path filter functions

19
Fi(g)=1-12¢ '4+0.72¢ % and Fy(q) = Z g k=
k=0

1— q720

1—qg1°
The real parts of F; and F3 are shown in Figure 5, which shows that that F; has a strictly positive

real part while F5 does not.
20

Re[Fy (e’ )]
Re[Fy(e? )] || P2

10r- bl

Figure 5: Real parts of Fi(e??) and Fy(el ).

We employed the projection normalization (47) with 8(i) = 0.054(¢), A = 0.99, and u(2) = ai (7).
The input sequence u (i) (assuming a u; with shift structure) was chosen sinusoidal with frequency
Qo so that the a-priori error signal can be assumed to be dominated by this frequency. In this case, the

optimum « of (51) can be approximated by the simpler expression

. i,
m;n‘l —aF (eJ )

’

which can be solved explicitly and we get

1
Qopt = Real { m}

to be the step-size that causes the faster convergence speed.

Following the same procedure, the step-size ay;my, for which the stability limit (50) is achieved can

be calculated to be ayim = 2aop:-
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To verify these statements, we created an input sequence of the form
u(i) = sin[1.2i + ¢] ,

where 50 different values for ¢ were uniformly chosen from the interval [—m, 7]. The reason for adding
a random phase ¢ is to obtain smoother learning curves after averaging. The optimal step-size aopt
can thus be calculated to be a,p: = 0.085 and the stability bound is obtained for oy = 20,5t = 0.17.
Figure 6 shows three runs of the FEGN for the choices a = 0.085,a = 0.15 and o = 0.18. As expected,
the first value of a leads to the fastest convergence speed. In every simulation we averaged over 50
trials. The additive noise v(z) was assumed to be -40dB below the input power during the experiments
and the order of the adaptive filter was set to M = 10. The algorithm was run for N = 5000 iterations.
2

We see that for the first two values of «, the sample average of |€,(i)|* decreases with time, while for

the last value it increases.
5

2,n7  Of ]

E[e;(9)] .l (c) |
~10f ]
- ~
20 (b) ]
o] 1
_s0l i
-35 a g
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Iterations i

Figure 6: Convergence behaviour for FEGN algorithm with sinusoidal input sequence and

various step-sizes a = 0.085(a),0.15(b),0.18(c).

To derive conditions (50) and (51) we used the approximation (49) with the requirement that the
energy of the input vector changes slowly over the filter length M. To measure the impact of this
variation, the change in the input vector energy from one time-instant to the following can be used,
viz.,

(B ) - A= 1)’
This difference collapses to the simple expression (|u(é)[*> — |u(i — M )|2)2 when a time-shift structure
for u; is assumed. In a stochastic setting, the above measure of the input energy variation can be

explicitly evaluated via

E ([u(@)? = [u(i = M)[2)” = 2(E[u(i)|* - Elu(@)Plui - M)P),

24



which can further be reduced to
2(k — 1) E[|u(@)??,

if we assume that |u(i)|? is uncorrelated with |u(i — M)|?, which is a reasonable assumption for M
relatively large. Hence, the kurtosis parameter x gives a measure of the input energy variations. To
describe the impact of these variations on the FEGN algorithm, we applied various random input

sequences with different kurtosis as listed in Table 1. A bipolar random sequence with amplitude A

Distribution | Kurtosis
Bipolar 1
Uniform 1.8
Gaussian 3

K, 9
Gamma 11.66

Table 1: Kurtosis of various density functions.

avoids, of course, any variation in the input energy since we have now a constant z~!(i) = M A and
the kurtosis becomes one. For Gaussian sequences the kurtosis becomes three and for a K, density,
a modified Bessel function or McDonald function of the second kind for order zero, which is used to
describe the density of speech samples, the kurtosis is equal to nine. All random sequences were white
processes with variance one. Figure 7 depicts the simulation results, where we again averaged over 50
trials. Unlike the previous simulations, the power of the additive noise v (i) was set at —60dB relative to
the input sequence since then the effect of the various kurtosis can be observed better. As can be seen
from the figure, the higher the kurtosis the more the variation in the steady-state value. The convergence
speed and the stability bounds, however, remain unchanged. We repeated the above experiment with
white random processes for the filter F». The stability bound was calculated at o = 0.097 and the fastest
convergence at o = 0.05. The simulation resulted in a stability bound at 0.09 and fastest convergence
at 0.05 for the first four random processes of the table. For the gamma density, however, the values were
smaller (stability bound at 0.05 and fastest convergence at 0.025). This is due to the strongly variant
input sequence in this case. Since the filter F5 is much longer than Fi, the effect of approximation (49)
becomes visible. Figure 8 depicts some learning curves for F>. The noise was again set to -60dB. One
learning curve was obtained for a Gaussian sequence and the other for a K, density.

We may finally remark that we have also realized experiments under the same conditions for the
so-called filtered-error LMS (least-mean-squares) algorithm. This is an instantaneous-gradient-based
estimator that avoids the propagation of a Riccati variable [28]. Not only the conditions for stability and
faster convergence speed were the same, but also the learning curves were the same. Hence, although

Gauss-Newton type algorithms exhibit a higher convergence speed in the unfiltered case, especially for
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Figure 7: Learning curves for FEGN algorithm with Fy and various random input processes

with different pdf (o = agpt = 0.3). (a):Bipolar, Uniform, Gaussian, (b):K,, (c):Gamma

strongly correlated signals, this behavior is apparently lost in the filtered variants, i.e., when a filter
F exists in the error path. In other words, in the filtered case, the Gauss-Newton schemes do not
seem to converge faster than the LMS schemes and, hence, the additional complexity required to run
Gauss-Newton filters in this case may not be justified. One possible explanation for this is that the
Riccati variable P;, which is regarded as an estimate of the autocorrelation matrix of the input vectors

{u;}, loses this interpretation due to the filtering operation.

9 Concluding Remarks

We have provided a time-domain analysis of Gauss-Newton-based adaptive schemes with emphasis on
lo—stability or robustness issues. This was achieved by highlighting an intrinsic feedback structure
that arises in this context, and which maps the noise sequence and the initial weight error to the a-
priori estimation errors and the final weight error. The feedback configuration was motivated via energy
arguments and was shown to consist of two major blocks: a time-variant lossless (i.e., energy preserving)
feedforward path and a time-variant feedback path. Emphasis was further given to filtered-error variants
that give rise to dynamic time-variant feedback loops rather than memoryless loops.

The analysis was carried out in a purely deterministic framework and conditions on the adaptation
gains u(7) and on the parameters (3(i) were derived so as to guarantee robustness in the presence of
disturbances, in the sense that small energy disturbances would consistently lead to small estimation
error energies. Such a property does not hold if the above parameters are not properly chosen.

The discussion was also extended to the filtered-error case, where a filter is included in the update

equation. It was shown to lead to a dynamic feedback structure with implications on the convergence
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Figure 8: Learning curves for FEGN algorithm with Fo and random input process.

(a):Gaussian, o = 0.05; (b): K,, a = 0.05.

speed and robustness performance of the Gauss-Newton updates. Optimal choices for the step-size
parameters in the projection filtered-error case were derived and simulation results confirmed the validity
of the expressions.

The analysis presented here extends to other classes of algorithms as well, e.g., to block adaptive
filters and to updates that involve nonlinear functionals (such as Perceptron training). The results can
also be shown to be related to developments in H,,—theory. Results and connections in this direction

are reported in [22, 26, 27].
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Appendix A (Proof of Lemma 1)

_1
Multiply (6) by P, 2 from the left, and compute the squared norm (i.e., energies) of both sides of the resulting

expression, i.e.,
wiPT = [P Py — p()PEulE ),
= WP Wi — pi)ea(i)E; (i) — p(d)el (6)éa (d) + p* (i)uiPiuj |Ea(i)|”
If we now replace €,(i) by €.() = ea(?) + v(2) and use the fact that
160 ()] = lea (i) + V(i) = ea(i)v" (3) + v(i)el(s) + lea @D + [v()*
we conclude that the following equality always holds,
WP+ (i) lea (i) + p() (1 — p(i)uiPouf) [6a(i)® = Wio PT i + p(6) [o() |

Substituting recursion (5) for P; ! in the right-hand side, we obtain (9).

Appendix B (Proofs of Lemmas 3 and 4)

Proof of Lemma 3: Introduce the notation fi(i|i — 1) = (u;P;—1u})~'. Then, we can write

P *)2
ﬂ_l(i) _ llszu: — L uiPifluZ — A(.ul:Pl;IUZ) ,
>‘(7/) (l.) + u;P;_1u?
B(1) i
| a2 — 1)
= — 1 (’L|’L — 1) - (i — . )
A) ( 1 3 + ATl - 1)

B + XAl — 1)
In other words, we obtain that (¢) = B(:) + A(¢)2(¢]¢ — 1), where the term A(¢)z(¢|¢ — 1) is strictly positive since
P;—1 >0

Proof of Lemma 4: We use (20)to re-express the update equation (3) as follows:

w; = wi_1+ p(@)Piujes(i) + p(@)Piujv(4)
= wi1 +p(i)Pinjeq(i) + p(i)Piuiv(i) + A(1)Piujeq (i) — A(i)Piuiea(i)
= Wi+ A()Piuiea(i) + Piug [u(i)v(i) — (A() — p(i))ea(d)],
—h(i)ep (i)

which leads to (21).

Appendix C (Proofs of Theorems 1 and 2).

Proof of Theorem 1: It follows from (22) that, over 0 < ¢ < N,

N
Z NEEN(E(0) = B(0)) lea(i)|* = XMW PIIW g — Wi PR Wy + ) AN o),
=0
which also implies that (by ignoring the term Wi P 'Wy)
N N
D NEFENMI@EGE) — A(0) lea(i)” < NPT+ Y NG [o(0)*
i=0 1=0
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Consequently,

N N
ST NEHLN (i) — B(3)) lea () < \//\ NI PZiWog + | > AFHLNIE() [5(3)].
iz0 i=0

But it follows from (25), and from the triangular inequality for norms, that

2 NENEG PP < | D NMZEEROP | 5 A1 -
=0 =0 =0

‘We thus conclude that

M| pieal -

IN

D NEHLNI(A(G) — B(0)) [ea (i) \/MONJW PIiw_i+ ZAWN “((’))I (@)

p(3)
o)

|- \
5| Al *)

N
Z Ali+1,N]
=0

and consequently,

SOASHNIE() = B0 lea(@? < A/NONE P 49 (V) S NI

=0

Z A[;’+1,N](ﬁ(i) — B(1))]eq(?)]?

If [1 — A(N)] > 0 we conclude from the last inequality that (27) holds.

Proof of Theorem 2: Expression (*) in the above proof implies that

N
ZWIN (i) = B@E)) lea(@)]® < \/A[O’NvazlP:ivv-lﬂ“z(N) D LN (3 o (3)|?

=0

D AHLNI(EG) - B(E))ea(d)?

But note that

N N

SONFEN(G) — B(0)) i) = Z/\”“”“% (A(i) — B())lea (D)

7)) —
i=0 i=0 B

IA

v(N)Z/\““” (6) = B(@))lea i)

=0

Hence (32) follows.
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